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AUSGEWÄHLTE EINZELPROBLEME
DER KOMBINATORISCHEN GEOMETRIE

IN DER EBENE

VON

H. Hadwiger und H. Debrunner, Bern

Es gibt verschiedene mathematische Sachgebiete, wo elementare

Aufgaben unmittelbar in höhere und teilweise ungelöste
Fragestellungen übergehen, so dass dort einfachste Gegenstände
der Schulmathematik eng benachbart mit solchen sind, die
wissenschaftliches Interesse bieten und von Spezialisten
bearbeitet werden. Wesentlich ist dabei, dass die beiden fachlichen
Standorte nicht wie üblich durch weit ausgebaute höhere
Theorien und vielschichtige Begriffsskalen voneinander getrennt
sind.

Ein Sachgebiet dieser Art ist die kombinatorische
Geometrie, die bei Beschränkung auf die Ebene einen besonders
einfachen Charakter aufweist. Ihre Fragestellungen knüpfen
unmittelbar an die Grundbegriffe der ebenen Elementargeometrie

an und beziehen sich dann auf die Vielfalt der
primitivsten Vorgänge und Verknüpfungen wie diejenigen des

Umfassens, Treffens und Zerlegens usw. und auf die hier in
Erwägung zu ziehenden kombinatorischen Möglichkeiten.

Das Gebiet ist mit der kombinatorischen Topologie verwandt;
jedoch tritt die eigentlich topologische Betrachtungsweise stark
zurück, und die Problematik bleibt der Elementargeometrie
verpflichtet. Wie dies von H. Hopf [22]1 ausführlicher geschil-

i Eckige Klammern verweisen auf das Literaturverzeichniss am Schluss der Arbeit.



KOMBINATORISCHE GEOMETRIE IN DER EBENE 57

dert worden ist, treten in der kombinatorischen Geometrie
metrische und topologische Gesichtspunkte in eine gewisse

Wechselbeziehung.

Die von uns vorgenommene Zusammenstellung zahlreicher

Einzelprobleme hält sich übrigens nicht vollkommen streng an
den methodischen Rahmen der kombinatorischen Geometrie;
diese bildet nur das engste Kernstück eines Fragenkreises, der
durch die Ganzheit und Einfachheit seiner Gegenstände und
durch den rein kombinatorischen Habitus der erforderlichen
Schlüsse einen besonderen Anreiz auszuüben vermag.

Wie man — um dieser Geschmacksrichtung zu folgen und
um sich damit einer Wandlung anzupassen, die methodisch und
sachlich vom gewohnten klassischen Machtbereich zu einem mehr
neuzeitlich orientierten Arbeitsgebiet mit neuartigen reizvollen
Möglichkeiten überführt — ausgerüstet mit nur elementaren
Begriffen fragen kann, das soll durch die hier zusammengetragenen

Beispiele dem Leser nahe gebracht werden.
An Vorkenntnissen ist ausser den allgemeinen Grundlagen

der Elementargeometrie und der Lehre von den reellen Zahlen
wenig erforderlich; eine gewisse Vertrautheit mit dem mengen-
mässigen Denken ist nützlich; wichtig ist der Begriff der ebenen

Punktmenge. Wo erforderlich, werden weniger geläufige Bezeichnungen

kurz erläutert.
In Teil I. werden ausgesuchte Lehrsätze, nach Aussagen-

gruppen geordnet, ohne Beweis, aber mit einlässlicherem
Kommentar und mit Literaturhinweisen zusammengestellt. Die
Beweise — vielfach nur kurz angedeutet — folgen in Teil II.
So findet mancher Leser auch Gelegenheit, sich im Aufsuchen und
Ausführen eigener Beweisideen zu üben. Besondere Interessenten
mögen durch die zahlreichen Zitate auch da und dort den Weg
zu aktueller Fachliteratur finden und auch die angedeuteten
ungelösten Probleme weiterverfolgen.

Wir hoffen mit diesen ausgewählten Einzelproblemen Anregung

zu intensiverer Beschäftigung mit den anziehenden Fragen
der kombinatorischen Geometrie zu bieten und den in diesem
Sachgebiet bestehenden unmittelbaren Kontakt zwischen
Schulmathematik und wissenschaftlicher Forschung zu lebendiger
Wirkung gelangen zu lassen.
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I. Teil.

Die Aussagen der ersten kleinen Gruppe beziehen sich auf
Inzidenzverhältnisse bei Punkten, Geraden und Kreisen und
gehören also der kombinatorischen Elementargeometrie an.

1. Liegt auf der Verbindungsgeraden je zweier Punkte einer end¬

liehen Punktmenge stets wenigstens ein dritter Punkt der

Menge, so liegen alle Punkte auf einer Geraden.

Fig. 1

Zu diesem 1893 yon J. J. Sylvester [55] vermuteten Theorem

findet sich ein kurzer Beweis von T. Gallai (Grünwald) bei
N. G. de Bruijn-P. Erdös [6], wo die Aussage auch als Korollar
eines rein kombinatorischen Satzes erscheint. Für weitere
Beweise, Verallgemeinerungen und Varianten vgl. P. Erdös [11],
H. S. M. Coxeter [7], G. A. Dirac [9] und Th. Motzkin [39].

2. Geht durch den Schnittpunkt je zweier Geraden einer endlichen

Geradenmenge stets wenigstens eine dritte Gerade, so gehen
alle Geraden durch einen Punkt.

Die Aussagen 1 und 2 sind nicht mehr richtig, wenn die

Punkt- und Geradenmengen nicht endlich sind. Dies zeigt bei-
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spielsweise für beide Aussage« simultan das reguläre abzählbar-

unendliche Punkt- und Geraden system in Fig. 1.

3. Liegt auf jeder Kreislinie durch je drei Punkte einer endlichen

Punktmenge stets wenigstens ein vierter Punkt der Menge, so

liegen alle Punkte auf einer Kreislinie.

In Voraussetzung und Behauptung eng mit Aussage 3

verwandt ist der folgende Satz über beschränkte (d.h. in einem
Kreis von endlichem Radius enthaltene) abgeschlossene

Punktmengen :

4. Hat eine beschränkte, abgeschlossene Punktmenge die Eigen¬

schaft, dass die Symmetrieachse je zweier Punkte auch
Symmetrieachse der ganzen Menge ist, so liegen ihre Punkte auf einer
Kreislinie.

Dass die Aussagen 3 und 4 für nicht endliche und nicht
beschränkte Punktmengen unrichtig werden, ist dann trivial,
wenn man kontinuierlich-unendliche Punktmengen in Betracht
zieht. In der Tat genügt es, die ganze Ebene als Punktmenge zu
betrachten. Dagegen gibt es auch abzählbar-unendliche
Punktmengen, für welche die Voraussetzungen von Aussage 3 und 4

erfüllt sind, ohne dass sie Teilmengen einer Kreislinie sind. In
der Tat: Man wähle eine aus vier Punkten bestehende Menge A0,
die nicht auf einer Kreislinie oder einer Geraden liegt. Nun
konstruiere man auf rekursive Weise eine aufsteigende
Folge endlicher Punktmengen An (n — 0, 1, indem man
An 9 (A^) (n 1, 2, setzt, wobei 9 (A) die Vereinigungsmenge

aller Punktmengen bezeichnet, die durch Spiegelung
von A an sämtlichen Symmetrieachsen von Punktepaaren aus A
hervorgehen. Wie man sich leicht überlegt, ist die Vereinigungsmenge

S U An eine abzählbar-unendliche Punktmenge mit
der gewünschten Symmetrieeigenschaft; auf jeder durch drei
Punkte von S gelegten Kreislinie liegt stets wenigstens ein vierter
Punkt von S, falls die drei Punkte nicht ein reguläres Dreieck
bilden, und bei geringfügiger Erweiterung der Konstruktion 9
auch in diesem letztern Falle.

** *
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Wir lassen eine weitere Gruppe von Aussagen folgen, in
welchen die Ganzzahligkeit oder auch die Rationalität von
Distanzen eine Rolle spielt.

Die Menge der Punkte, deren Koordinaten bezüglich eines

orthogonalen Koordinatensystems ganz sind, bilden das ebene

Einheitsgitter; ihre Punkte heissen Gitterpunkte.

