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AUSGEWAHLTE EINZELPROBLEME
DER KOMBINATORISCHEN GEOMETRIE
IN DER EBENE

VON

H. Hapwicer und H. DEBRUNNER, Bern

Es gibt verschiedene mathematische Sachgebiete, wo elemen-
tare Aufgaben unmittelbar in hohere und teilweise ungeloste
Fragestellungen iibergehen, so dass dort einfachste Gegensténde
der Schulmathematik eng benachbart mit solchen sind, die
wissenschaftliches Interesse bieten und von Spezialisten bear-
beitet werden. Wesentlich ist dabei, dass die beiden fachlichen
Standorte nicht wie iblich durch weit ausgebaute hohere
Theorien und vielschichtige Begriffsskalen voneinander getrennt
sind.

Ein Sachgebiet dieser Art ist die kombinatorische Geo-
metrie, die bei Beschrinkung auf die Ebene einen besonders
einfachen Charakter aufweist. Thre Fragestellungen kniipfen
unmittelbar an die Grundbegriffe der ebenen Elementar-
geometrie an und beziehen sich dann auf die Vielfalt der pri-
mitivsten Vorginge und Verkniipfungen wie diejenigen des
Umfassens, Treffens und Zerlegens usw. und auf die hier in
Erwigung zu ziehenden kombinatorischen Moglichkeiten.

Das Gebiet 1st mit der kombinatorischen Topologie verwandt;
jedoch tritt die eigentlich topologische Betrachtungsweise stark
zuriick, und die Problematik bleibt der Elementargeometrie
verpflichtet. Wie dies von H. Horr [22] ! ausfiihrlicher geschil-

1 Eckige Klammern verweisen auf das Literaturverzeichniss am Schluss der Arbeit.
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dert worden ist, treten in der kombinatorischen Geometrie
metrische und topologische Gesichtspunkte in eine gewisse Wech-
selbeziehung.

Die von uns vorgenommene Zusammenstellung zahlreicher
Einzelprobleme hélt sich tibrigens nicht vollkommen streng an
den methodischen Rahmen der kombinatorischen Geometrie;
diese bildet nur das engste Kernstiick eines Fragenkreises, der
durch die Ganzheit und Einfachheit seiner Gegenstédnde und
durch den rein kombinatorischen Habitus der erforderlichen
Schliisse einen besonderen Anreiz auszuiiben vermag.

Wie man — um dieser Geschmacksrichtung zu folgen und
um sich damit einer Wandlung anzupassen, die methodisch und
sachlich vom gewohnten klassischen Machtbereich zu einem mehr
neuzeitlich orientierten Arbeitsgebiet mit neuartigen reizvollen
Moglichkeiten iiberfiihrt — ausgeriistet mit nur elementaren
Begriffen fragen kann, das soll durch die hier zusammengetrage-
nen Beispiele dem Leser nahe gebracht werden.

An Vorkenntnissen ist ausser den allgemeinen Grundlagen
der Elementargeometrie und der Lehre von den reellen Zahlen
wenig erforderlich; eine gewisse Vertrautheit mit dem mengen-
méssigen Denken ist niitzlich; wichtig ist der Begriff der ebenen
Punktmenge. Wo erforderlich, werden weniger gelaufige Bezeich-
nungen kurz erldutert.

In Teil I. werden ausgesuchte Lehrsitze, nach Aussagen-
gruppen geordnet, ohne Beweis, aber mit einldasslicherem Komni-
mentar und mit Literaturhinweisen zusammengestellt. Die
Beweise — vielfach nur kurz angedeutet — folgen in Teil II.
So findet mancher Leser auch Gelegenheit, sich im Aufsuchen und
Ausfiithren eigener Beweisideen zu iiben. Besondere Interessenten
mogen durch die zahlreichen Zitate auch da und dort den Weg
zu aktueller Fachliteratur finden und auch die angedeuteten
ungelosten Probleme weiterverfolgen.

Wir hoffen mit diesen ausgewihlten Einzelproblemen Anre-
gung zu intensiverer Beschéftigung mit den anziehenden Fragen
der kombinatorischen Geometrie zu bieten und den in diesem
Sachgebiet bestehenden unmittelbaren Kontakt zwischen Schul-
mathematik und wissenschaftlicher Forschung zu lebendiger
Wirkung gelangen zu lassen.
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I. TeIL.

Die Aussagen der ersten kleinen Gruppe beziehen sich auf
Inzidenzverhiltnisse bei Punkten, Geraden und Kreisen und
gehoren also der kombinatorischen Elementargeometrie an.

1. Liegt auf der Verbindungsgeraden je zweier Punkte einer end-
lichen Punktmenge stets wenigstens ein dritter Punkt der
Menge, so liegen alle Punkte auf einer Geraden.

