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SUR LES CRITERES DE CONVERGENCE
ET DIVERGENCE DUS A V. ERMAKOF

A Trygve Nagell a Uoccasion de son 60° anniversaire
PAR

A. Ostrowskr (Béle)

I. Introduction.

V. Ermakor a découvert, il y a quatre-vingt-cing ans, une
classe tres remarquable de critéres d& convergence et de diver-
gence de séries 1. Ces criteres, extrémement sensibles, ne sont
guere connus et l'on trouve généralement des indications peu
exactes sur leur portée. Nous nous proposons ici de préciser les
démonstrations des différents critéres d’Ermakof et de mettre
au point certaines considérations sur leur portée.

Avant d’indiquer le contenu des sections suivantes de cet
article, nous donnons une démonstration tres simple et
rapide du critére d’Ermakof dans un cas trés important.

A. Soit f(x) une fonction non négative et mesurable pour
x = a,. Sotent W (x) et ¢ (x) deux fonctions définies pour x > a
et telles que Uon ait

Vi zdllza (za, 9 -—n@— o), (1)

1 I. V. ErMAKOF, Caractére de convergence de séries. Bull. d. Sciences mathéma-
tiques el astronomiques, 1871, II, pp. 250-256;

II. V. ErmMakoF, Extrait d’une lettre adressée & A. M. Hoiel, 1. c., 1883, (1I) VII,
pp. 142-144.

Ces notes sont indiquées dans le texte par E.I, resp. E.IL.

Il existe encore des communications d’Ermakof sur cette question publiées en russe,
que nous étions malheureusement hors d’état de nous procurer. De méme, il nous a
été impossible de nous procurer une dissertation pour le grade de magistre de BouGAIEF
intitulée Convergence des séries infinies, d’aprés leur forme extérieure, publiée en russe
et citée par Ermakof dans E.I.
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{ (x) étant non décroissante @ partir de a, tandis que chaque inter-
valle  a, A > consiste en un nombre fini d’intervalles de monotonte
de ¥ (x). Alors, st Uon a pour presque chaque x > a et un q > 0
inférieur a 1:

fP (2)) ¥ (2) = qf (¥ () $"(2) (224, (L, 2)

U'intégrale

est convergente; st 'on a pour presque chaque X = a:

fOV () ¥ () z f($ (2)) 9" (2)  (z=a), (I, 4)

et s'il existe un A > a tel que W (A) > (A) et que 1(x) ne
s’annule pas presque partout dans Uintervalle { ¢ (A), ¥ (A) >,
Pintégrale (1, 3) diverge.

Donc en particulier, st f(x) est décroissante, la série

o]

i) (L, 5)

converge dans le premier cas et diverge dans le second.
En effet, dans le cas (I, 2) on a pour x > a en intégrant de
aax:

S )dx<qff (z)) ¢ (z) dz

a

donc, en introduisant respectivement ¥ (z), ¢ () comme nou-
velles variables d’intégration 1:

W(x) Y (x)
Sidi<q [f)at
¥(a) Y(a)
Ou encore )
$(x) Y(a) - W (x)
(1—gq [f@di= [fl)dt— [f(z)de
(a) Y(a) d(x)

Or, d’aprés (I, 1), la derniére intégrale est non négative, donc

1 Ceci est permis sous nos conditions. Cf. par exemple C. CARATHEODORY, Vorle-
sungen Uber reelle Funktionen, 1. Auflage, B. G. Teubner, Lelpzng, 1918, p. 55b
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l’intégréle
d(x)
[ (t) de
b(a)

est bornée pour z > a, et puisque ¢ (z) —> oo, (I, 3) converge.
Si, au contraire, (I, 4) est satisfaite on obtient de la méme
facon, en remplacant a par A,

¥(x) Y(x)
ff(t)dt—i—ff(t)dt (x=4),
Y'(A) $(A)
done
¥ (x) W(A)
ff(t)dt; ff(t)dt,
$(x) $(A)

donc ainsi, pour x > A, l'intégrale de gauche reste supérieure a
une constante positive tandis que dans le cas de convergence
de (I, 3) cette intégrale devrait tendre vers O pour x —> .
Donc I'intégrale (I, 3) diverge, C.Q.F.D.

Le théoreme qui vient d’étre démontré se trouve énoncé dans
E.I, p. 252, sous une forme un peu moins générale.

Nous allons appeler avec Ermakof une fonction ¥ (x) posi-
tive, croissante, tendant vers I'infini pour x —— o et a dérivée
positive et continue pour x > a, fonction conjuguée de premiére
espéce, si elle satisfait pour x > a a l'inégalité

Y(x) >«
et fonction conjuguée de seconde espéce, si elle satisfait pour
x = a & I'inégalité

¥iz) < =.

Pour désigner une fonction conjuguée de premiére espece nous
nous bornerons souvent a I'expression: fonction conjuguée.

Ermakof énonce le théoréeme A en supposant que W (z) est

une fonction conjuguée de premiére espéce et ¢ (x) une fonction
conjuguée de seconde espece 1.

1 Actuellement, Ermakof exige de ¢ (x) que cette fonction soit une fonction
conjuguée ou bien de premiére espéce ou bien de seconde espéce. mais satisfaisant &
P’inégalité ¢ (x) < ¥ (x). Mais son raisonnement ne marche pas, si ¢ (x) est supposée
de seconde espéce.

t
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En posant soit ¢ (x) = =, soit ¥ (z) = « on obtient deux
énoncés qui ne contiennent qu’une seule fonction conjuguée.
D’ailleurs il est facile de voir que les deux énoncés ainsi obtenus
et le critére général énoncé par Ermakof sont équivalents entre
eux. On pourra donc se borner dans I’étude des énoncés d’Erma-
kof a la considération du critere suivant:

B. Soit {(x) une fonction positive et continue et ¥ (x) une
fonction conjuguée de premiére espéce pour x = a. Alors si l'on
a pour une constante q, 0 < q < 1, U'inégalité

fF (@) ¥ () =qf (&) (x2a), (T, 6)

Uintégrale (1, 4) est convergente et si l'on a U'inégalité

fF (@) ¥ (z) = f(2)  (zxza), (T, 7)

Uintégrale (1, 4) est divergente.
La condition de divergence (I, 7) est satisfaite a fortior: si
Pon a pour un nombre positif Q > 1 I'inégalité
f(F () ¥ (2) =z Qf (x) (zz=a). (I, 8)

Dans ce qui suit nous nous occuperons surtout du théo-
réme B et ne reviendrons & 1’énoncé A que dans la derniére
section de cette communication.

Notons qu’Ermakof dans E.I énonce B sous une forme encore
plus restrictive (il suppose f(x) décroissante et son critére de
divergence est le critere de divergence réduit a la forme (I, 8))
et que sa démonstration dans E.I est loin d’étre irréprochable.
Mais il suffit d’apporter quelques légeres modifications au raison-
nement d’Ermakof pour en tirer une démonstration correcte
qui se trouve d’ailleurs dans quelques manuels 1.