5. Bilden n Gitterpunkte (n > 2) ein reguläres n - Eck, so ist
ft — 4, d.h. das Quadrat ist das einzige reguläre Viereck, das
im Einheitsgitter eingelagert werden kann.

Einen originellen Beweis hierfür gab W. Scherrer [52], für
den Fall n 3 vgl. auch G. Polya-G. Szegö [43], Bd. 2, S. 156,
Aufgabe 238.

Ein Quadrat lässt sich selbstverständlich auch auf
nichttriviale Weise im Gitter einlagern; dies illustriert Fig. 2. Über
die Eckenwinkel eingelagerter Rhomben gilt die Aussage:

6. Bilden vier Gitterpunkte einen nichtquadratischen Bhombus
mit dem Eckenwinkel a, so ist ol/tz irrational ; d.h. das Quadrat
ist der einzige im Einheitsgitter eingelagerte Bhombus, dessen

Eckenwinkel mit dem vollen Winkel kommensurabel sind.

Im engsten Zusammenhang hiermit steht eine Feststellung
über die Winkel in pythagoreischen Dreiecken, d.h. in
rechtwinkligen Dreiecken mit ganzzahligen Seitenlängen. Hier gilt:
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7. Ist ai ein Basiswinkel eines pythagoreischen Dreiecks, so ist a/n
irrational.

Die Aussagen 6 und 7 sind geometrische Korollarien des

folgenden goniometrischen Satzes (vgl. H. Hadwiger [18]):

8. Ist 0 < a < tc/2 und fällt cos a rational aus, so ist entweder

a tu/3 oder ol/tz ist irrational.

9. Hat eine unendliche Punktmenge die Eigenschaft, <iass ihre

Punktepaare ganzzahlige Distanzen aufweisen, so liegt sie ganz
auf einer Geraden.

Dieser Satz von P. Erdös [12] (vgl. auch A. Delachet [8],
S. 50 und E. Trost [57]) darf als besonders typisch für eine

gewisse Kategorie von Aussagen gelten, die uns dadurch besonders

ansprechen, dass aus einfachsten Voraussetzungen eine

starke und unerwartete Folgerung gezogen wird.
Besonders beachtenswert ist der Umstand, dass aus 9 nicht

der Schluss gezogen werden darf, es gebe eine Höchstzahl k0

derart, dass die Behauptung immer schon dann gilt, wenn die
Anzahl k der Punkte mit ausschliesslich ganzzahligen
Punktdistanzen grösser ist als k0. Es gibt nämlich zu jedem k derartige
Punktmengen, die nicht linear sind, sogar solche der Eigenschaft,
dass keine drei Punkte auf einer Geraden liegen. Solche

Punktmengen wurden wiederholt konstruiert, u.a. von M. Altwegg [1],
A. Müller [40] und F. Steiger [53].

Nach einer Idee von A. Müller lässt sich eine auf der
Einheitskreislinie dicht liegende, abzählbar-unendliche Punktmenge

angeben, welche die Eigenschaft aufweist, dass jedes
Punktepaar eine rationale Distanz besitzt. Es sei nämlich Pn
der Punkt mit den Polarkoordinaten p 1, cp 2^0, wo 0 durch
cos 0 4/5 bestimmt ist, so dass nach Aussage 8 0/^ irrational
wird. Die Punkte der Folge Pn (n 0, 1, sind paarweise
verschieden und die erzeugte abzählbar-unendliche Punktmenge
liegt auf der Einheitskreislinie. Sie liegt dort dicht und nach dem
Gleichverteilungstheorem von H. Weyl sogar gleichverteilt,

I doch ist dies hier ohne Bedeutung. Für eine Distanz eines
I Punktepaares ergibt sich d (Pn, Pm) 2 | sin (n — m) 0 |, und
J wegen sin 0 3/5 und cos 0 4/5 ist dies nach goniometri-
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sehen Formeln eine rationale Zahl. Betrachtet man jetzt k
Punkte dieser Menge, so lässt sich durch eine geeignete ähnliche
Vergrösserung erzielen, dass alle auftretenden Distanzen
ganzzahlig werden. Dabei liegen keine drei Punkte auf einer Geraden

** *

Die folgende Aussagengruppe befasst sich mit der
Hüllenbildung und Separation bei ebenen Punktmengen. Zunächst
einige Erklärungen : Eine Punktmenge heisst bekanntlich
konvex, wenn sie mit zwei Punkten stets auch die ganze
Verbindungsstrecke enthält. Unter der konvexen Hülle einer Punktmenge

versteht man die kleinste konvexe Punktmenge, welche
jene als Teil enthält. Mit andern Worten ist die konvexe Hülle
der Durchschnitt aller konvexen Punktmengen, welche die

gegebene als Teil enthalten.

10. Ein Punkt gehört dann und nur dann zur konvexen Hülle
einer Punktmenge, wenn er bereits der konvexen Hülle von
drei geeigneten Punkten der Menge angehört.

Aus dieser Aussage folgt, dass die konvexe Hülle identisch
ist mit der Vereinigungsmenge aller Dreiecksbereiche, deren
Ecken der gegebenen Menge zugehören.

11. Ein Punkt ist dann und nur dann innerer Punkt der konvexen
Hülle einer Punktmenge, wenn er bereits innerer Punkt der
konvexen Hülle von vier geeigneten Punkten der Menge ist.

Die Aussagen 10 und 11 sind ebene Sonderfälle nützlicher,
von E. Steinitz [54] und W. Gustin [17] stammender Sätze.

Vgl. auch 0. Hanner-H. Radström [20] und C. V. Rorinson
[49]-

Zwei Punktmengen wollen wir separierbar nennen, wenn es

eine Gerade gibt, welche keine der Mengen trifft und sie voneinander

trennt; beide Punktmengen liegen dann im Innern der
beiden Halbebenen, die durch die Gerade erzeugt werden. Über
die Separierbarkeit gilt das folgende Kriterium von P. Kircii-
berger[29] (vgl. auch H. Rademacher-I. J. Schoenberg [44]) :
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12. Zwei Punktmengen sind dann und nur dann separierbar,

wenn je zwei ihrer Teilmengen, deren Vereinigung höchstens

vier Punkte enthält, separierbar sind.

1 13. Jede Punktmenge, die wenigstens vier Punkte enthält,
lg sicft iji nichtleere, punktfremde und nichtseparierbare

f Teilmengen zerlegen.

| Hiezu vgl. F. W. Levi [36] und R. Rado [46].

I
k * * *
y
çg

[i Wir wenden uns jetzt einem Fragenkreis zu, in dessen Mittelig

punkt das berühmte Hellysche Theorem steht. Die zahlreichen
K\ Varianten, Sätze vom Hellyschen Typ, die sich in der Regel auf

Eibereiche beziehen, bilden einen sehr typischen Teil der kom-
M binatorischen Konvexgeometrie.
ig Unter einem Eibereich verstehen wir hier eine beschränkte,
-i abgeschlossene und konvexe Punktmenge.

L| 14. Haben je drei Eibereiche einer (endlichen oder unendlichen)
i Menge von Eibereichen einen Punkt gemeinsam, so haben edle

i Eibereiche der Menge einen Punkt gemeinsam.

U Dies ist der ebene Sonderfall des bekannten Hellyschen
i j Satzes. Vgl. E. Hellt [21], J. Radon [48], D. König [35], u.a.m.
lg Wie man unmittelbar mit einfachsten Beispielen einsieht, kann
j;j die Anzahl drei nicht durch zwei ersetzt werden. Dies ist aber
: g bei starken Voraussetzungen über die Gestalt der Eibereiche
: j möglich. So gilt die folgende Variante:

ig] 15. Haben je zwei Rechtecke einer Menge parallel orientierter
g Rechtecke einen Punkt gemeinsam, so haben alle Rechtecke

gg der Menge einen Punkt gemeinsam.

g Dagegen gilt: Ein Eibereich, der nicht ein Parallelogramm
ist, lässt sich in drei Lagen verschieben, so dass je zwei der

-I translationsgleichen Eibereiche einen Punkt gemeinsam haben,
Ii nicht aber alle drei. Für Parallelogramme ist dies nicht möglich
m Die Gültigkeit einer Aussage der Art 15 mit leichter Modifikation
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ist demnach für Parallelogramme charakteristisch. Vgl. hierzu
auch B. Sz.-Nagy [41].

