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234 A. OSTROWSKI

vertu de (II, 18), la relation (II, 19) est aussi valable pour tout
x>_a,Q et l'on a

<pl (x)

La série (II, 7) est convergente avec (II, 5).
Les assertions a) et b) sont complètement démontrées.

III. Construction d'une solution de l'équation d'Abel.

Dans cette section nous allons construire avec Ermakof,
pour chaque fonction Y (x) satisfaisant aux conditions du lemme
de la section II une fonction 9 (x) jouissant des propriétés
exigées dans ce lemme, sauf, pour le moment, les propriétés y)
et S).

Désignons l'inverse de la fonction y Y (x) (x > a0) par

« <My) (2/ è a1 y (a0))

La fonction t[> (y) est continue et croissante pour y > %, et
l'on a

^ ^ (2/ T M > x ~ ao > y à <h) • (if L i)

Posons

+0 (x) X ^ (x) «= (x) 1*2 M (<I> M)

+n M + (*)) •

Alors ^n(x) est l'inverse de la fonction Yn(x) donnée par (II, 9).

Donc, en résolvant (II, 11) par rapport à x*, on a

** +„(*) (III, 2)

La valeur de x donnée par (II, 11) parcourt évidemment
l'intervalle

an x < an+i ' (m> 3)

où les av sont définies par (II, 10).
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Donc, dès qu'un x>a0estdonné, l'entier et le nombre x*
dans l'intervalle <( a0, % sont univoquement déterminés par la

relation (II, 11).
Posons maintenant

<p (x) n+ 1 + — > a0) (III, 4)
a0

où l'entier n est déterminé par (III, 3) et x* par (III, 2). Il
résulte de (II, 11)

^ (s) Yn+1 (*)
donc

9 (Y (x)) n+2 + x
ai CLQ

La fonction 9 (x) donnée par (III, 4) satisfait donc à l'équation
d'Abel.

D'autre part, si x tend vers 00, le nombre n déterminé par
(X •

(III, 3) tend aussi vers 00. Donc, 9 étant situé dans l'in-
ül ÜQ

tervalle < 0, 1 on a 9 (x) > 00 (x 00

La fonction ^n(#) est continue pour tout entier n. Donc,
tant que x reste dans l'intervalle (111,3), x* et 9 (x) sont
continus.

On a évidemment pour tout n > 0

9 [an) n + 1

Donc 9 (x) est positive et continue pour x > a0 autant que x
est différente de chaque av(v 1, 2, 9 (x) est, de plus,
continue de droite en tout point au(n 0, 1,

Je dis que 9 (x) est aussi continue de gauche en chaque point
an+\(n 0, 1, En effet, si x tend en croissant vers l'extrémité
de droite de l'intervalle (III, 3), x* tend vers al7 et d'après
(III, 4) 9 (x) tend vers n + 2 9 (an+i). Donc 9 (x) est continue

pour tout x > a0.

Il résulte, en plus, de (III, 4) et (III, 2) que 9 (x) est dérivable
à l'intérieur de tout intervalle (III, 3), c'est-à-dire pour
an < x < an+i. On a évidemment

*
1 d (*)

9 (x) —
ai — ao dx
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(«1 — o0) ?' («) <K (4V-1 W) (^n-2 W) •" V (*)) 4' W
(111,5)

(an<x< an+1)

La même expression donne encore la dérivée de droite de <p

en av, de sorte que <p'+(x) est continue dans Vintervalle (111,3).
On a en particulier

K — <h) 9+ K) 1 K — fflo) 9+ Kl («i) -
K - «.) 9+ (a„) «I»' («„) <K («„_!) K) (n 1, 2, (III, 6)

Pour l'extrémité de droite de l'intervalle (III, 3), l'expression

(III, 5) tend avec xjan+l vers

d$n{an+l)
die + K+l) ^ K) - 4- (a2) •

Or, ceci est aussi

K — «o) 9- («n+l) '

où <pl (#n+i) est la dérivée de gauche de <p (x) en an+l. En effet,
on a

[a1 — aa){n + 2)—[{n-\-l){a1 — a0) + <S/(x) — a0]
h — «o)?_K+l) iim 5 ZTi —

x\an+1 n + 1 x

Hm
ffll ~ jjn M

lim
(aw+l) — 4>n (*) d<Mgn+l)

_

*tan+l ®n+l ® *tan+l an+l ^

On a donc en particulier

(ai a0) <pl (an) <J/ (aj (an_t) <|/ (a2) (n > 0)

où le second membre a la valeur un pour n — 1. Donc, en
comparant avec (III, 6),

9 + («J (ai) (an) »
?1 (an) Ä (ao) 9+ («n) * (m '7)

On voit que <p' (x) est continue à l'intérieur de chacun des

intervalles < an, an+i >, à condition de prendre aux extrémités les

dérivées du côté correspondant. Au point de discontinuité
an(n 1, 2, on a (III, 7). Il résulte maintenant de l'hypothèse

de la continuité de T' (x) que la propriété ß) est satisfaite.


	III. Construction d'une solution de l'équation d'Abel.

