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IV. Discussion des séries (II, 4) et (IL, 5).

Pour assurer la validité des conditions v) et 3) on doit faire
des hypothéses plus restrictives sur la fonction ¥ (x). II résulte
en tout cas de la condition «), @, étant continue par morceaux,
que l'intégrale .

fm ¢, () dz (IV, 1)

est divergente et que l'intégrale

(o]

/’%—r(—g—z dx (IV, 2)

To

converge. Or, le critérium de Maclaurin-Cauchy liant la diver-
gence de la série (II,4) a la divergence de l'intégrale (IV, 1)
et la convergence de la série (II, 5) a 'intégrale (IV, 2) n’est pas
valable sans restrictions. On suppose généralement que I’expres-
sion sous le signe d’intégral ne croit pas pour z tendant vers
'infini. Or, il résulte des relations (III, 5) et (III, 7) que o', (z)
ne croit pas si

o ¥ () = gy

<1
Aao)_

et

20 la fonction ¢’ (x) ne croit pas, c¢’est-a-dire que ¥’ (x) ne
décroit pas. |

Il suffit donc d’imposer a la fonction W (x) les conditions sui-
vantes pour que ¢4 () ne croisse dans aucun intervalle au-dessus
de a,: ‘

Ta)z1, ¥)=T() (w=z=zy. (IV, 4)

On peut d’ailleurs remplacer (IV, 4) par la condition suivante,
un peu moins restrictive: ‘

W (x) ne décroit pas et atteint ou dépasse la valeur un pour
une valeur b, de x.

En effet, on peut alors remplacer a, par b,, de sorte que les
conditions (IV, 4) deviennent satisfaites.




238 A. OSTROWSKI

On peut, d’autre part, établir les propriétés v) et §) en impo-
sant une condition tout & fait différente a ¥ (z), a savoir que
Y’ (x) ne croit pas.

En effet, dans ce cas on a évidemment lim ¥’ (z) = « ou «

x>0

ne peut étre < 1, puisque dans le cas contraire la condition
(I1, 1) ne saurait étre constamment satisfaite. Donc on a « > 1,
Y (x) = 1. On peut supposer W (aq,) > 1, puisque pour
V' (a,) = 1 on aurait ¥’ () = 1, c’est-a-dire un des cas ou les
conditions (IV, 4) sont satisfaites. On a alors

%(‘F(x}———x);a—i;o,

de sorte que ¥ (z) — z ne décroit pas. On a donc en particulier

_ > g, —
a, a4 = a ag .

Posons a; — a, = A, ¥/ (a;) = ¥,. On a alors .

a’vmav—iéA>O (VZ'I)’

o_ (%) = ¥, ‘P:r () (Fo > 1) .

Soit w — 1 le plus grand entier contenu dans%. Alors pour tout
entier v, chaque intervalle (v, v 4+ 1 > contient p points a, au
plus, ¢’est-a-dire au plus u points de discontinuité de ¢, ().
Or, dans notre hypotheése, ¢’ () ne décroit pas, donec d’aprés
(II1, 5) dans un intervalle de continuité ¢ (z) ne décroit pas et
se trouve multipliée par ¢’ (a,) = % < 1 a chaque passage par
0
un point de discontinuité a,. Il en résulte qu’on a pour chaque
entier v = 1

?, (v) = o o, (2) vzzzv—1), (IV, 5)
70 = o, o), } vsx=v+1).  (IV,6)
oz —p—1

La derniére inégalité résulte de ce que, ¢, (z) étant toujours
positive, la fonction ¢ (z) croit constamment et accroit d’une

unité dans chaque intervalle ( a,_4, a, >.
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Or, en vertu de (IV, 5), on obtient

0, ) ¥ [o, (2)da,
v—1 ;
et la divergence de la série (LI, 4) résulte de celle de Pintégrale
(IV, 1). D’autre part on a, en vertu de (IV, 6),

P, (v) Voo (z)
2

< o g 0
(P(V):(CP(CC)—*“..__/I)z (: <v -+ )

dés que ¢ () = 2 u + 2, done

@+(VL§Q‘F0U-CP+(:C1 (Véxév—i—i, @(x);?,p,_}_z)’
® () % ()
v+1 ,()
<P+(V)< w d__._.cP“Lx >
TRE v [ Togde ezt 2,

et la convergence de la série (11, 5) résulte de celle de 'intégrale
(I1V, 2).

V. Enoncé du résultat obtenu.

En rassemblant nos résultats nous avons le théoréme
sulvant:

C. Soit W (x) une fonction de x continue, possédant une
dérivée positive et continue pour X = a, et telle que Uon att

Vi) >z (x=a,).

Supposons que V' (x) satisfait a Uune des deux conditions sui-
vantes: ou bien V' (x) ne décroit pas a partir d’'un x et atteint ou

dépasse la valeur un: ou bien Y’ (x) ne croit pas a partir d’'un x.
Alors: '

a) Si f(x) est positive a partir d’'un x et est sommable tandis
1- ¢ ’ ’ . A
que i reste uniformément borné dans chaque sous-intervalle

fini de Uintervalle de définition de f(x) et sil’on a d partir d'un x




	IV. Discussion des séries (II, 4) et (II, 5).