Ein Korollar von 15 ist der Hellysche Satz für die Gerade:

16. Haben in einer Geraden je zwei Strecken einer Streckenmenge
einen Punkt gemeinsam, so haben alle Strecken der Menge
einen Punkt gemeinsam.

Es ist naheliegend und für viele Anwendungen nützlich,
Sätze vom Hellyschen Typ auch für die Kreislinie aufzustellen;
an Stelle der Eibereiche treten hier abgeschlossene Kreisbogen,
die selbstverständlich alle demselben Trägerkreis angehören
sollen.

17. Hat eine Menge von Kreisbogen, die alle kleiner als Halb¬
kreise sind, die Eigenschaft, dass je drei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen Punkt
gemeinsam.

Die Bedingung über die Grösse der Bogen kann hier nicht
gemildert werden, indem die Aussage bereits für Halbkreise
falsch wird. In der Tat haben von den vier Halbkreisen, die durch
zwei verschiedene Paare antipodischer Punkte der Kreislinie
entstehen, je drei, aber nicht alle vier einen Punkt gemeinsam.
Auch kann die Anzahl drei nicht durch zwei ersetzt werden.
Von den drei Drittelskreisen, die die ganze Kreislinie überdecken,
haben je zwei, aber nicht alle drei einen Punkt gemeinsam.
Dagegen gilt:

18. Hat eine Menge von Kreisbogen, die alle kleiner als Drittels¬
kreise sind, die Eigenschaft, dass je zwei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen
Punkt gemeinsam.

Lassen wir jede Voraussetzung über die Grösse der Bogen
fallen, so gilt noch:

19. Hat eine Menge von Kreisbogen die Eigenschaft, dass je zwei

Bogen einen Punkt gemeinsam haben, so gibt es ein antipodisches

Punktepaar so, dass jeder Bogen der Menge wenigstens
einen Punkt des Paars enthält.
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Es gibt mit andern Worten eine Durchmessergerade des

Kreises, die alle Kreisbogen trifft. Sätze dieser Art wurden

u.a. von C. V. Robinson [49] und A. Horn-F. A. Valentine [25]

aufgestellt. Hübsche Anwendungen, wie wir solche auch weiter
unten angeben werden, hat P. Vincensini [59] entdeckt.

20. Lasst sich ein Eibereich stets so verschieben, dass er im Durch¬

schnitt von je drei Bereichen einer Eibereichsmenge enthalten

ist, dann auch so, dass er im Durchschnitt aller Eibereiche der

Menge liegt.

21. Lässt sich ein Eibereich stets so verschieben, dass er je drei
Bereiche einer Eibereichmenge trifft, dann auch so, dass er
alle Bereiche der Menge trifft.

22. Lässt sich ein Eibereich stets so verschieben, dass er je drei
Bereiche einer Eibereichmenge enthält, dann auch so, dass

er alle Bereiche der Menge enthält.

Dies sind ebene Sonderfähe allgemeinerer, sich auf höhere
Dimensionen beziehender Varianten des Hellyschen Satzes, die

von P. Vincensini [58] und V. L. Klee jr. [32] formuliert
wurden. Wesentlich für die Gültigkeit dieser Aussagen ist die

Bedingung, dass die Eibereiche in der Ebene nur verschoben
und nicht etwa auch gedreht werden dürfen. Wird an Stelle der
Translationsgruppe die Bewegungsgruppe gesetzt, so sind alle
drei Aussagen falsch.

Wir belegen dies ausführlicher durch ein Beispiel zu Aussage

21. Man betrachte die Menge der n Kreise (n > 2) deren
Mittelpunkte durch die Polarkoordinaten p 1 und cp 2kizjn
(k 1, n) gegeben sind, und deren Radius r — cos2 (n/n)
bzw. r cos2 (n/n) + cos2 (n/2n) — 1 ist, falls n gerade bzw.
ungerade gewählt wurde. Wie man jetzt bestätigen kann, lässt
sich eine Strecke (uneigentlicher Eibereich) der Länge 2 stets
so legen, dass je n —1 Kreisscheiben der Kreismenge, nicht
aber so, dass alle n Kreisscheiben getroffen werden. Die Strecke
muss hiezu jedoch passend gedreht und verschoben werden.
Fig. 3 illustriert dies im Falle n 8.

L'Enseignement mathém., t. I, fasc. 1-3. 5
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23. Haben je zwei Eibereiche einer Eibereichmenge einen Punkt
gemeinsam, 50 sïcA durch jeden Punkt der Ebene eine
Gerade legen, welche alle Eibereiche der Menge trifft.

24. Haben je zwei Eibereiche einer Eibereichmenge einen Punkt
gemeinsam, 50 Zäss£ sicA Geraden der Ebene eine

parallele Gerade legen, welche alle Eibereiche der Menge trifft.

Fig. 3

Auch diese beiden Aussagen 23 und 24 sind ebene Sonderfälle

allgemeinerer Sätze von A. Horn [24] und V. L. Klee jr.
[30]; sie beantworten die Frage, was sich an Stelle der Behauptung

des Hellyschen Satzes noch aussagen lässt, wenn die Anzahl
drei durch zwei ersetzt wird.

Man kann sich fragen, ob sich im Hellyschen Satz Punkt
durch Gerade in dem Sinn ersetzen lässt, dass eine Aussage der

folgenden Form richtig ist: Werden je h Bereiche einer Eibereichmenge

von einer Geraden getroffen, so gibt es eine Gerade, welche
alle Bereiche der Menge trifft. Existiert eine solche Hellysche
Stichzahl

Die Antwort ist verneinend Bereits L. A. Santalô [50] hat
bemerkt, dass zu jedem natürlichen n> 2 eine Menge von n
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Eibereichen so konstruiert werden kann, dass je n — 1 Bereiche
der Menge eine gemeinsame Sekante, nicht aber alle n eine solche
aufweisen. Dasselbe belegt auch unser Beispiel, das wir an
Aussage 21 angeschlossen haben. Sätze der erwähnten Art,
lassen sich nur aufstellen, wenn über Gestalt und Lage der
Eibereiche zusätzliche Voraussetzungen getroffen werden. So

hat L. A. Santalô [50] bewiesen, dass alle Rechtecke einerMenge
parallel orientierter Rechtecke von einer Geraden getroffen

Fig. 4

werden, falls dies für je sechs Rechtecke der Menge zutrifft. Wir
fügen hier die folgende Aussage an:

25. Werden je drei Rechtecke einer Menge parallel orientierter
Rechtecke von einer ansteigenden Geraden getroffen, so gibt
es eine ansteigende Gerade, welche alle Rechtecke der Menge
trifft.

Wir nehmen hierbei an, dass die Rechtecke parallel zu einem
orthogonalen Koordinatensystem orientiert sind; eine Gerade
ist ansteigend, wenn ihr Steigungsmass nichtnegativ ist. Vgl.
hiezu Fig. 4.

Das oben dargelegte Beispiel (Fig. 3), das die Nichtexistenz
einer Hellyschen Stichzahl h im allgemeinsten Fall beweist,
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zeigt die auffallende Sachlage, dass sich die Eibereiche
(Kreisscheiben) gegenseitig teilweise überdecken. Hier ist es naheliegend
die Frage aufzuwerfen, ob sich eine Hellysche Stichzahl dann
angeben lässt, wenn vorausgesetzt wird, dass die Eibereiche
paarweise fremd sind, d.h. keine Punkte gemeinsam haben. Die
Antwort auf diese auch von V. L. Klee jr. [33] aufgeworfene
Frage ist wieder verneinend.

Wir konstruieren ein Beispiel — eine Kreissegmentrosette —
um diese Behauptung zu belegen. Es sei n > 1; Sj und Sf

(i 1, 2n) sollen insgesamt 4n Kreissegmente der 2n
konzentrischen Kreise Kj (i 1, 2n) mit Zentrum Z und den

Radien Rj (i — 1, 2n) bezeichnen, wobei sich Si und S*

bezüglich Z zentralsymmetrisch entsprechen sollen. Für die

Radien sei zunächst nur 0 < Rj < Ri+1 festgelegt. Die Segmente
der Kreise Kj sollen nachfolgend durch die Polarkoordinaten der
Punkte ihrer Kreisbogen charakterisiert werden:

Fig. 5

Sj: p Rj; (i-n-f 1) (7u/2n) < <p < (i+n-1) (7r/2n)

S-: p Rj; (i+n-fl) (7r/2n) < 9 < (i+3n-l) (rc/2n).
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Auch im Hinblick auf weitere Verwendungsmöglichkeiten wollen

wir einige Eigenschaften unserer Kreissegmentrosette festlegen:

A. Die Radien Rj können so gewählt werden, dass die 4n Seg¬

mente paarweise fremd sind; sie müssen nur ausreichend

stark anwachsen. Fig. 5 zeigt eine Rosette dieser Art für
n — 2.

