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IV. Discussion des séries (II, 4) et (II, 5).

Pour assurer la validité des conditions y) et S) on doit faire
des hypothèses plus restrictives sur la fonction Y7 (x). Il résulte

en tout cas de la condition a), cp'+ étant continue par morceaux,
que l'intégrale

CO

J 9+ (x) dx (IV, 1)

a0

est divergente et que l'intégrale

r<9+ (x)

J (*)s
dx (IV, 2)

converge. Or, le critérium de Maclaurin-Cauchy liant la divergence

de la série (II, 4) à la divergence de l'intégrale (IV, 1)

et la convergence de la série (II, 5) à l'intégrale (IV, 2) n'est pas
valable sans restrictions. On suppose généralement que l'expression

sous le signe d'intégral ne croît pas pour x tendant vers
l'infini. Or, il résulte des relations (III, 5) et (III, 7) que <p'+ (x)
ne croît pas si

10

et

2° la fonction <]/ (x) ne croît pas, c'est-à-dire que W (x) ne
décroît pas.

Il suffit donc d'imposer à la fonction T (x) les conditions
suivantes pour que 9^ (x) ne croisse dans aucun intervalle au-dessus
de a0:

T' (a0) > 1 T' (x) < T' (y) (a0 < 3 < y) (IV, 4)

On peut d'ailleurs remplacer (IV, 4) par la condition suivante,
un peu moins restrictive:

Y7 (x) ne décroît pas et atteint ou dépasse la valeur un pour
une valeur b0 de x.

En effet, on peut alors remplacer a0 par 60, de sorte que les
conditions (IV, 4) deviennent satisfaites.
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On peut, d'autre part, établir les propriétés y) et 8) en imposant

une condition tout à fait différente à Y' (x), à savoir que
Y' (x) ne croit pas.

En effet, dans ce cas on a évidemment lim Y' (x) oc où a

ne peut être < 1, puisque dans le cas contraire la condition
(II, 1) ne saurait être constamment satisfaite. Donc on a a > i,
Y' (#) > 1. On peut supposer Y' (a0) > 1, puisque pour
Y' (a0) 1 on aurait Y' (x) 1, c'est-à-dire un des cas où les

conditions (IV, 4) sont satisfaites. On a alors

^ (Y (*)—*) >«-tiO,
de sorte que Y (x) — x ne décroît pas. On a donc en particulier

% — ®v_l è «1 — «0 •

Posons cq — a0A, Y' a0)Y0. On a alors

«v ~ «v-l A > 0 (v A t)

9-(an) T,?; ("n) (Y0>1).

Soit (ji — 1 le plus grand entier contenu dans^. Alors pour tout
entier v, chaque intervalle (v, v + 1) contient [x points ax au
plus, c'est-à-dire au plus (x points de discontinuité de (p'+(x).

Or, dans notre hypothèse, (x) ne décroît pas, donc d'après
(III, 5) dans un intervalle de continuité 9+ (x) ne décroît pas et

se trouve multipliée par J/ (%) =-< 1 à chaque passage par
10

un point de discontinuité av. Il en résulte qu'on a pour chaque
entier v > 1

9; (v) è Y0-^ 9+ (s) (v > * > v — 1) (IV, 5)

9;(vun<p», j (vèxèv + 1). (iv,6)
9 (v) > 9 (x) — [X — 1 J

La dernière inégalité résulte de ce que, 9+(#) étant toujours
positive, la fonction 9 (x) croît constamment et accroît d'une
unité dans chaque intervalle < av_u av >.



CRITÈRES DE CONVERGENCE ET DIVERGENCE 239

Or, en vertu de (IV, 5), on obtient

V

9+ (v) > Yo-* f 9+ (*) dx
v-l

et la divergence de la série (II, 4) résulte de celle de l'intégrale

(IV, 1). D'autre part on a, en vertu de (IV, 6),

9>) ^ ^< (v < x < v 4- 1)
9(v)^ (9(x)-ix-l)2

1

dès que <p (x)>2 q. -f- 2, donc

< 4 Y," (v < a: < v ~f 1 9 (*) > 2[a + 2)
9 (v)2 - 9 (a;)2 - -

V+l

<p+ M „ r9+ (x)

9 (v)

et la convergence de la série (II, 5) résulte de celle de l'intégrale
(IV, 2).

V. Enoncé du résultat obtenu.

En rassemblant nos résultats nous avons le théorème
suivant :

C. Soit Y (x) une fonction de x continue, possédant une
dérivée positive et continue pour x > a0 et telle que Von ait

Y (x) > x {x >_ aQ)

Supposons que Y' (x) satisfait à Vune des deux conditions
suivantes: ou bien Y' (x) ne décroît pas à partir d'un x et atteint ou
dépasse la valeur un: ou bien Y' (x) ne croît pas à partir d'un x.
Alors:

a) Si f (x) est positive à partir d'un x et est sommable tandis

que reste uniformément borné dans chaque sous-intervalle

fini de l'intervalle de définition de f (x) et si l'on a à partir d'un x
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