NVAAVA .
VAVAV
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Fic. 1

Zu diesem 1893 von J. J. SYLVESTER [b5] vermuteten Theo-
rem findet sich ein kurzer Beweis von T. Gavrra1 (Grinwald) bei
N. G. pE Brunyn-P. Erpos [6], wo die Aussage auch als Korollar
eines rein kombinatorischen Satzes erscheint. Fir weitere
Beweise, Verallgemeinerungen und Varianten vgl. P. Erpos [11],
H. S. M. CoxetERr [7], G. A. Dirac [9] und Th. Morzxin [39].

2. Geht durch den Schnittpunkt je zweier Geraden einer endlichen
Geradenmenge stets wenigstens eine dritte Gerade, so gehen
alle Geraden durch einen Punkt.

Die Aussagen 1 und 2 sind nicht mehr richtig, wenn die
Punkt- und Geradenmengen nicht endlich sind. Dies zeigt bei-
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spielsweise fiir beide Aussagen simultan das regulére abzihlbar-
unendliche Punkt- und Geradensystem in Fig. 1.

3. Liegt auf jeder Kreislinie durch je drei Punkte einer endlichen
Punktmenge stels wenigstens ein vierter Punkt der Menge, so
liegen alle Punkte auf einer Kreislinte.

In Voraussetzung und Behauptung eng mit Aussage 3 ver-
wandt ist der folgende Satz iiber beschrénkte (d.h. in einem
Kreis von endlichem Radius enthaltene) abgeschlossene Punkt-
mengen:

4. Hat eine beschrinkte, abgeschlossene Punktmenge die Eigen-
schaft, dass die Symmetrieachse je zweter Punkte auch Symme-
irteachse der ganzen Menge ist, so lieger. thre Punkte auf einer
Kreuslinie.

Dass die Aussagen 3 und 4 fir nicht endliche und nicht
beschrinkte Punktmengen unrichtig werden, ist dann trivial,
wenn man kontinuierlich-unendliche Punktmengen in Betracht
zieht. In der Tat gentiigt es, die ganze Ebene als Punktmenge zu
betrachten. Dagegen gibt es auch abzihlbar-unendliche Punkt-
mengen, fiir welche die Voraussetzungen von Aussage 3 und 4
erfilllt sind, ohne dass sie Tellmengen einer Kreislinie sind. In
der Tat: Man wihle eine aus vier Punkten bestehende Menge A,
die nicht auf einer Kreislinie oder einer Geraden liegt. Nun
konstruiere man auf rekursive Weise eine aufsteigende
Folge endlicher Punktmengen A, (n = 0, 1, ...), indem man
AL =9 (A (n =1, 2, ...) setzt, wobei ¢ (A) die Vereinigungs-
menge aller Punktmengen bezeichnet, die durch Spiegelung
von A an sdmtlichen Symmetrieachsen von Punktepaaren aus A
hervorgehen. Wie man sich leicht iiberlegt, ist die Vereinigungs-
menge S = U A, eine abzdhlbar-unendliche Punktmenge mit
der gewiinschten Symmetrieeigenschaft; auf jeder durch drei
| Punkte von S gelegten Kreislinie liegt stets wenigstens ein vierter
Punkt von S, falls die drei Punkte nicht ein reguldres Dreieck
¢ Dbilden, und bei geringfiigiger Erweiterung der Konstruktion o
48 cuch in diesern letztern Falle.
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Wir lassen eine weitere Gruppe von Aussagen folgen, in
welchen die Ganzzahligkeit oder auch die Rationalitit von
Distanzen eine Rolle spielt.

Die Menge der Punkte, deren Koordinaten beziiglich eines
orthogonalen Koordinatensystems ganz sind, bilden das ebene
Einheitsgitter; ihre Punkte heissen Gitterpunkte.

/ B ~~
[
Tl
[
/
~~— _ l
Fic. 2

5. Bilden n Gitterpunkte (n > 2) ein regulires n — Eck, so ist
n =4, d.h. das Quadrat ist das einzige regulire Viereck, das
im Einheitsgitter eingelagert werden kann.

Einen originellen Beweis hierfiir gab W. ScueERRER [52], fiir
den Fall n = 3 vgl. auch G. PoLyaA-G. Szecé [43], Bd. 2, S. 156,
Aufgabe 238.

Ein Quadrat lasst sich selbstverstandlich auch auf nicht-
triviale Weise im Gitter einlagern; dies illustriert Fig. 2. Uber
die Eckenwinkel eingelagerter Rhomben gilt die Aussage:

6. DBilden vier Gitterpunkte einen nichiquadratischen Rhombus
mit dem Eckenwinkel o, so tst o/ trrational ; d.h. das Quadrat
ist der einzige im Einheitsgitter eingelagerte Rhombus, dessen
Eckenwinkel mit dem vollen Winkel kommensurabel sind.

Im engsten Zusammenhang hiermit steht eine Feststellung
tiber die Winkel in pythagoreischen Dreiecken, d.h. in recht-
winkligen Dreiecken mit ganzzahligen Seitenlingen. Hier gilt:
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7. Ist o ein Basiswinkel eines pythagoreischen Dreiecks, so ist a/n
irrational.