R. Es gibt keine Gerade, welche alle 4n Segmente trifft. Be¬

trachten wir zunächst eine Gerade durch Z. Wegen der
472-zähligen Drehsymmetrie in der Koordinate 9 genügt es

anzunehmen, dass der Winkel der Geraden im Intervall
0 < 9 < tu/2n liegt. Die Segmente Sn und S* werden von
einer solchen Durchmessergeraden nicht getroffen. Eine zu
ihr parallele Gerade trifft aber entweder Sn oder S* nicht.

C. Es gibt keinen Punkt, der allen 4n Segmenten angehört. Dies
ist eine triviale Folgerung aus B.

D. Im Falle Rj — R (i 1, 2n) haben je 2n — 1 Segmentpaare

ein antipodisches Punktepaar gemeinsam. Es genügt,
alle Paare ausser Sn und S* zu betrachten. Die beiden Punkte
p R, 9 0 und p R, 9 7T gehören ihnen an.

E. Im Falle Rj R (i 1, 2n) gibt es kein antipodisches
Punktepaar, das allen Segmentpaaren angehört. Dies ist eine
triviale Folgerung von B.

F. Je 2n — 1 Segmente werden von einer durch Z laufenden
Geraden getroffen. Dies ist ein Korollar zu D ; hier ist aber
die Bedingung über die Gleichheit der Radien unerheblich,
so dass die vorliegende Behauptung auch dann gilt, wenn
die Segmente paarweise fremd sind.

G. Im Falle Rj R (i 1, 2n) gibt es zu jeder Auswahl
von je 2n — 1 Segmenten zwei Punkte so, dass jedes
Segment der Auswahl wenigstens einen der beiden Punkte
enthält. Dies ist ein Korollar zu D.

H. Es gibt nicht zwei Punkte so, dass jedes der 4n Segmente
wenigstens einen der beiden Punkte enthält. Dies ist ein
Korollar zu B.
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Mit den Eigenschaften A, B, und F ergibt sich nun in der
Tat die Verneinung der oben erörterten Frage. Die gleiche
Rosette ermöglicht es weiter, auch die Nichtexistenz weiterer
Sätze vom Hellyschen Typ, welche gelegentlich erwogen worden
sind, nachzuweisen.

So teilte im Anschluss an eine Arbeit von L. A. Santalö [51],
Th. Motzkin ein Gegenbeispiel zu folgendem Satz mit: Haben

je h Eibereichpaare einer Menge von Eibereichpaaren einen
Punkt gemeinsam, so haben alle Eibereichpaare der Menge einen
Punkt gemeinsam. Auch unsere Kreissegmentrosette widerlegt
dies; im Falle gleicher Radien zeigen dies nämlich die
Eigenschaften D und E.

V. L. Klee jr. [31] hat einmal die Frage aufgeworfen, ob

es eine Hellysche Stichzahl h so gibt dass der folgende Satz

richtig ist: Gibt es zu je h Eibereichen einer Eibereichmenge
zwei Punkte so, dass jeder Bereich der Auswahl wenigstens einen
der Punkte enthält, so trifft dasselbe für alle Bereiche der Menge
zu. — Wieder existiert kein derartiger Satz; unsere Rosette
beweist auch das, und zwar sind es im Falle gleicher Radien
die Eigenschaften G und H, die den Nachweis liefern.
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Nicht entschieden ist die Frage, ob es im Falle von Mengen

paarweise fremder und kongruenter (oder translationsgleicher)
Eibereiche eine Hellysche Stichzahl h so gibt, dass alle

Eibereiche von einer Geraden getroffen werden, falls dies für je h

Eibereiche zutrifft. Es ist naheliegend, die Frage zunächst für

Mengen paarweise fremder kongruenter Kreise zu untersuchen.

Obwohl die Existenz einer solchen Zahl h hier recht plausibel

gemacht werden kann, konnte keine Abklärung der Frage erzielt

werden. Jedenfalls müsste h > 5 sein, wie die einfache in Fig. 6

dargestellte Menge von fünf regelmässig angeordneten Kreisen

zeigt.
Dagegen gilt folgende Aussage über ähnliche, gleichliegende

Eibereiche :

26. Werden je vier Bereiche einer Menge homothetischer Eibereiche
von einer Geraden getroffen, so gibt es vier (paarweise parallele
bzw. orthogonale) Geraden derart, dass jeder Eibereich der

Menge von mindestens einer der Geraden getroffen wird.

Die vorliegende Gruppe der Aussagen vom Hellyschen Typ
wollen wir noch mit einer von P. Vincensini [59] entdeckten
Variante abschliessen. Ein System von Eibereichen wollen wir
total separierbar nennen, wenn es eine Richtung so gibt, dass

jede Gerade dieser Richtung höchstens einen Eibereich des

Fig. 7
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Systems trifft. Es lässt sich dann in der Ebene ein System von
paarweise fremden Parallelstreifen bilden, so dass jeder Streifen
genau einen Eibereich des Systems enthält. Vgl. hiezu Fig. 7.

Es gilt:

27. Werden je drei Eibereiehe eines total separierbaren Eibereich¬

systems von einer geeigneten Geraden getroffen, so gibt es eine

Gerade, die alle Bereiche des Systems trifft.

Die von P. Vincensini angegebene Stichzahl war h 4.

Anschliessend hat V. L. Klee jr. [34] bemerkt, dass sich der
Satz verschärfen lässt, indem man die Stichzahl auf h 3

reduzieren kann.
Ein Korollar zu 27 ist der Satz von L. A. Santalô [50] (vgl.

auch H. Rademacher-I. J. Schoenberg [44]), wonach alle
Strecken einer Menge paralleler Strecken eine gemeinsame
Transversale aufweisen, falls dies bereits für je drei Strecken der
Menge zutrifft.

Im Hinblick auf Aussage 27 interessiert die Frage, welche
weitern Eigenschaften eines Eibereichsystems es erlauben, auf
seine totale Separierbarkeit zu schliessen. In diesem Zusammenhang

erwähnen wir, dass dies zum Beispiel dann möglich ist,
wenn die Eibereiche in der Ebene hinreichend dünn verstreut
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sind; dies lässt sich durch die Grösse der Gesichtswinkel
beschreiben. Vgl. hiezu Fig. 8. Es gilt:

28. Sind die Eibereiche eines Systems so dünn verstreut, dass von

keinem Blickpunkt der Ebene aus mehr als ein Bereich des

Systems unter einem Gesichtswinkel von iz/3 oder grösser

erscheint, so ist das System total separierbar.

** *

Es folgt nun zum Schluss eine kleine Gruppe von Aussagen,
die lose mit dem bekannten Satz von H. W. E. Jung [26] über
die Grösse des Hüllkreises einer Punktmenge von gegebenem
Durchmesser zusammenhängen. Zunächst sollen einige
Erklärungen vorausgeschickt werden.

Eine Punktmenge nennt man bekanntlich beschränkt, wenn
sie durch einen Kreisbereich überdeckt werden kann. Im
Zusammenhang mit den unten folgenden Feststellungen wollen wir eine

Geradenmenge beschränkt nennen, wenn sie keine parallele
Geraden enthält und wenn die Menge der Schnittpunkte, die
durch ihre Geraden erzeugt werden, beschränkt ist.

Der Deckradius einer beschränkten Punktmenge ist der
Radius des kleinsten (abgeschlossenen) Kreisbereichs, der alle
Punkte der Menge enthält. Entsprechend definieren wir: Der
Treffradius einer beschränkten Geradenmenge ist der Radius
eines kleinsten (abgeschlossenen) Kreisbereichs, der alle Geraden
der Menge trifft.

Der Durchmesser einer beschränkten Punktmenge ist die
obere Grenze der Menge der Distanzen, die durch Punktepaare
der Menge gebildet werden. Entsprechend definieren wir: Der
Durchmesser einer beschränkten Geradenmenge ist der Durchmesser

der Schnittpunktmenge.