Une autre démonstration du théoreme B, toujours pour f (z)
décroissante, se trouve dans un mémoire connu de A. PRiNGs-
HEIM %, ou le théoréme B se déduit par un passage a la limite

1 Cf. par exemple K. KNoprp, Theorie und Anwendung unendlicher Reihen, Berlin,
1922, 1. Auflage, pp. 288-290; T. J. I’A. BRoMWICH, An Introduction to the Theory of
Infinite Series, 2nd ed., London, 1931, pp. 43-44.

2 A. PriNngsHEIM, Allgemeine Theorie der Divergenz und Convergenz von Reihen
mit positiven Gliedern. Math. Annalen, t. 35, 1890, pp. 392-394. Cf. aussi Mathematical
Papers, Chicago Congress 1893 (1896), pp. 305-329, en particulier p. 324, p. 329, ainsi
que I’Enzyklopddie der Mathematischen Wissenschaften, I, Teil I, pp. 88-89.
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d’un théoréme de Pringsheim, obtenu par ce dernier en dévelop-
pant une 1idée de G. Konn 1. Mais, a vrai dire, cette démonstra-
tion ne s’applique qu’au cas ou la fonction ¥ (z) est dérivable
uniformément pour x > a, (ce qui est par exemple le cas pour
Y (x) = €¥) et ne méne dans le cas de divergence qu’au critére
(I, 8). Elle a été reproduite par Hosson 2.

Une démonstration tout a fait différente du théoreme B a
été donnée par KorkiNE 2.

Dans toutes ces démonstrations on n’obtient un énoncé
portant sur la série infinie (I,5) que sous I’hypothése assez
restrictive que la fonction f(z) décroit.

Or, Ermakof a publié en 1883 (E.II) une démonstration de
son théoreme sur les séries infinies qui est restée incomprise et
trés peu connue. On n’en trouve une mention que chez PRINGS-
HEIM 4. Cette démonstration est importante surtout parce que
Ermakof évite le passage par I'intégrale (I, 3) et parce qu’elle
s’applique aux fonctions positives et continues f(x) sans qu’ul
soit nécessaire de rien supposer sur leur caractére de monotonte.
Donc, en particulier, le critere d’Ermakof sous sa forme la plus
connue, celle qui porte sur le quotient

f(e¥)e®

fla)

n’est nullement borné aux séries a termes décroissants. Ce fait
n’a pas été remarqué jusqu’a présent S.

D’autre part, cette démonstration n’est pas tout a fait
compléte. Ermakof a bien remarqué qu’une condition supplé-
mentaire doit étre imposée a la fonction W (x). Il en dit quelques
mots (E.II, p. 142, dans une note au bas de la page) et il y
indique la condition qui avec nos notations équivaut & V"' (a) = 1,

1 G. Xoun, Beitrige zur Theorie der Convergenz unendlicher Reihen. Archiv der
Mathematik und Physik, 67 (1882), pp. 63-95.

2 E. W. HoBsoN, The Theory of Functions of a Real Variable and the Theory of
Fourier’s Series, 2nd ed., Vol. IT, Cambridge, 1926, pp. 33-34.

3 A. KoRrkINE, Sur un probléme d’interpolation. Bull. d. sciences mathématiques el
astronomiques, 1882, (II) VI, pp. 228-231.

4 A. PrINGSHEIM, L c., p. 393, note ** au bas de la page.

5 En particulier, Pringsheim, en parlant de cette démonstration, dit qu’elle ne
s’applique qu’aux fonctions f (x) décroissantes. (Cf. le second article de Pringsheim,
mentionné plus haut, noté au bas de la page, p. 327: « Dies ist der von Herrn Ermakoff
ausschliesslich betrachtete Fall ».)
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en ajoutant: « C’est la seule condition pour que notre démons-
tration soit juste.»

Or, il nous semble que cette derniére condition ne suffit pas
pour sauver la démonstration d’Ermakof. Une analyse plus
détaillée nous a permis de rendre cette démonstration correcte
en utilisant 'une des deux hypotheses suivantes:

«) W' (x) ne décroit pas & partir d’un x et devient égale ou
supérieure & un;
B) ¥’ (x) ne croit pas a partir d’un =.

Nous exposons la démonstration d’Ermakof ainsi rectifiée
dans les sections II-IV de cette communication. On trouve
I’énoncé complet du théoreme démontré dans la section V. Dans
la section VI nous montrons sur un exemple que le critére B
d’Ermakof avec W (z) = ¢ peut étre moins efficace que le

critére de Caucny portant sur v | a,|. Ce critere d’Ermakof
n’embrasse done nullement les critéres de premiére espéce de
la suite de MorGAN-BERTRAND. Il n’en est plus ainsi si 'on veut
comparer ce critere d’Ermakof aux critéres de deuxiéme espéce
de MorRGAN-BERTRAND. lci, ce critére d’Ermakof embrasse en
effet les criteres de MorRGAN-BERTRAND au moins pour les séries

a’v—’r—i

a
v

Ya, avec a,|0 ou avec — 1. Ceci est démontré dans la

section VII.

On trouve dans la premiére note d’Ermakof I’affirmation
que les critéres du type B utilisant une fonction conjuguée
Y (z) et ses fonctions itérées W (¥ (x)), ... possédent la méme
sensibilité. Nous montrons dans la section VIII sur un exemple
que cette assertion est inexacte.

Ermakof a avancé d’autre part dans E.I que le critére B pour
une fonction conjuguée W,(x) est plus sensible que pour la
fonction conjuguée W', (z) si 'on a ¥, () > ¥, (z). Cette asser-
tion est, elle aussi, inexacte comme nous le montrons dans la
section IX. Toutefois, on peut dire que si la croissance de la
fonction W, (x) est considérablement plus rapide que celle de
V', (x), le critére B avec W, (x) s’applique a toute série conver-
gente a laquelle s’applique le critére B avec ¥, (). Nous préci-
sons ce principe en donnant dans la section IX un énoncé exact
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pour V- (z) = x -} 1, c’est-a-dire pour le critére de D’ALEM-
BERT.

Dans la section X nous établissons une classe de fonctions
conjuguées pour laquelle le critére B de convergence est au moins
aussi sensible que le critére B de convergence pour ¥ () = z*
(£ > 1). Nous terminons cette communication en présentant
dans la section XI quelques observations sur ’énoncé A. Nous
y cherchons surtout dans quelle mesure la condition (I, 1) est
nécessaire.

