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234 A. OSTROWSKI

vertu de (II, 18), la relation (II, 19) est aussi valable pour tout
xr = ay et 'on a

flz) =G

La série (11, 7) est convergente avec (II, 5).
Les assertions a) et b) sont complétement démontrées.

III. Construction d’une solution de ’équation d’Abel.

Dans cette section nous allons construire avec Ermakof,
pour chaque fonction W (z) satisfaisant aux conditions du lemme
de la section II une fonction ¢ (x) jouissant des propriétés
exigées dans ce lemme, sauf, pour le moment, les propriétés v)
et 9).

Désignons l'inverse de la fonction y = ¥ (z) (x = q,) par

=19 y=za="T@)).

La fonction {(y) est continue et croissante pour y = a,, et
I’'on a

LI)’ (y) = IF/ (.’I)) (y = IF(x) ’ z = aO ’ Yy _;—_ al) * (III, 1)

Alors ¢, (x) est I'inverse de la fonction V', (x) donnée par (I, 9).
Donc, en résolvant (II, 11) par rapport a z*, on a

a* = ¢ (x) . (II1, 2)

La valeur de x donnée par (II, 11) parcourt évidemment I'in-

tervalle

<
an:x< Apit s

(11, 3)

ou les a, sont définies par (11, 10).
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Done, dés qu'un = > g, est donné, I'entier n et le nombre x*
dans I'intervalle { a,, a, ) sont univoquement déterminés par la
relation (II, 11).

Posons maintenant

Tl psg), (111, 4)
al - ao -

¢(z) =n+ 1+

ou l'entier n est déterminé par (III, 3) et z* par (III, 2). Il
résulte de (II, 11)

V(z) =¥, (=%,
donc
z* — a,
G — Qo

o (Wix)) =n + 2 +

= o) + 1.

La fonction ¢ (x) donnée par (111, 4) satisfait done a I’équation
d’Abel.

D’autre part, si z tend vers oo, le nombre n déterminé par

x* R ao ’ - J4 23
étant situé dans 'in-

(III, 3) tend aussi vers o . Done,

a Qo
tervalle (0,1), on a ¢ () —> ®© (x —> ™).

La fonction ¢, (x) est continue pour tout entier n. Donc,
tant que x reste dans lintervalle (III,3), z* et ¢ (x) sont
continus.

On a évidemment pour tout n > 0

(p(an):n—l—’l.

Donc ¢ (z) est positive et continue pour z > q, autant que z
est différente de chaque a,(v =1, 2, ...). o(x) est, de plus,
continue de droile en tout point a,(n = 0, 1, ...).

Je dis que ¢ () est aussi continue de gauche en chaque point
a,.(n = 0,1, ..). En effet, si z tend en croissant vers ’extrémité
de droite de Pintervalle (III, 3), z* tend vers a;, et d’aprés
(I, 4) ¢ (x) tend vers n 4+ 2 = ¢ (a,,,). Donc o () est continue
pour tout X = a,. ,

Il résulte, en plus, de (111, 4) et (111, 2) que o (z) est dérivable
& Dintérieur de tout intervalle (III, 3), c’est-a-dire pour
a, <<z <<a, On a évidemment

1 d g, (z)

<p(x)=al_aO o

L’Enseignement mathém., t, I, fasc. 4. 3




236 A. OSTROWSKI
(ar — ao) ¢” () = &7 (dy (@) V7 (b (&) oo V7 (b (2)) 7 (2)

(I11, 5)
(@ <z<a,..

La méme expression donne encore la dérivée de droite de o ()
en a,, de sorte que o (x) est continue dans I'intervalle (III, 3).
On a en particulier
(ay — ay) CPI+ (@) =1, (a3 — a) P+ (a;) = ¢’ (ay) ,
(a, — ao) 9%, (%) = ¥ (a,) ¥’ (a,_y) - V' (@) (n=1,2,..). (I, 6)

Pour I'extrémité de droite de lintervalle (III, 3), expres-
sion (III, 5) tend avec z 1 a,,, vers

dLIJn an+ ’ ’ 4 ’
_—_L(ix—i) = ¢ (an+1) ¢ (an) 4 (a)

Or, ceci est aussi

(a, — ay) CP_’_ (an+1) ’

ou ¢ (a,.,) est la dérivée de gauche de o (z) en a,,,. En effet,
on a

(a3 —ao) 9. (a,.4) = lim
1 0 ( n+1) YV a, 41—
. a; — "I’n (x) “I”n (an+1) - ‘pn () d!.])n (an+1)
= lim —— = Ilim e .
xtapiq Pnet — % xtan 14 Uptt — 2 dx

On a donc en particulier
(a1 a9) @_(a,) = " (a) V' (2, 4) - ¥ (a)) (> 0)

ou le second membre a la valeur un pour » = 1. Donc, en com-
parant avec (III, 6),

o, (a,) = V' (a) ¢_(a,), o (a,) =T (ap) e, (a,). (III,7)

On voit que ¢’ (x) est continue a 'intérieur de chacun des
intervalles (a,, @, ., >, & condition de prendre aux extrémités les
dérivées du coté correspondant. Au point de discontinuité
a,(n =1, 2,..) on a (III, 7). Il résulte maintenant de I'hypo-
thése de la continuité de ¥ (x) que la propriété B) est satisfaite.

(@, —ao) (n + 2) ——[(n + 1) (@, — ao) + $,(2) — ] -
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