29. Lassen sich je drei Punkte einer beschränkten Punktmenge
durch einen Kreisbereich vom Radius R überdecken, so lässt
sich die ganze Menge durch einen solchen Kreisbereich
überdecken.

30. Lassen sich je drei Geraden einer beschränkten Geradenmenge
durch einen Kreisbereich vom Radius r treffen, so gibt es
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einen solchen Kreisbereich, der alle Geraden der Menge
trifft.

Es handelt sich hier um Spezialfälle von Aussage 21.

31. Für den Deckradius einer Punktmenge vom Durchmesser
D 1 gilt R < 1/V1-

Dies ist der ebene Spezialfall des Jungschen Satzes. Vgl. dazu
die ausführliche Darstellung bei H. Rademacher-O. Toeplitz
[45].

32. Für den Treffradius r einer Geradenmenge vom Durchmesser
D 1 gilt r <

Diese Aussage bildet ein duales Gegenstück zum Jungschen
Satz.

33. Eine Punktmenge vom Durchmesser D 1 lässt sich durch
einen regulären Dreieckbereich der Seitenlänge $ <y/ 3

überdecken.

34. Eine Punktmenge vom Durchmesser D 1 lässt sich durch
einen regulären Sechseckbereich der Seitenlänge s I/a/Ü
überdecken.

Einen universellen Bereich, der die Eigenschaft aufweist,
dass jede Punktmenge vom Durchmesser D 1 damit zugedeckt
werden kann, nennt man einen (normierten) Deckel. In diesem
Sinn ist der Kreisbereich vom Radius R — 1 jy/ § ein Deckel
(Jungscher Deckel). Nach den Aussagen 33 und 34 ist der dem
Kreis mit Durchmesser D 1 umschriebene reguläre rc-Eck-
bereich ein Deckel, falls n 3 oder n 6 ist. Aussage 33 ist
der ebene Sonderfall eines von D. Gale [15] für beliebige Dimensionen

aufgestellten Gegenstücks zum Jungschen Satz. Aussage

34 stammt von J. Pal [42].

35. Jede Punktmenge vom Durchmesser D 1 lässt sich durch
drei Punktmengen überdecken, deren Durchmesser nicht
grösser als \/ 3/2 ausfallen.

Dies ist eine von D. Gale [15] angegebene Verschärfung des

von K. Borsuk [5] stammenden Satzes, wonach eine ebene
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Punktmenge stets in drei Teile von kleinerem Durchmesser

zerlegt werden kann. Eine von K. Borsuk aufgestellte
Vermutung bezieht sich auf Punktmengen des /c-dimensionalen

Raumes und sieht eine Zerlegung in k + 1 Teilmengen mit
kleineren Durchmessern vor; sie ist zur Zeit noch unbewiesen

für k > 3; für k 3 gab neuerdings H. G. Eggleston [10]
einen Beweis.

Der oben erwähnte Satz von K. Borsuk (ohne die

Verschärfung von D. Gale) ist — wenigstens für endliche

Punktmengen — auch eine Folgerung einer Aussage über die Anzahl
der Punktepaare, welche den Durchmesser realisieren. Es gilt:

36. In einer endliehen Punktmenge vom Durchmesser D 1 gibt
es höchstens n verschiedene Punktepaare der Distanz 1, wenn n
die Anzahl der Punkte der Menge bezeichnet.

Ein kurzer Beweis findet sich bei P. Erdös [13], ferner vgl.
man eine Aufgabe von H. Hopf-E. Pannwitz [23].

Die engen Zusammenhänge zwischen den verschiedenen
Satzgruppen soll schliesslich das folgende Korollar zu 34, als

Aussage vom Hellyschen Typ formuliert, vor Augen führen:

37. Haben je zwei Kreisscheiben einer Menge kongruenter Kreise
vom Radius R 1 einen Punkt gemeinsam, so gibt es drei
Punkte vom gegenseitigen Abstand d 1 derart, dass jede
Kreisscheibe der Menge mindestens einen von ihnen enthält.

Ähnliche, teils noch unbewiesene Aussagen finden sich bei
L. Fejes Tôth [14], S. 97.

II. Teil

Die vorstehend formulierten Aussagen sollen hier unter
Benutzung der oben zitierten Quellen durch kurze Beweise
belegt werden. Dabei erzwingen Raumgründe, dass oft nur der
Gedankengang knapp angedeutet werden kann. Die Argumentation

stützt sich vorwiegend auf elementare Sachverhalte, hie und
da ergänzt durch einfache punktmengengeometrische
Überlegungen.
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1. Lägen die Punkte Pl7 Pn nicht auf einer Geraden und
gilt für sie doch die Voraussetzung des Satzes, so ergibt sich ein
Widerspruch wie folgt: Durch eine projektive Abbildung werde

genau einer der Punkte, etwa Pl7 in einen Fernpunkt transformiert.

Das System der Punkte und ihrer Verbindungsgeraden
geht dabei über in eine Schar von Parallelen (durch Px), von
denen jede im Endlichen zwei der Punkte enthält, und in eine
endliche Mengen von Transversalen, von denen jede mindestens
drei der Punkte enthält. G sei die Transversale, die mit den
Parallelen den kleinsten Winkel einschliesst und Pi? Pj7 Pk in
dieser Anordnung die drei auf G liegenden Mengenpunkte. Die
zur Parallelenschar gehörige Verbindungsgerade von Px und Pj
enthält noch einen Punkt Pm der Menge. Nun bildet aber
entweder die Verbindungsgerade durch Pj und Pm oder jene
durch Pk und Pm mit den Parallelen einen kleinern Winkel
als G, im Widerspruch zur Konstruktion.

2 ist zu 1 dual.

3 erscheint als Korollar zu 1, wenn man durch Inversion an
einem Kreis mit einem Mengenpunkt als Zentrum alle Kreise
durch diesen Punkt in Geraden übergehen lässt, die die

Voraussetzungen von 1 erfüllen.

4. Der kleinste Deckkreis (d.h. der kleinste abgeschlossene
Kreisbereich, der alle Punkte der Menge bedeckt) enthält auf
seiner Peripherie Mengenpunkte, die keinen Halbkreisbogen frei
lassen, u.a. einen Punkt P. Weitere Mengenpunkte, z.B. ein

Punkt Q, können nicht im Innern liegen, da Spiegelung an der

Symmetrieachse von P und Q zeigt, dass dann auch ausserhalb
des Deckkreises Mengenpunkte wären. — Ist die Zahl der
Mengenpunkte endlich und > 2, so sei 9 der kleinste Winkel
zwischen je zwei verschiedenen Symmetrieachsen der Menge.
Spiegelung an diesen beiden Achsen kommt einer Drehung um
2cp gleich, also ist die Menge drehsymmetrisch bezüglich des

Winkels 2cp. Die ft-Ecke mit dem Zentriwinkel 9 2tc/^ erweisen
sich jetzt als die einzigen Mengen mit diesen Dreh- und
Spiegelsymmetrieeigenschaften, so dass jede endliche Menge mit den
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in 4 genannten Eigenschaften die Eckpunktmenge eines regulären

Vielecks ist.

5. Gibt es dem Gitter eingelagerte reguläre ft-Ecke (n fest),
dann auch solche mit kleinster Seitenlänge, weil hiefür nur die

Werte y'^a-p^2 (p, q ganz) in Frage kommen. Diese Existenz

vorausgesetzt, seien Px, P2, Pn die Ecken eines kleinsten
regulären Gitter-fi-ecks in ihrer natürlichen Reihenfolge. Trägt
man von diesen Gitterpunkten aus bzgl. die Gittervektoren
P2 p^ P3 p^ Pj P^ab, so führen ihre Endpunkte wieder auf

Gitterpunkte. Für n — 5 und n > 7 bilden diese ein kleineres

reguläres Gitter-ft-eck, im Widerspruch zur Minimalbedingung.
—- Für n — 3 sieht man die Unmöglichkeit eines dem Gitter
eingelagerten regulären ra-Ecks wie folgt ein: Die Fläche «s2 y/3/4
wäre wegen der Ganzzahligkeit von s2 eine irrationale Zahl,
anderseits ergibt sich, etwa nach Determinantenformeln berechnet,

ein rationaler Wert. Gleiches gilt von regulären Sechsecken

mit der Fläche 3s2 y/ 3/2.