II. Le critére d’Ermakof et I’équation fonctionnelle d’Abei 1.

Lemme. — Soit WV (x) une fonction de x définie pour x = a,,
conlinue, possédant une dérivée posilive et continue, et telle que
lon atit

Yz >z (z>=aq. (I1, 1)

Supposant qu’il existe une solution ¢ (x) de Uégquation fonction-
nelle d’ Abel

¢ (V(2)) =) +1 (2za), (I1, 2)
définie, posilive et continue pour X = a, et jouissant des propriétés
sutpantes:

a) ¢ (x) tend en croissant vers o, st X va de a5 & ®© ;

B) la dérivée de droite @, (x) existe pour X = a, et reste positive
el bornée de telle sorte qu’a chaque A > a correspondent deux
constantes positives ¢ (A) et C(A), telles que

c(A) =9, (@) =CG(A) (e=z=A); (I, 3)

1 11 est remarquable que dans 1la communication citée, Korkine s’occupe lui aussi
de I’équation fonctionnelle d’Abel, mais sans s’apercevoir de la connexion étroite entre
cette équation et le critéere d’Ermakof, qui n’a été découverte que par Ermakof un an
plus tard. La démonstration de Korkine pour le critére B d’Ermakof repose, en notation
de la section III, sur l’identité

¥(a) ¥(a)

" n—1 ’
/ (Ei(‘?v(x))‘l"v(x)>dx= /f(x)dx
'y v={ .

a a

et nous parait d’étre particulierement intéressante, parce qu’elle fait nettement appa-
raitre le lien entre le critére B d’Ermakof et «le principe de condensation » de Cauchy-
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v) la série

)94 (11, 4)
v>a,
est divergente;
3) la série
¢, (v)
3 (I1, 5)
vg @ (v)?

est convergente.

Alors:

a) Soit f(x) une fonction positive pour x = a,, sommable dans
chaque intervalle a, = x < A et telle que 1/f (x) est uniformé-
ment borné dans chaque intervalle ag =x < A. St l'on a, a
partir d’'un x:

f (¥ () ¥ (z)

o >1, (11, 6)
la série _
) (11, 7)

est divergente.

b) Soit f(x) une fonction positive pour x > a,, sommable dans
chaque intervalle a, =< x < A et uniformément bornée dans
chaque intervalle ay < x < A. St l'on a, a partir d’'un x:

f(F () ¥ ()
f ()

<5, O0<d<1, (11, 8)

la série (11, 7) est convergente.

Démonsiration. — On peut supposer sans restreindre la géné-
ralité que les relations (11, 6), respectivement (11, 8), sont valables
pour x = a,. Posons |

Fol@) =2, Wi()=%k, Y =T"Tk), ;
| ¥, (@) = ¥ (¥, () (IT, 9)
Iet
Vola) =a,, aq<ag<a<... (I1, 10)

Alors la suite a, tend vers Uinfini. En effet, si 'on avait
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a, —> o < o, 1l résulterait de la relation ¥ (a,) = a,.; pour

Vv —> 0!

ce qul est en contradiction avec (11, 1).
Done, pour chaque x > a,, il existe un z* situé dans 'inter-
valle ay = 2* < a, et un nombre entier » > 0 tel que I'on ait

x="Y, (%), aq=z*<a. (1T, 11)

Supposons maintenant que les hypotheéses de a) soient satis-

faites pour x > a,. Soit ¢ la borne inférieure de l—(f(:—)—) dans 'in-
o o (@
tervalle ( a,, a, >, qui est, d’aprés nos hypotheses, > 0, de sorte

que 'on ait

2e>0 (g2 <a). (11, 12)

Formons le quotient

FIY () / /(@ :]‘(‘F(:c))/@;l(‘{”(x‘))' s
o (V)] oo @ @ |

On a en prenant les dérivées de droite des deux membres de
(I1, 2):

o, (2) = ¢ (¥ (2) V' (2) . (I1, 14)

Done, le quotient (II, 13) devient

f (¥ () ¥ (2)
f (z)
et est, en vertu de (II, 6), = 1. Il en résulte que si 'on a pour
un x 1 o) > h t1 0
quelconque — o = ¢, on a aussi pour chaque entier n >
P+
i)
Py (an (x)) B

Or nous avons vu que chaque z = a, peut étre mis sous la
forme (II, 11). Il résulte done de (II, 12) que T'on a
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__>__C (aﬂéx)7

et (II,7) est divergente avec (11, 4).
Supposons, d’autre part, que ’hypothese b) soit satisfaite
pour z-= a,. Posons

Qx) = — (z = ao) R (11, 15)
By (x)
et formons le quotient
QT () f¥ () 9% [o¥(@)\:
Q@ W o (¥ ) *ow ) (11, 16)

Il résulte de (II, 2) et «) que

R

On peut donc supposer sans restreindre la généralité que l'on a

<<P (Fn <x>)>2 -

¢ ()

o7| =

(z = aq) - (IT, 17)

Le second membre de (II, 16) devient en tenant compte de
(I1, 14), (11, 8) et (II, 17)

(¥ () ¥ (2) (@ (Fn <x>)>2
f (@)

Alors on a évidemment
QY () =Ql) (zza,
donc a fortiori pour un entier n positif
Q(F, () =Qx) (zza). (I, 18)

Or soit C la borne supérieure de Q (x) dans lintervalle

Cay, ay e

Q(z) = —=0 (p=z=q)- (IT, 19)

On peut mettre tout z > a; sous la forme (II, 11). Done, en
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vertu de (II, 18), la relation (II, 19) est aussi valable pour tout
xr = ay et 'on a

flz) =G

La série (11, 7) est convergente avec (II, 5).
Les assertions a) et b) sont complétement démontrées.

III. Construction d’une solution de ’équation d’Abel.

Dans cette section nous allons construire avec Ermakof,
pour chaque fonction W (z) satisfaisant aux conditions du lemme
de la section II une fonction ¢ (x) jouissant des propriétés
exigées dans ce lemme, sauf, pour le moment, les propriétés v)
et 9).

Désignons l'inverse de la fonction y = ¥ (z) (x = q,) par

=19 y=za="T@)).

La fonction {(y) est continue et croissante pour y = a,, et
I’'on a

LI)’ (y) = IF/ (.’I)) (y = IF(x) ’ z = aO ’ Yy _;—_ al) * (III, 1)

Alors ¢, (x) est I'inverse de la fonction V', (x) donnée par (I, 9).
Donc, en résolvant (II, 11) par rapport a z*, on a

a* = ¢ (x) . (II1, 2)

La valeur de x donnée par (II, 11) parcourt évidemment I'in-

tervalle

<
an:x< Apit s

(11, 3)

ou les a, sont définies par (11, 10).
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Done, dés qu'un = > g, est donné, I'entier n et le nombre x*
dans I'intervalle { a,, a, ) sont univoquement déterminés par la
relation (II, 11).

Posons maintenant

Tl psg), (111, 4)
al - ao -

¢(z) =n+ 1+

ou l'entier n est déterminé par (III, 3) et z* par (III, 2). Il
résulte de (II, 11)

V(z) =¥, (=%,
donc
z* — a,
G — Qo

o (Wix)) =n + 2 +

= o) + 1.

La fonction ¢ (x) donnée par (111, 4) satisfait done a I’équation
d’Abel.

D’autre part, si z tend vers oo, le nombre n déterminé par

x* R ao ’ - J4 23
étant situé dans 'in-

(III, 3) tend aussi vers o . Done,

a Qo
tervalle (0,1), on a ¢ () —> ®© (x —> ™).

La fonction ¢, (x) est continue pour tout entier n. Donc,
tant que x reste dans lintervalle (III,3), z* et ¢ (x) sont
continus.

