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CRITERES DE CONVERGENCE ET DIVERGENCE 239

Or, en vertu de (IV, 5), on obtient
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et la divergence de la série (LI, 4) résulte de celle de Pintégrale
(IV, 1). D’autre part on a, en vertu de (IV, 6),
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dés que ¢ () = 2 u + 2, done
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et la convergence de la série (11, 5) résulte de celle de 'intégrale
(I1V, 2).

V. Enoncé du résultat obtenu.

En rassemblant nos résultats nous avons le théoréme
sulvant:

C. Soit W (x) une fonction de x continue, possédant une
dérivée positive et continue pour X = a, et telle que Uon att

Vi) >z (x=a,).

Supposons que V' (x) satisfait a Uune des deux conditions sui-
vantes: ou bien V' (x) ne décroit pas a partir d’'un x et atteint ou

dépasse la valeur un: ou bien Y’ (x) ne croit pas a partir d’'un x.
Alors: '

a) Si f(x) est positive a partir d’'un x et est sommable tandis
1- ¢ ’ ’ . A
que i reste uniformément borné dans chaque sous-intervalle

fini de Uintervalle de définition de f(x) et sil’on a d partir d'un x
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=1,
la série

>
v
est divergente.

b) Si f(x) est mesurable et positive a partir d’'un x et reste
uniformément borné dans chaque sous-intervalle fini de Uin-
tervalle de définition de f(x) et s'il existe un nombre 3,
0 <3<, tel qua partir d’un x,

F (Y (2) T ()
f(z)

<3, 0<8<1,

la série
Z f(v)

est convergente.

VI. Le critéere B d’ Ermakof
et les critéres de premiére espéce.

Quelle est la portée du critére B d’Ermakof comparée a celle
des critéres connus ? On trouve souvent ['assertion que le
critéere B d’Ermakof (avec W (r) = €*) « embrasse» tous les
critéres de la série logarithmique de MorGaN-BERTRAND. Or
ceci n’est vral qu’en partie.

Si 'on considére les critéres de premiére espéce dans lesquels
a, est comparé avec différentes fonctions de 'index v, le critére B
d’Ermakof n’est pas méme plus efficace que le critére de Cauchy
portant sur f/ a,.

En effet, nous allons construire une fonection f(z) positive,
continue, non croissante et tendant vers 0 avec x — o0, telle

que 'on a

fla) =™ (xz1), (VI, 1)
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pour une suite z, tendant vers I'infini. Alors la série O f (v) est

v=1
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