6. Die Fläche s2 sin a eines Gitterrhombus ist, nach
Determinantenformeln berechnet, ganzzahlig. Nach 8 ist daher
a n/6 oder a n/2. Die erste Möglichkeit entfällt, da bei
einer Drehung um n/2 um eine Ecke der Rhombus wieder in
einen Gitterrhombus überginge (jeder Gitterpunkt geht dabei
in einen Gitterpunkt über!); dabei wäre ein reguläres
Gitterdreieck zu erkennen, im Widerspruch zu 5.

7. Einfache Folgerung von 8.

8. Man beachte, dass die Argumentation des Beweises von 5
für n — 5 und n > 7 auch in jedem Rechteckgitter möglich ist.
Aus dieser schärfern Aussage, dass sich in einem Rechteckgitter
von den regulären Vielecken nur Dreiecke, Vierecke und
Sechsecke einlagern lassen, ergibt sich 8. In der Tat: Sei
a (m/n)2n und der Bruch m/n nicht kürzbar. Ist cos oc rational,
dann ist nach goniometrischen Formeln cos va av, sin va
6V sin a mit rationalen av, bv (v 1, 2, n). N sei der gemeinsame

Nenner der 2n Werte av, bv. Erzeugt ein Rechteck der
Länge 1/N und der Breite (sin a)/N ein Rechteckgitter, so
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fallen daher von der Einheitskreislinie um einen Gitterpunkt
alle Punkte mit den Phasen va (v 1, n) auf Gitterpunkte.
Anderseits bilden diese Punkte wegen a (m/n)2n ein reguläres

ft-Eck. Wie eingangs erwähnt, folgt daraus, dass n einen
der Werte 1, 2, 3, 4, 6 besitzt. Zusammen mit der Nebenbedingung

0 < a < tu/2 ergibt sich a tu/3.

9. Ist eine Punktmenge mit lauter ganzzahligen
Punktdistanzen gegeben, in der es drei nicht auf einer Geraden liegende
Punkte A, B, C gibt, und bezeichnet k die grössere der Distanzen
d (AB), d (BC), so gibt es höchstens 4 (k -j- l)2, also endlich viele
Punkte P so, dass d (PA) — d (PB) und d (PB) — d (PC)
ganzzahlig ausfallen. Es ist nämlich | d (PA) — d (PB) | < d (AB)
und kann somit nur einen der Werte 0, 1, k annehmen, so

dass P auf einer von k + 1 Hyperbeln liegt. Ebenso liegt P auf
einer von k + 1 Hyperbeln, die durch B und C bestimmt werden.
All diese (verschiedenen) Hyperbeln schneiden sich in höchstens
4 (k -p l)2 Punkten.

10. Die Aussage „dann" ist trivial. Die Aussage „nur dann"
ist klar für endliche Punktmengen, da deren konvexe Hülle ein
konvexes Polygon ist, dessen Ecken zur Menge gehören ; wird
dieses von einer Ecke aus trianguliert, so liegt jeder Punkt in
einem der Teildreiecke, also in der konvexen Hülle von drei
Punkten der Menge. Es bleibt für unendliche Punktmengen M
zu zeigen, dass die Menge N aller Punkte, die schon in der
konvexen Hülle endlich vieler Punkte aus M enthalten sind,
mindestens so umfassend ist wie die konvexe Hülle M von M.
In der Tat: N enthält, wie man sich sofort zurechtlegt, mit zwei
Punkten auch jeden Punkt der Verbindungsstrecke, ferner

enthält N jeden Punkt von M. Da M als kleinste Menge mit
diesen Eigenschaften definiert wurde, ist der Beweis
abgeschlossen.

11. Nicht trivial ist einzig die Aussage „nur dann". Ein
innerer Punkt P der konvexen Hülle M von M ist auch innerer

Punkt eines Dreiecks mit Ecken in M. Da jede dieser Ecken
nach 10 in der konvexen Hülle von drei Punkten aus M liegt,
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ist das ganze Dreieck in der konvexen Hülle von endlich vielen

Punkten aus M enthalten. Wird dieses konvexe Vieleck mit
Ecken aus M von einer Ecke aus trianguliert, so ist P in der

Vereinigung zweier aneinandergrenzender Dreiecke als innerer
Punkt enthalten, also in der konvexen Hülle von vier Punkten
aus M.

12. Die Aussage „nur dann" ist trivial. Es bleibt zu zeigen,
dass zu zwei nicht separierbaren Mengen M und N zwei
ebensolche Teilmengen M' und N' mit gesamthaft höchstens vier
Punkten angegeben werden können. Nun sind M und N genau
dann nicht separierbar, wenn ihre konvexen Hüllen M und N
Punkte gemeinsam haben. Zu einem solchen gemeinsamen
Punkt gibt es nach 10 zwei je dreipunktige Mengen M" und N",
deren konvexe Hüllen M" und N" diesen Punkt gemeinsam
haben. Nun ist entweder eine dieser konvexen Hüllen in der

andern enthalten, etwa M" in N", oder die Dreiecke M" und N"
besitzen sich schneidende Randstrecken. Im ersten Falle bestehe
M' aus einem der Punkte von M", N' — N"; im zweiten Falle
bestehe M' und N' je aus den beiden Endpunkten des sich
schneidenden Streckenpaares. In beiden Fällen sind M' und N'
nicht separierbar, weil M' nnd N' Punkte gemeinsam haben.

13. Man wähle vier Punkte der gegebenen Menge M. Bildet
ihre konvexe Hülle nicht ein (nichtentartetes) Viereck, so ist ein
Punkt N in der konvexen Hülle der übrigen drei Punkte, umso-
mehr in der konvexen Hülle von M — N enthalten, und die
beiden fremden Mengen N und M — N sind nicht separierbar.
Bildet hingegen die konvexe Hülle ein Viereck, so bestehe N aus
den Endpunkten einer Diagonale. N und M — N bilden wieder
fremde, nichtseparierbare Teilmengen von M.

14. Für endlich viele Eibereiche folgt der Hellysche Satz
durch vollständige Induktion aus folgendem Hilfssatz: Es sei
k > 4. Haben je k — 1 von k Eibereichen Punkte gemeinsam, so
haben alle k Eibereiche Punkte gemeinsam. Beweis: Gt, Ck seien
die k Eibereiche und bezeichne einen Punkt, der in allen ausser
eventuell in Q enthalten ist. Nach 13 lassen sich die Punkte Pj
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(i 1,&)in zwei fremde Gruppen M' Pim jund M" —
rp PI- 1

1 n-
• r aufteilem, so dass deren konvexe Hüllen M' und

i Ji JnJ '

M" einen Punkt P gemeinsam haben. Nun gehört aber
jeder Punkt von M' und damit wegen der Konvexität der C{

c cauch M' zu allen Eibereichen ausser eventuell •

n n
ebenso M" zu allen ausser eventuell • • Der Punkt P

h jn
gehört zu M' und M", somit zu allen Eibereichen ohne
Ausnahme.

Wäre in einem unendlichen Eibereichsystem kein Punkt
allen Bereichen gemeinsam, so könnte man zu jedem Punkt des

Bereichs Cx des Systems einen weitern Bereich Q des Systems
angeben, der diesen Punkt und damit auch eine ganze
Kreisumgebung nicht trifft; Q und diese Umgebung seien einander
zugeordnet. Nach dem Theorem von Heine-Borel genügen
endlich viele dieser Kreisumgebungen, um Cx zu überdecken.
Die ihnen zugeordneten endlich vielen Eibereiche Q und Cx

haben nach Konstruktion keinen Punkt gemeinsam, im Widerspruch

zum obigen Ergebnis, dass endlich viele Eibereiche des

Systems einen Punkt gemeinsam haben, sobald die
Voraussetzungen von 14 erfüllt sind.

15 ergibt sich aus 14, wenn man einsieht, dass drei Rechtecke
Rl5 R2, R3 immer dann Punkte gemeinsam haben, wenn dies

schon für je zwei zutrifft. In der Tat: Bezeichnet Pineinem kartesischen Koordinatensystem, dessen Achsen parallel
zu den Rechtecken liegen, einen Punkt, der in allen drei
Rechtecken ausser eventuell in Rj (i 1, 2, 3) enthalten ist,
also in Rj und Rk, so bemerkt man, dass mit Pj und Pj nicht
nur die ganze Verbindungsstrecke in Rk enthalten ist, sondern
das ganze achsenparallele Rechteck über ihr, also alle P (x^ y),
für die x im Intervall (% Xj) und y in (y^y^) liegt. Wählt man
die Numerierung so, dass < x2 < x3 und yY < Vi < Vv. gilt,
so erfüllt P (x2, 2/j) diese Bedingungen für jedes der drei
Rechtecke, so dass er allen angehört.