On a évidemment pour tout n > 0

(p(an):n—l—’l.

Donc ¢ (z) est positive et continue pour z > q, autant que z
est différente de chaque a,(v =1, 2, ...). o(x) est, de plus,
continue de droile en tout point a,(n = 0, 1, ...).

Je dis que ¢ () est aussi continue de gauche en chaque point
a,.(n = 0,1, ..). En effet, si z tend en croissant vers ’extrémité
de droite de Pintervalle (III, 3), z* tend vers a;, et d’aprés
(I, 4) ¢ (x) tend vers n 4+ 2 = ¢ (a,,,). Donc o () est continue
pour tout X = a,. ,

Il résulte, en plus, de (111, 4) et (111, 2) que o (z) est dérivable
& Dintérieur de tout intervalle (III, 3), c’est-a-dire pour
a, <<z <<a, On a évidemment

1 d g, (z)

<p(x)=al_aO o

L’Enseignement mathém., t, I, fasc. 4. 3
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(ar — ao) ¢” () = &7 (dy (@) V7 (b (&) oo V7 (b (2)) 7 (2)

(I11, 5)
(@ <z<a,..

La méme expression donne encore la dérivée de droite de o ()
en a,, de sorte que o (x) est continue dans I'intervalle (III, 3).
On a en particulier
(ay — ay) CPI+ (@) =1, (a3 — a) P+ (a;) = ¢’ (ay) ,
(a, — ao) 9%, (%) = ¥ (a,) ¥’ (a,_y) - V' (@) (n=1,2,..). (I, 6)

Pour I'extrémité de droite de lintervalle (III, 3), expres-
sion (III, 5) tend avec z 1 a,,, vers

dLIJn an+ ’ ’ 4 ’
_—_L(ix—i) = ¢ (an+1) ¢ (an) 4 (a)

Or, ceci est aussi

(a, — ay) CP_’_ (an+1) ’

ou ¢ (a,.,) est la dérivée de gauche de o (z) en a,,,. En effet,
on a

(a3 —ao) 9. (a,.4) = lim
1 0 ( n+1) YV a, 41—
. a; — "I’n (x) “I”n (an+1) - ‘pn () d!.])n (an+1)
= lim —— = Ilim e .
xtapiq Pnet — % xtan 14 Uptt — 2 dx

On a donc en particulier
(a1 a9) @_(a,) = " (a) V' (2, 4) - ¥ (a)) (> 0)

ou le second membre a la valeur un pour » = 1. Donc, en com-
parant avec (III, 6),

o, (a,) = V' (a) ¢_(a,), o (a,) =T (ap) e, (a,). (III,7)

On voit que ¢’ (x) est continue a 'intérieur de chacun des
intervalles (a,, @, ., >, & condition de prendre aux extrémités les
dérivées du coté correspondant. Au point de discontinuité
a,(n =1, 2,..) on a (III, 7). Il résulte maintenant de I'hypo-
thése de la continuité de ¥ (x) que la propriété B) est satisfaite.

(@, —ao) (n + 2) ——[(n + 1) (@, — ao) + $,(2) — ] -




{
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IV. Discussion des séries (II, 4) et (IL, 5).

Pour assurer la validité des conditions v) et 3) on doit faire
des hypothéses plus restrictives sur la fonction ¥ (x). II résulte
en tout cas de la condition «), @, étant continue par morceaux,
que l'intégrale .

fm ¢, () dz (IV, 1)

est divergente et que l'intégrale

(o]

/’%—r(—g—z dx (IV, 2)

To

converge. Or, le critérium de Maclaurin-Cauchy liant la diver-
gence de la série (II,4) a la divergence de l'intégrale (IV, 1)
et la convergence de la série (II, 5) a 'intégrale (IV, 2) n’est pas
valable sans restrictions. On suppose généralement que I’expres-
sion sous le signe d’intégral ne croit pas pour z tendant vers
'infini. Or, il résulte des relations (III, 5) et (III, 7) que o', (z)
ne croit pas si

o ¥ () = gy

<1
Aao)_

et

20 la fonction ¢’ (x) ne croit pas, c¢’est-a-dire que ¥’ (x) ne
décroit pas. |

Il suffit donc d’imposer a la fonction W (x) les conditions sui-
vantes pour que ¢4 () ne croisse dans aucun intervalle au-dessus
de a,: ‘

Ta)z1, ¥)=T() (w=z=zy. (IV, 4)

On peut d’ailleurs remplacer (IV, 4) par la condition suivante,
un peu moins restrictive: ‘

W (x) ne décroit pas et atteint ou dépasse la valeur un pour
une valeur b, de x.

En effet, on peut alors remplacer a, par b,, de sorte que les
conditions (IV, 4) deviennent satisfaites.
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On peut, d’autre part, établir les propriétés v) et §) en impo-
sant une condition tout & fait différente a ¥ (z), a savoir que
Y’ (x) ne croit pas.

En effet, dans ce cas on a évidemment lim ¥’ (z) = « ou «

x>0

ne peut étre < 1, puisque dans le cas contraire la condition
(I1, 1) ne saurait étre constamment satisfaite. Donc on a « > 1,
Y (x) = 1. On peut supposer W (aq,) > 1, puisque pour
V' (a,) = 1 on aurait ¥’ () = 1, c’est-a-dire un des cas ou les
conditions (IV, 4) sont satisfaites. On a alors

%(‘F(x}———x);a—i;o,

de sorte que ¥ (z) — z ne décroit pas. On a donc en particulier

_ > g, —
a, a4 = a ag .

Posons a; — a, = A, ¥/ (a;) = ¥,. On a alors .

a’vmav—iéA>O (VZ'I)’

o_ (%) = ¥, ‘P:r () (Fo > 1) .

Soit w — 1 le plus grand entier contenu dans%. Alors pour tout
entier v, chaque intervalle (v, v 4+ 1 > contient p points a, au
plus, ¢’est-a-dire au plus u points de discontinuité de ¢, ().
Or, dans notre hypotheése, ¢’ () ne décroit pas, donec d’aprés
(II1, 5) dans un intervalle de continuité ¢ (z) ne décroit pas et
se trouve multipliée par ¢’ (a,) = % < 1 a chaque passage par
0
un point de discontinuité a,. Il en résulte qu’on a pour chaque
entier v = 1

?, (v) = o o, (2) vzzzv—1), (IV, 5)
70 = o, o), } vsx=v+1).  (IV,6)
oz —p—1

La derniére inégalité résulte de ce que, ¢, (z) étant toujours
positive, la fonction ¢ (z) croit constamment et accroit d’une

unité dans chaque intervalle ( a,_4, a, >.
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Or, en vertu de (IV, 5), on obtient

0, ) ¥ [o, (2)da,
v—1 ;
et la divergence de la série (LI, 4) résulte de celle de Pintégrale
(IV, 1). D’autre part on a, en vertu de (IV, 6),

P, (v) Voo (z)
2

< o g 0
(P(V):(CP(CC)—*“..__/I)z (: <v -+ )

dés que ¢ () = 2 u + 2, done

@+(VL§Q‘F0U-CP+(:C1 (Véxév—i—i, @(x);?,p,_}_z)’
® () % ()
v+1 ,()
<P+(V)< w d__._.cP“Lx >
TRE v [ Togde ezt 2,

et la convergence de la série (11, 5) résulte de celle de 'intégrale
(I1V, 2).