16 ist Korollar zu 15, weil Rechtecke zu Strecken entarten
können.
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17 kann auf 14 zurückgeführt werden. Eine Menge von
Kreisbögen, jeder kleiner als ein Halbkreis, hat nämlich dann
und nur dann einen Punkt gemeinsam, wenn dasselbe von den

zugehörigen Kreissegmenten gilt, und dafür genügt nach 14,

dass je drei einen Punkt gemeinsam haben.

18 folgt aus 16. In der Tat lassen Bogen, jeder kleiner als ein

Drittelskreis und paarweise nicht punktfremd, einen Peripheriepunkt

unbedeckt, z.B. den zu einer Bogenmitte antipodischen.
Der Kreis kann somit hier aufgeschnitten und auf eine Gerade

abgewickelt werden, so dass jeder Bogen in eine Strecke übergeht.

19. Es sei G (oc) die gerichtete Gerade durch das

Kreiszentrum, die mit einer festen Richtung den Winkel a einschliesst.
Werden die gegebenen Bogen, die paarweise Punkte gemeinsam
haben, auf G (a) orthogonal projiziert, so haben die Bildstrecken
dieselbe Eigenschaft. Somit ist der Durchschnitt all dieser
Strecken ein Punkt oder eine Strecke, jedenfalls aber nicht leer
(16). Für mindestens einen Winkel a0 enthält D (a) das
Kreiszentrum. In der Tat: D (a) und D (a + tz) liegen in ihren
gerichteten Geraden spiegelsymmetrisch bezüglich Z; da nun
jede Orthogonalprojektion eines Bogens und also auch D (a)
stetig mit a ändert, muss D (a) bei einer Drehung der Geraden
um 7r für eine Lage oc0 das Zentrum bedecken. G (oc0 + tc/2), die
projizierende Gerade durch Z, ist dann eine Durchmessergerade,
die alle Bogen trifft.

Die Varianten 20-28 ergeben sich aus den grundlegenden
Aussagen 14,16,17,19 durch mannigfache Abbildungsmethoden.

20-22. Die Lage eines gegebenen Eibereiches A lässt sich bei
Verschiebungen durch die Lage eines starr mit ihm verbundenen
Punktes P charakterisieren. Ohne Mühe bestätigt man, dass P
einen Eibereich B* durchläuft, wenn der bewegliche Eibereich A
alle Lagen einnimmt, bei denen er in einem Eibereich B enthalten
ist. Gleiches gilt von allen Lagen, bei denen A einen Eibereich B
trifft, bzw. umschliesst. Jeder Eibereich bildet sich auf diese
Weise in einen Eibereich B* ab, und bei diesen Abbildungen
gehen die Aussagen 20-22 in 14 über.

L'Enseignement mathém., t. I, fasc. 1-3. 6
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23. Werden Eibereiche mit paarweise gemeinsamen Punkten
durch Zentralprojektion auf eine Kreislinie abgebildet, so gehen
sie in Bogen über, die 19 erfüllen. Die projizierende Gerade
durch die in allen Bildbogen enthaltenen antipodischen Punkte
trifft alle Eibereiche des Systems.

24. Orthogonalprojektion der Eibereiche erzeugt auf einer
Geraden eine Streckenmenge, die 16 erfüllt. Die projizierende
Gerade durch den in allen Strecken der Menge enthaltenen Punkt
trifft alle Eibereiche der Menge.

25. Gibt es unter den parallelen Rechtecken der Menge zwei,
die nur eine einzige positiv orientierte Treffgerade gemeinsam
haben, so ist die Aussage evident, da diese Gerade jedes weitere
Rechteck der Menge treffen muss. Andernfalls dürfen wir voraussetzen,

dass je drei Rechtecke der Menge eine positiv orientierte
Treffgerade besitzen, die zu keiner Rechteckseite parallel ist.
Dasselbe gilt dann von je endlich vielen Rechtecken der Menge.
In der Tat: Man lege parallel zu den Rechtecken orientiert zwei
Parallelen und charakterisiere ihre Punkte durch eine
Längenkoordinate in ihnen. Jede Transversale lässt sich dann in einen
Punkt einer Hilfsebene abbilden, indem man die linearen Koordinaten

ihrer Schnittpunkte mit den Parallelen als kartesische
Koordinaten der Hilfsebene deutet. Die Menge aller ansteigenden
Geraden, welche ein Rechteck der Menge treffen, geht dabei in
eine konvexe, abgeschlossene, aber nicht beschränkte Punktmenge
über. Je drei dieser Mengen haben nach unsern Voraussetzungen
im Endlichen Punkte gemeinsam. Greift man endlich viele dieser
konvexen Mengen heraus, so sind ihre Durchschnitte mit einem
ausreichend grossen Kreis Eibereiche, die nach 14 einen Punkt
gemeinsam haben. Die diesem Punkt entsprechende Gerade trifft
die herausgegriffenen endlich vielen Rechtecke. — Um den
Beweis auch für unendliche Rechteckmengen zu führen (ohne
eine stärkere Variante von 14 zu benutzen) brauchen wir vom
bisher Bewiesenen nur, dass je vier Rechtecke der Menge eine

gemeinsame Treffgerade aufweisen. Lässt man nun jeder Geraden,

die mit den gelegten zwei Parallelen den Winkel 9 ein-

schliesst, auf einer Kreisperipherie den Punkt mit Phase 9
entsprechen, so bildet sich die Menge aller ansteigenden Geraden,
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welche zwei herausgegriffene Rechtecke der Menge treffen, in
einen Bogen kleiner als ein Drittelskreis ab. Diese Abbildung,
für alle Rechteckpaare der Menge ausgeführt, liefert eine Bogen-

menge mit paarweise gemeinsamen Punkten, weil je vier
Rechtecke eine gemeinsame Treffgerade aufweisen. Der allen

Bogen gemeinsame Punkt (18) entspricht einer Geraden, zu der

je zwei Rechtecke der Menge eine parallele Treffgerade gemeinsam

haben; mit andern Worten: durch Projektionsstrahlen
parallel zu dieser Geraden bildet sich die Rechteckmenge auf
einer Transversalen als Streckenmenge ab, die nach 16 einen

Punkt gemeinsam hat. Der Projektionsstrahl durch ihn trifft alle

Rechtecke der Menge.

26. P sei ein Peripheriepunkt eines Kreises. Zu jeder
Geraden G der Ebene lege man eine Parallele durch P; ihr
zweiter Durchstosspunkt mit dem Kreis sei das Bild der Geraden
G. Bei dieser Abbildung geht die Menge der Geraden, welche
zwei feste Eibereiche treffen, in einen Bogen über. Führt man
dies für alle Bereichpaare einer Menge von Eibereichen, die zu
je vier eine Treffgerade gemeinsam haben, durch, so erhält man
eine Bogenmenge mit paarweise gemeinsamen Punkte. Dem
antipodischen Punktepaar, das alle Bogen trifft (19), entsprechen
zwei orthogonale Richtungen, so dass man findet: Haben je vier
Eibereiche einer Eibereichmenge eine gemeinsame Treffgerade, so

gibt es zwei orthogonale Richtungen derart, dass je zwei Eibereiche
der Menge eine gemeinsame Treffgerade mit einer dieser Richtungen
aufweisen. — Sind nun die Eibereiche dieser Menge zueinander
homothetisch, so treffen die vier Geraden der erwähnten Richtungen,

die ein einem Bereich der Menge umbeschriebenes Rechteck
bilden, alle nichtkleinern Bereiche der Menge. Gibt es also in
der Menge einen kleinsten Eibereich, so treffen die ihm derart
umbeschriebenen Geraden alle Bereiche der Menge. Gibt es in
der Menge keinen kleinsten Eibereich, so führen einige zusätzliche