V. Enoncé du résultat obtenu.

En rassemblant nos résultats nous avons le théoréme
sulvant:

C. Soit W (x) une fonction de x continue, possédant une
dérivée positive et continue pour X = a, et telle que Uon att

Vi) >z (x=a,).

Supposons que V' (x) satisfait a Uune des deux conditions sui-
vantes: ou bien V' (x) ne décroit pas a partir d’'un x et atteint ou

dépasse la valeur un: ou bien Y’ (x) ne croit pas a partir d’'un x.
Alors: '

a) Si f(x) est positive a partir d’'un x et est sommable tandis
1- ¢ ’ ’ . A
que i reste uniformément borné dans chaque sous-intervalle

fini de Uintervalle de définition de f(x) et sil’on a d partir d'un x
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(¥ () ¥ (2)
f ()

=1,
la série

>
v
est divergente.

b) Si f(x) est mesurable et positive a partir d’'un x et reste
uniformément borné dans chaque sous-intervalle fini de Uin-
tervalle de définition de f(x) et s'il existe un nombre 3,
0 <3<, tel qua partir d’un x,

F (Y (2) T ()
f(z)

<3, 0<8<1,

la série
Z f(v)

est convergente.

VI. Le critéere B d’ Ermakof
et les critéres de premiére espéce.

Quelle est la portée du critére B d’Ermakof comparée a celle
des critéres connus ? On trouve souvent ['assertion que le
critéere B d’Ermakof (avec W (r) = €*) « embrasse» tous les
critéres de la série logarithmique de MorGaN-BERTRAND. Or
ceci n’est vral qu’en partie.

Si 'on considére les critéres de premiére espéce dans lesquels
a, est comparé avec différentes fonctions de 'index v, le critére B
d’Ermakof n’est pas méme plus efficace que le critére de Cauchy
portant sur f/ a,.

En effet, nous allons construire une fonection f(z) positive,
continue, non croissante et tendant vers 0 avec x — o0, telle

que 'on a

fla) =™ (xz1), (VI, 1)
(™) ™
Z—j—(;v)—————>oo (2 —> ) (VI, 2)

e o]

pour une suite z, tendant vers I'infini. Alors la série O f (v) est

v=1
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convergente et le critére de Cauchy sur i'/ a,_v est applicable
tandis que le critére du théoréme B ne s’applique pas.
Posons a cet effet

Zo=A, a, @ —e’+1 (=12 .).
Définissons f (x) dans I'intervalle { z,, & > par

flz) = ¢ v (xv <z=<ev).

Quant a P'intervalle de longueur un entre e* et z,,4 = e~ 4+ 1,
la fonction f (x) y est définie comme fonction linéaire et continue
dans tout I'intervalle fermé {e™v, x4 >: -

—X.

™ )=t ¢t —ne™ (0=<1<1).

Alors f (x) sera positive, continue et non croissante. Pour tout = -
de l'intervalle  z,, z,., > elle est au plus égale a

f(xv) — e—x\H—i i 8_x

—— ?

d’ou (VI, 1).
D’autre part, on a d’aprés la définition de f (x) pour v — oo
. HE) &
f(e )——-f(xv), —}——(-:-t-v-)-——ze —> 0,

c¢’est-a-dire (VI, 2).
Nous montrerons dans la section suivante qu’il n’en est plus
de méme pour les critéres de seconde espéce portant sur le
a
: 1
quotient —=,
a

v

Nous allons d’abord faire quelques observations sur les séries
de MorGAN-BERTRAND. Nous désignerons par lg, x (k =1, 2, ...)
la k-1éme 1térée du lgzx, c’est-a-dire

lgox = 2, lg,x = lgx, ..., lgon:lg(lgnx),... (n =1,2,..).

En plus, nous poserons
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Les séries de MorcAN-BERTRAND ont alors la forme

2 b ) (VI, 3)
lgi-l—s v

V=V,

et sont convergentes pour s > 0 et divergentes pour s = 0.
On a évidemment

L, () = ¢e*L, (z)lg, yz (n=1,2,.), (VI, &)

donc, en posant ¢ (x) = M
b p CP —' lg?l:-sx *

® (ex) e* lg:fs x
¢ (x) lg) 4z

(VI, 5)

Or, pour x — o, cette expression tend vers oo pour s =<0,
et vers O pour s > 0. On voit que le critére B d’Ermakof avec
Y () = e* permet de décider immédiatement la question de
la convergence ou divergence des séries de MORGAN-BERTRAND.

Quel sera le résultat si ’on pose ¥ (x) = 2*(k > 1) ? On a
évidemment les relations

_ lg k
k xk ! L2 (xk) = L2 (.’L‘) ’ lg2 (xk) = (1 + l;z x) lng)ﬁ 9
done
L, (z*) k 271 1. 1ok \—1-s
e die” [l _ (yy Jskye, V1, 6)
lgs («") lgy " x 82 %

(VI, 6) tend vers un pour x — o, de sorte que le critére B
de convergence pour s > 0 est en défaut pour les séries de
MorGAN-BERTRAND correspondant a n = 2. (VI, 6) est < 1 pour
s > — 1l etn’est > 1 que pour s < — 1. Le critére B d’Ermakof
ne permet donc de prouver la divergence des séries de MORGAN-
BERTRAND correspondant & n = 2 que pour s = — 1. D’autre
part, il résulte immédiatement des relations

k xk—i x1+s )1+s

= k=S

_ ](' x—S(k—l) ]f xh"i X (lg x
.’I:k(HS) ? .’Ilh (Ii' lg x)1+s
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que pour n =0 et n =1 la question de la convergence (ou
divergence) des séries de MORGAN-BERTRAND est complétement
résolue par le critére B d’Ermakof avec W (z) = z* (k> 1).

VII. Le critéere B d’Ermakof et les critéres de seconde espéce.

Les critéres de seconde espéce reposent sur le fait que si
I'on a
Ayt _ Syt

=
aV c\J

(av’cv>0; V:1,2,...),

la convergence de X ¢, entraine celle de X a,, donc la divergence
de X a, entraine la divergence de Z¢,. On obtient les différentes
formes de ce critére par un choix convenable des «séries de
comparaison »: la série convergente Xc, ou la série divergente
za,

Or si les a, et les ¢, convergent vers 0 en décroissant, le prin-
cipe suivant est « en général » valable:

St la convergence de la série de comparaison Xc, s’obtient au
moyen d’'un critére B d’ Ermakof avec la fonction conjuguée ¥V (x),
le méme critére d’ Ermakof assure directement la convergence de
2a, St la divergence de la série Xa, s’obtient au moyen d'un
critere B d’Ermakof, ce méme critére assure aussi la divergence
de Xc,. _

Toutefois, pour les énoncés précis, il faut utiliser des hypo-
théses supplémentaires. Nous dirons d’une fonction f(x) non
nulle a partir d’'un z, qu’elle posséde la propriété E si Uon a

lim [+ 9)

X—> 0 f (.12)

=1 (VIL, 1)

uniformément par rapport a 6 pour l 6 ] =1
Avec cette notion, nous allons démontrer le lemme suivant:
Lemme. — Soient f (x) et g (x) deux fonctions positives pour
X = Xy, dont U'une au moins jouit de la propriété E, tandis que
Pautre est ou bien non croissante, ou bien jouit de la propriété E.
Sotent W (x), @ (x) deux fonctions positives pour x > x, avec
¥ (x) = x + 1. Alors si Uon a pour tout entier v > n,:
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[t ceb il ), (vIL, 2)

on a, x tendant vers l'infint,
93.1.?; f(¥ (;c()g)c)@ (x) < ;Ln; g (‘P‘;x():l)cb (z) , (VIL, 3)
xlgi f (¥ (fx()x)q’ (x) < :Ln; g (P {(’Tx()x)QJ (z) (VIL, 4)

Démonstration. — Observons d’abord que si 'on a pour deux
fonctions A (x) et B (x), positives pour z > z,:

lim A (z)

X—> 0 B (.’,C)

<1,

il en résulte

lim A(z) < Tim B(2),

X—> X—> o
lim A(z) < lim B (z) .
X—> 0 X—>

Donc les relations (VII, 3) et (VII, 4) résultent de la relation

~— 1(¥ (2)) g (@)
1
o (@) fla) =" (V1L 5)

que nous allons démontrer. Posons [z] = n, [V (z)] =N=n 41
ou le symbole [z] désigne le plus grand entier contenu dans z.
Si f (x) et g (x) jouissent les deux de la propriété E, 'expres-

sion
(¥ (=) g (=)

f
(@] & (% (o] VL O
est équivalente avec TN g7) ot cotte derniére expression est
g (N)f(n)

=<1, en vertu de (VII, 2).
Si f(x) est non croissante et g(x) jouit de la propriété E,
Iexpression (VII, 6) est équivalente a

P (2) gln+1) _F(N) gn +
Fe gN) =]

en vertu de (VII, 2).
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Si enfin f(x) jouit de la propriété E et g(x) est non crois-
sante, I’expression (VII, 6) est équivalen’oe a

fN+1) gl fINF1)gr)
f(n) g (¥ (z)) (n) & ( + 1)

Notre lemme est démontré.

Soit maintenant ¥ (x) une fonction conjuguée satisfaisant a
la condition ¥ (z) = « + 1. En remplacant dans le lemme qui.
vient d’étre démontré ® (z) par ¥’ (z) on voit que si la conver-
gence de la série Xg(v) se démontre au moyen du critere B
d’Ermakof correspondant a ¥ (x) il en est de méme pour la
série Xf(v). De méme, si la divergence de la série 2f(v) se
démontre au moyen du critére (I,7) d’Ermakof correspondant
a ¥ (z), il en est de méme pour Zg (v). |

Posons en particulier W (z) = €. Alors les fonctions

A

<
= fn

L, (x) gtz (n=0,1,..)

jouissent de la propriété E. D’autre part, nous avons vu que le
critére B d’Ermakoff (avec W (z) = €¥) s’applique directement
a toutes ces séries. Ainsi, en interpolant les a, entre deux entiers
successifs par des fonctions linéaires, 1l en résulte:

Les critéres de seconde espéce utilisant comme série de compa-
raison une des séries de Morgan-Bertrand sont contenus dans le
critere B d’'Ermakof pour W (x) = € s’il s’agit d'une série % a,
@yt e

a termes non croissants ou bien st Uon a
v

VIIIL. La sensibilité des critéres B d’Ermakof pour les itérées
d’une fonction conjuguée.

Nous allons maintenant dire quelques mots sur la sensibilité
relative des criteres B d’Ermakof correspondant aux différents
choix de la fonction conjuguée ¥ (z). A ce sujet, on trouve dans
la premiere note d’Ermakof deux assertions dont les démons-
trations vaguement esquissées ne paraissent pas trés satisfai-
santes. Nous allons montrer que ces énoncés sont inexacts.!

1 E. I, pp. 2563-254. L’erreur d’Ermakof consiste en ce qu’il suppose que le quotient

v g
A (fxz)) () tend toujours vers une limite qui pourrait étre aussi c.
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Désignons les itérées de la fonction conjuguée ¥ (z) par
¥, (x), de sorte qu’on ait

Y@ =F(2), .., ¥, (2)="CT, () (R=12.).

Alors la premiére assertion d’Ermakof peut étre énoncée comme
suit :

Les fonctions conjuguées ¥, (x) et ¥ (x) donnent une senstbilité
identique pour les caractéres de convergence et de divergence.

Ce théoreme est inexact. Au contraire, les fonctions itérées
W, (x) (n > 1) donnent une sensibilité en général plus grande
que ¥ (x). En effet, on a évidemment |

F(Y (T (2))) f (Y (2))
(o @) (Vg (@) -

Y (x) =

fl) ™

Il en résulte que si 'on a

E (;I;g))lp,(x) <1
Oon aura
) 4 (P ) 4
e R N e A

donc par récurrence

T [ l2) 4

De méme, s1 'on a a partir d’un z

FOF (a)) s 1 5
fla @

il résulte de (VIII, 1) qu'on aura aussi a partir d’'un =

(¥, () 4

Tz @2t

Nous allons maintenant donner un exemple d’une fonction
f (x) non croissante & partir d’'un x et telle que le critére de
convergence B d’Ermakof n’est pas applicable a la série Zf (v)
pour ¥ (z) = 22, mais devient applicable pour ¥, (x) = z*.

¥ (x) . (VIIL 1)
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A cet effet, formons une suite infinie x,;, z,, 23, ... en posant
.’131 —_ 3 ) xz = 44 3 cee .’EV_H —_ (1 "I" xv)4 (V = 1, 2, ...) .

Posons f(z;) = 1 et

- —f(x") @ & "
flz) = ) s (2, < z < =},

q= 1+ ).

-+

— f(xv) x4 x <
f(x) - <8v2+vlng>.’1} V_S_ ::xv

Ces relations permettent évidemment de définir la valeur de
f (x) par voie de récurrence pour x = 3. Il résulte de ces formules
que la fonction f(x) ainsi définie est continue, positive et non crois-
sante dans chacun des intervalles (z,, z¥), (% (1 4 x,)%>,
tandis qu’en passant par le point z = z¢ sa valeur se trouve
divisée par & et en passant par le point z, par 8"z, lgzx,.

f(?z()x)?x pour z, <z <14 z,; «?