Überlegungen über das Konvergenzverhalten nach Grösse
und Lage der Bereiche zum gewünschten Resultat. Sind die
Eibereiche nicht nur homothetisch, sondern zudem kongruent,
so lässt sich weiter einsehen, dass stets schon drei von diesen vier
Treffgeraden alle Bereiche treffen.
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27. Eine Gerade in der Separationsrichtung werde als
x-Achse ausgezeichnet. Jede andere Gerade der Ebene bildet
mit der x-Achse einen Winkel 0 < 9 < n gemessen im positiven
Drehsinn. Der Menge aller Geraden, welche zwei Eibereiche des

Systems, etwa A und B treffen, entspricht auf einer cp-Achse ein
Winkelintervall zwischen 0 und 7r, das wir mit (AB) bzw.
analog bezeichnen. Wir behaupten, dass je zwei dieser
Winkelintervalle Punkte gemeinsam haben. Dies vorausgesetzt, schliesst

man mit 16, dass ein Winkel <p0 existiert, so dass je zwei
Eibereiche des Systems durch eine Gerade der Richtung cp0 getroffen
werden können. Mit andern Worten: die Parallelprojektionen
der Eibereiche in dieser Richtung auf die ^-Achse bilden eine

Streckenmenge mit paarweise gemeinsamen Punkten. Die

projizierende Gerade durch den allen Strecken gemeinsamen
Punkt (16) trifft dann alle Eibereiche des Systems. — Es bleibt
nachzutragen, dass je zwei Winkelintervalle Punkte gemeinsam
haben. Für die Intervalle (AB), (BC) (bzw. analog) wird dies
durch die Voraussetzung gemeinsamer Treffgeraden zu A, B, C

gesichert. Hätten aber zwei Intervalle, etwa (AB), (CD) keinen
Punkt gemeinsam, so zeigt sich ein Widerspruch wie folgt: Jedes

der Intervalle (AC), (AD), (BC), (BD) hat sowohl mit (AB) wie
mit (CD) Punkte gemeinsam, so dass für einen Winkel 9'
,,zwischen" (AB) und (CD) folgende Sachlage eintritt: Durch
Geraden der Richtung 9' sind die Eibereiche A und B, ebenfalls C

und D separierbar (daraus folgt die Separierbarkeit eines

weitern Paares durch jede dieser beiden Separationsgeraden
nicht aber A und C, A und D, B und C, B und D. Dies ist
offensichtlich ein Widerspruch.

28. Durch die beim Beweis 26 benutzte Abbildung wird 28

auf die beim Beweis 18 erwähnte Sachlage zurückgeführt, dass

Kreisbogen mit paarweise gemeinsamen Punkten, jeder kleiner
als ein Drittelskreis, einen Peripheriepunkt unbedeckt lassen.

29. Spezialfall von 21.

30. Die Geraden können durch ausreichend lange Strecken
ersetzt werden, wodurch ein Spezialfall von 21 entsteht.
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31. Bei Berücksichtigung von 29 genügt es, die Aussage für
eine dreipunktige Menge vom Durchmesser 1 zu beweisen. Bildet
diese ein stumpfwinkliges Dreieck, so ist dessen längste Seite

Deckkreisdurchmesser, so dass hier sogar R < % zutrifft.
Bestimmt die dreipunktige Menge ein spitzwinkliges Dreieck,
so wird der Deckkreis vom Umkreis gebildet, dessen Durchmesser

bekanntlich durch 2R --= a/sin a bestimmt ist ; a ist irgend
eine Dreieckseite, a der gegenüberliegende Winkel. In jedem
Dreieck gibt es einen Winkel a > tt/3, so dass zugleich
sin öl > y2 y 3 und a < 1 gilt. Also ist 2R ajsin a < 2/v'3-

32 braucht ebenfalls nur noch für drei Geraden mit Durchmesser

1 bewiesen zu werden. Diese bilden ein Dreieck mit
Umfang U < 3, das dem kleinsten Treffkreis umbeschrieben ist.
Da das reguläre Dreieck mit Umfang 6r\/ 3 das umfangkleinste
Dreieck ist, das sich einem Kreis mit Radius r umbeschreiben
lässt, gilt Gr-y/ 3 < U < 3, also r < 1/2-1/3.

33. Die Punktmenge darf als abgeschlossen vorausgesetzt
werden. Ist S ein reguläres Umdreieck (so dass jede Seite einen

Mengenpunkt enthält) und S* ein solches in gespiegelter Lage,
so ist entweder S oder S* ein reguläres Dreieck der Seitenlänge
5 < 1/3- Fällt man nämlich von irgend einem Punkt, der in S

und S* enthalten ist, die Lote auf die Seiten von S bzw. S*, so

ist deren Summe nach einem planimetrischen Satz gleich der
Höhe von S bzw. S*. Die Summe je eines Lotes auf S und des

entsprechenden auf S* ist wegen der Durchmesserbedingung
< 1, so dass eines der Dreiecke eine Höhe < 3/2 aufweist. Seine
Seiten betragen höchstens ^3.

34. Anschliessend an den Beweis 33 stellen wir fest, dass die
Seitenlänge des regulären Umdreiecks S eine stetige Funktion
der Basisrichtung ist und bei Drehung um n in die von S*
übergeht. Daher sind S und S* für eine spezielle Richtung gleich
gross ; ihr Durchschnitt, in dem die Menge mit D 1 enthalten
ist, bildet dann ein (eventuell entartetes) zentralsymmetrisches
Sechseck, bei dem parallele Seiten einen. Abstand < 1 haben.
Es ist ganz im regulären Sechseck mit demselben Symmetriezentrum

und denselben Seitenrichtungen enthalten, dessen
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parallele Seiten den Abstand 1 aufweisen. Dieses reguläre
Sechseck besitzt die Seitenlänge l/\/3 und enthält die gegebene
Menge.

35 ergibt sich ausgehend von 34, wenn in dem der Menge
vom Durchmesser 1 umbeschriebenen regulären Sechseck der
Seitenlänge 1/V3 vom Zentrum aus drei Lote mit Zwischenwinkeln

27t/3 auf drei Seiten gefällt werden. Dadurch zerfällt
das Sechseck in drei kongruente Fünfecke vom Durchmesser

V 3/2, die die gegebene Menge überdecken.

36. Es sei n > 4 und die Menge Px, Pn habe den Durchmesser

D 1. Zu zwei Punkten Pj, Pk mit Abstand 1 zeichne

man stets die Verbindungsstrecke Pj Pk. Gehen dann von jedem
Pj höchstens zwei Strecken aus, so ist die Streckenzahl < ra, wie
behauptet. Existiert aber ein Punkt, etwa Px, von dem
mindestens 3 Strecken, etwa zu Pj, Pj, Pk, auslaufen, so sei Pj im
spitzen Winkelraum Pj P4 Pk enthalten. Ist nun d (Pj, Pm) 1,

so muss Pj Pm sowohl Px Pj wie auch P1 Pk treffen, da andernfalls

D > 1 wäre. Daraus folgt Pm Px, d.h. Pj kann nur von P1

den Abstand 1 haben. Lässt man Pj weg, so fällt eine einzige
Verbindungsstrecke dahin. Durch vollständige Induktion folgt
daraus 36. — Da also unter n Punkten mit D — 1 stets einer
von höchstens zwei andern den Abstand 1 hat, so folgt durch
Induktion auch der Borsuksche Satz. Denn jener Punkt lässt
sich derjenigen der drei Teilmengen der restlichen n — 1 Punkte
zugesellen, die die beiden weitferntesten Punkte nicht enthält;
dadurch bleiben alle Durchmesser <1.

37. Die Mittelpunkte der Kreise vom Radius R 1 mit
paarweise gemeinsamen Punkten bilden eine Punktmenge vom
Durchmesser D < 2. Diese kann nach 34 durch ein reguläres
Sechseck der Seitenlänge 2/^/3 überdeckt werden. In diesem
Sechseck lassen sich drei Punkte vom gegenseitigen Abstand 1,

nämlich drei Diagonalenmittelpunkte, angeben, so dass jeder
Sechseckpunkt, speziell jedes der Kreiszentren, von einem
dieser drei Punkte einen Abstand < 1 aufweist. Demnach ist
stets mindestens einer dieser Punkte in jedem der gegebenen
Kreise enthalten.
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fascicules.


	AUSGEWÄHLTE EINZELPROBLEME DER KOMBINATORISCHEN GEOMETRIE IN DER EBENE
	I. Teil.
	II. Teil
	...