étant contenu dans I'intervalle (z,, x}), il résulte évidemment

Considérons le rapport

==
On a donc, en posant ¥V (z) = 22,

Tim [ (=) ¥ () _

x> oo flz) =
Pour ¥, (x) = z%, on obtient

Or, en premier lieu, si 2, <z <1 + z,, 2* est située dans I'in-
tervalle { 2%, z,,, >. On aura donc

f(=)

flat) = — ,
(8" ™ig xv) xt

donce

flx*)ax® - bod 4
=< = ——> 0 (x—> o, z,fx=<1+z).
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En second lieu, si 1 + 2, <2 < x,,4, 2* sera situé dans Pin-
tervalle (z,,, z,,) de sorte qu’on aura

-f (xv+1)

) = s T
donc
flat) da® 41 (%)
f (x) (8"2+2*’+1 lg va) zf(z)’

et, puisqu’on a en tout cas

@)
Fle) 2 (8 ig z,) =’
il vient
f () 4a® _ f(%,11) (8"2“ lg xv) A _ f(z,) 8, .
fl) = (8"2”‘”ri lgz,.) f (%) (2-8lg o) T (@)

Or, on a évidemment pour v —

g, o hlgz, , [(2) < (%)

done
f(3;4()x[;x3—>0 (—>00o, 1+z, <z<z,).
On a ainsi

lim !

et le critére B d’Ermakof avec la fonction conjuguée ¥, () = x4
est applicable a la série Xf(v).

IX. Les fonctions conjuguées auxquelles x | 1 est subordonné.

En second lieu Ermakof donne a D’endroit cité 1’énoncé

suivant:
«De deux fonctions conjuguées de premiére espéce la plus
grande est celle qut donne le caractére le plus sensible de convergence

ou de divergence. »
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Or cet énoncé est de méme inexact. Nous allons construire
une fonction conjuguée ¥ (x) qui, pour x = 3, est partout > x2,
et telle que pour

(x, + 1)* + 1

z, —1 x x + 1

le critére B de convergence d’Ermakof est applicable avec la
fonction conjuguée 22 et ne I’est pas avec la fonction conjuguée
W (x).

A cet effet posons

z, = 10v, X, =82z, =320y (v=1,2,..)

et considérons la courbe y = 2% 4- 1 (x = 3) qui est situé au-
dessus de y = 22. Pour obtenir la courbe y = ¥ (x) nous poserons
Y (z) = 2% + 1 pour z = 3 en dehors de tout intervalle fermé
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gy —1,1 -+ x,>. Quant aux intervalles {x, — 1,1 + z,>
nous y définirons W (z) comme une fonction continue, constam-
ment croissante et douée d’une dérivée continue, telle qu’'on ait
V(x) = a2 4 1(x = 3) et

¥(w,—1) = (z,— 1)+ 1, ¥(z,+ 1)': (z, + 1) + 1,

P (2, — 1) = 2 (z,— 1), ¥ (z, + 1) = 2 (z, + 1),

I

¥ (z,) =2 + 2, ¥ (z) =%, .

On remplace donc ’arc correspondant de la courbe y = 22 + 1
par un arc qui est tangent a y = 2% 4 1 aux points x = 2, + 1,
qui passe par le point (z,, 2 + z2) et y a une tangente a coeffi-
cient angulaire %,. On voit immeédiatement qu’il est possible de
trouver un tel arc en étudiant la figure ci-contre. En effet, pour
qu’il soit possible de construire cet arc de y = ¥ (x) situé entre
les abscisses x, — 1 et 1 + «,, 1l suffit que I'arc correspondant
de y = 2% + 1 soit convexe d’en bas et que 'on ait

‘P’(xv—1) < ‘F(xv) < ‘P’(xv -4 1).

On a pour notre fonction f(x):

fla?) 22  x(lga)®- 22 1 -
o~ wewer oz 2

Donc le critére de convergence B d’Ermakof est satisfait pour
la fonction conjuguée x2. D’autre part, on a

FrENY (@) _12+)%
f(=) - =)
z,(lgz,)? 32, 3222 (lg z,)°
- (2 + x%) (lg (2 + x%))2 = 23:3 (lg:cif)2 -

?

et le critéere B de convergence d’Ermakof n’est pas satisfait par
la fonction conjuguée Y (x).

Toutefois, il est possible d’établir quelques énoncés dans cet
ordre d’idées. Nous nous bornerons dans cette discussion au
critére B de convergence et supposerons que f (z) est une fonction
non croissante de x.
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Nous dirons alors qu’une fonction conjuguée ¥ (z) est
subordonnée a une fonction W, (z) si, pour une fonction f(x)
positive et non croissante, 1'inégalité

T 107 (@) ¥ (2]

1
S I
entraine toujours I'inégalité
T 1 (2) 7, () ed.
2> 00 /()

La fonction conjuguée la plus simple étant 2 + 1, il est
naturel de se demander a quelles fonctions conjuguées ¥ (z) elle
est subordonnée. Tout d’abord z + 1 est subordonné & z 4+ «
(e > 1). En effet, puisqu’on a par hypothese:

fle+ o) =flz+ 1)
on a évidemment
fla+ o flz+1)
f (z) f (z)

Plus généralement, si pour la fonction conjuguée ¥ (x) on a
a partir d’un z:

(IA

Vi) —zz=1, lIm ¥ (z)<1

frot )
X—>

x + 1 est subordonné & W (z). En effet, on a d’aprés les hypo-
theses que nous avons faites |

T 10 (@) ¥ (0) _ T 0¥ (@) _ e fle 1)

Un autre énoncé relatif & la fonction conjuguée z 4 1 est le
suivant:

x + 1 est subordonné a une fonction conjuguée ¥ (x) si l'on a

Vi) —2—> o (£ —> o) lim lg ¥ (z)

—_— <
el = panget-L

En effet, supposons que I'on ait pour z > z,

ﬂ?—(_;)—g—)éq:e_s<1.

L’Enseignement mathém., t. I, fasc. 4. 4
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Alors on a pour tout entier positif n:

fle 4+ n) _ —en

fla ="
Or, soit n =[¥ () — z]. On obtient

[ () ¥ () _ flx + n) ¥’ (2)
/(@) flz)

D’autre part, on a a partir d’'un «

< & e-s[‘I"(x)—x] L (x) )

1A

e = [ (x)-a]

lgW (@) = £[¥(a) —al, W(a) ¢ ,

donec

£ 5
—51¥ (x)—x]
eV @-x1 g () < ¢ 2 — >0, C.Q.F.D.

X. Les fonctions conjuguées auxquelles xk est subordonné.

Nous allons maintenant établir une condition suffisante
pour que z*(k > 1) soit subordonné a la fonction conjuguée
YV (z) pour chaque k:

St la fonction conjuguée ¥ (x) satisfait aux deux conditions

¥ (z)
V¥ (z) (Ig ¥ (2))'"®

lgx
lglg VW (z)

— 0, —> 0 (2 —> ») (X, 1)

pour chaque 8 > 0, la fonction conjuguée x* est subordonnée a
Y (x) pour chaque k > 1.
Démonstration. — On a a partir d’un x

f (%) k2!
f (@)

il en résulte pour chaque entier positif n

Sqg=€°<1;

f (xkn) AL xhn

z f ()

Or, choisissons I’entier n en fonction de x de fagon que l'on ait

< e, (X, 2)

n+1
xh

> W (z) > o . (X, 3)
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On a alors, ¥ () étant continue, pour un certain z

¥ (x) = 7",
ou évidemment
<7 <at. (X, &)

En appliquant (X, 2) a z, on aura donc

fY () K" ¥ (2)
zf (z)

S e——sn ,

ce que nous pouvons encore écrire

JOF () ¥ (2) _ —enf (@) _F7"(2) 1

e = @ T i ©

Or, z étant > x d’apres (X, 4) on aura f(x)/f(z) = 1. D’autre
part, il résulte de (X, 3) ‘

kn+1 > lglja(:x) , (X, 6)

donc

1 lg x

PR P aEN
On obtient donc en introduisant cette borne dans ’expression
de droite de (X, b) et en remplacant z par sa borne supérieure

(Eki
fV (@) ¥ () _ enp n lgz ¥(x)
o = Y T (%, 7
On a a partir d’un = par hypotheése
¥ (2) < ¥ (2) (1g P (2))"?,
avec
=5 (X, 8)
donc, en vertu de (X, 7)
Y (z)) ¥ (z o
A (f)(L)F ( )_s_e"ankxklgx(lg‘?(x))b . (X, 9)

D’autre part, on a d’apres (X, 6)
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lg ¥ (x)
‘s lgx
lg k

n > —1,

done

€

cen o (18 ¥ (2)) O
= lg x

par suite, d’apres (X, 8),

e EN < f lgx >28 .
= \lg¥(z)

En introduisant cette borne dans (X, 9) on obtient

fO¥ (2) W7 (2) _ e (g 2)0

f () (g ¥ (2)° (X, 10)

Or on a, en vertu de (X, 1) & partir d’un z:
SlglgW(x) > (k+ 1) lgz, (g¥ (z)® > M.
L’expression de droite de (X, 10) est donc & partir d’un =

- kee (lg.’l?>1+28
= z

et tend vers 0 avec £ — . 2* est donc bien subordonné a
Y (x). |
Nos conditions (X, 1) sont par exemple satisfaites pour

ex (lg x)2
eeg).

V() =e', W)=, Tl =

XI. Quelques observations sur le théoréme A.

Nous établirons enfin quelques propositions supplémentaires
relatives au critére A d’Ermakof.

a) Soient ¥ (x) et ¢ (xX) deux fonctions positives, continues
et dérivables pour 0 < xy = x < 0 et telles que Uon ait

Viz) —> oo, ¢@—0 (@-—> )
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et que V' (x) et |’ (x) soient positifs et sommables dans tout sous-
intervalle ﬁm de < Ty, © ). Soit f(x) positif pour x = x, et
sommable dans tout sous-intervalle fini de < x4, ). § uppasons
qu’tl existe un q (0 < q < 1) tel que lon ait i

fOF () ¥ (z) = g f (b (@) " () (2= z) (XL, 1)
Alors on a ou bien pour z‘out X = XOZ.IF(X) > ¢ (x), ou bzen a
partir d’un x: ¥ (x) < { (x), suivant que U'intégrale
- S fla)da ' | (XL 2)
est convergente ou divergente. |
Démonstration. — 11 résulte de (XI, 1) pour z, < 2" < 2"
ST (@) ¥ (@) de < g [ (b(a) ¥ (2) d,

c’est-a-dire

J flwdr=q [ fla dx o XL

Done, si (X1, 2) converge)z

0

/']‘( )dx < q ff dx<1ff(:c)dm
T (x’) k!J(.x ) d(x")

de sorte qu’on a pour chaque z’ > z,

¥ ) > b ) .

Supposons d’autre part que (XI,2) soit divergente. Alors
nous allons démontrer qu’il est impossible que pour une suite
x, avec zx, >x0(v>0)x—~—>oo on ait . Ay

W (z) > 4 (). (X1, 4)
Car on il résulterait de (XI, 4) d’ap.rés (XI,1)
Xy

ff )dx<qff (z)) ¢ (z) d

Xo
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lIP(xv) q’("Cv)
S flldz=q [ fla)dz,
F'(xq) d(oxq)

donc, d’apres (X1, 4):

¥ (xy) F (xy) ¥ (xy) ¥ (o)
S f@dz=q [ fldzzq| [ flda+ [ fl@)dz] ,
¥(xy) Y(xg) ‘F(xo) ‘b(xo)
et, puisque 0 < g < 1,
¥ (xy) W (x) ¥ (xy) W ()
1—q [ fldz=q [ fllde, [ fl)dzsL— [ fo)da,
P (oxo) U(xo) W) T 9 y(xy)

et I'intégrale (XI, 2) serait convergente puisque ¥ (x,) tend vers
Pinfini, - C.Q.F.D.

B) Supposons que dans les hypothéses de la proposition «) on
ait pour X = X,

zf(@)=c, T)zvd@ (22 ) (XI, 5)

pour une constante positive ¢ el une constante positive vy = 1.
Alors U'intégrale (X1, 2) est convergente et 'on a

Viz) > ) (z2za).

Démonstration. — On a pour x = x, comme dans la démons-
tration de (XI, 3)

W (x) d(x)
S fldz=q [ fla)da. (XI, 6)
(o) $(x)
D’autre part, on a
¥(x) $(x) $(x) ¥(xg)
S f@de= [ fl@)dze— [ fla)de— [ [(a)da,
lF(-":o) Xg ¥(x) ) X
&(x) P(x) W(xy)
S tajde= [ fla)de— [ f(a)de-
d)(xo) Xo Xo

Donc en introduisant ces expressions dans (XI, 6) et en résol-
: b(x)
vant l'inégalité obtenue par rapport & [ f(z) da:
Xo
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$(x) ¢ (x) () b(xo)
1—gq) [ fldes [ flade+ [ fl@dz—q [ fla)da
R F(x) X Xo
Ici on a pour la premiére intégrale de droite d’aprés (XI, 5):
() () v
/ fle)dz < f flt)dt < ¢ T*clg—
¥ (%) () YO ) 4

Donc Vintégrale [ f(x) dx reste bornée pour x — 0 et (XI, 2)
X
est convergente. '

v) Remplacons dans les hypothéses de la proposition o) U'iné-
galité (X1, 1) par

FF () W7 (2) = f(b(2)) §" (2)  (z = ) (XI, 7)

et supposons en plus que U'on ait pour un x; = x, convenablement

choist
W (zy) > ¢ () .

Alors Uintégrale (X1, 2) est divergente.

Démonstration. — On a pour x > z, = x, d’apres (XI, 7)
x ¥ (x) x $(x)
SHE @)Y @)de = [ fl)de> [f($() ¢ (@de= [ f(z)da ,
Xy ‘F(x1) Xy ‘-p(x1)
donc
S flade= [ fla)da
d(x) d(xy)

Mais alors I'intégrale de gauche serait pour tout z > z, supé-
rieure a la constante positive

W(x)
) flz) dz
$(xy)

et 'intégrale (XI, 2) ne pourrait converger d’apres le critere de
Bolzano-Cauchy.
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