Die Aussagen 6 und 7 sind geometrische Korollarien des

folgenden goniometrischen Satzes (vgl. H. Hapwicer [18]):

¥ 8. [st0< o< 7/2 und fallt cos o rational aus, so ist entweder

o = /3 oder ofm ist irrational.

9. Hat eine unendliche Punktmenge die Eigenschaft, dass thre

Punktepaare ganzzahlige Distanzen aufweisen, so liegt ste ganz
auf einer Geraden.

Dieser Satz von P. Erpos [12] (vgl. auch A. DeLAcCHET [8],
S. 50 und E. Trosrt [b7]) darf als besonders typisch fiir eine
gewisse Kategorie von Aussagen gelten, die uns dadurch beson-

. ders ansprechen, dass aus einfachsten Voraussetzungen eine

starke und unerwartete Folgerung gezogen wird.

Besonders beachtenswert ist der Umstand, dass aus 9 nicht
der Schluss gezogen werden darf, es gebe eine Hochstzahl £
derart, dass die Behauptung immer schon dann gilt, wenn die
Anzahl % der Punkte mit ausschliesslich ganzzahligen Punkt-
distanzen grosser 1st als k,. Es gibt ndmlich zu jedem % derartige
Punktmengen, die nicht linear sind, sogar solche der Eigenschaft,
dass keine drei Punkte auf einer Geraden liegen. Solche Punkt-
mengen wurden wiederholt konstruiert, u.a. von M. ALtweaa [1],
A. MULLER [40] und F. StEIGER [53].

Nach einer Idee von A. MULLER ldsst sich eine auf der
Einheitskreislinie dicht liegende, abzéhlbar-unendliche Punkt-
menge angeben, welche die Eigenschaft aufweist, dass jedes

¢ Punktepaar eine rationale Distanz besitzt. Es sei ndmlich P,
B der Punkt mit den Polarkoordinaten p =1, ¢ = 2n6, wo 6 durch
cos 0 = 4/5 bestimmt 1st, so dass nach Aussage 8 6/ irrational
¥ wird. Die Punkte der Folge P, (n = 0, 1, ...) sind paarweise
f verschieden und die erzeugte abzihlbar-unendliche Punktmenge
| liegt auf der Einheitskreislinie. Sie liegt dort dicht und nach dem
B Gleichverteilungstheorem von H. WEeyL sogar gleichverteilt,
| doch ist dies hier ohne Bedeutung. Fiir eine Distanz eines

Punktepaares ergibt sich d (P,, P,) = 2 l sin (n — m) 0 ], und
wegen sin 6 = 3/5 und cos O = 4/5 ist dies nach goniometri-
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schen Formeln eine rationale Zahl. Betrachtet man jetzt &
Punkte dieser Menge, so lisst sich durch eine geeignete dhnliche
Vergrosserung erzielen, dass alle auftretenden Distanzen ganz-
zahlig werden. Dabei liegen keine drei Punkte auf einer Geraden !

*
* %

Die folgende Aussagengruppe befasst sich mit der Hiillen-
bildung und Separation bei ebenen Punktmengen. Zunéchst
einige Erkldrungen: FEine Punktmenge heisst bekanntlich
konvex, wenn sie mit zwei Punkten stets auch die ganze Ver-
bindungsstrecke enthilt. Unter der konvexen Hiille einer Punkt-
menge versteht man die kleinste konvexe Punktmenge, welche
jene als Teil enthilt. Mit andern Worten ist die konvexe Hiille
der Durchschnitt aller konvexen Punktmengen, welche die
gegebene als Teil enthalten.

10. Ein Punkt gehirt dann und nur dann zur konvexen Hiille
einer Punktmenge, wenn er bereits der konvexen Hiille von
drei geeigneten Punkten der Menge angehort.

Aus dieser Aussage folgt, dass die konvexe Hiille identisch
ist mit der Vereinigungsmenge aller Dreiecksbereiche, deren
Ecken der gegebenen Menge zugehoren.

11. Eiwn Punkt ist dann und nur dann tnnerer Punkt der konvexen
Hiille einer Punktmenge, wenn er bereits innerer Punkt der
konvexen Hiille yvon vier geeigneten Punkten der Menge ist.

Die Aussagen 10 und 11 sind ebene Sonderfille niitzlicher,
von E. SteiniTz [54] und W. Gustin [17] stammender Sitze.
Vgl. auch O. HannNeEr-H. RapsTrom [20] und C. V. RoBINsON
[49].

Zwel Punktmengen wollen wir separierbar nennen, wenn es
eine Gerade gibt, welche keine der Mengen trifft und sie vonein-
ander trennt; beide Punktmengen liegen dann im Innern der
beiden Halbebenen, die durch die Gerade erzeugt werden. Uber
die Separierbarkeit gilt das folgende Kriterium von P. Kircn-
BERGER [29] (vgl. auch H. RApEMACHER-I. J. SCHOENBERG [44]):
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Zwei Punktmengen sind dann und nur dann separierbar,
wenn je zwei threr Teilmengen, deren Vereinigung hochstens
vier Punkte enthalt, separierbar sind.

Jede Punktmenge, die wenigsiens vier Punkte enthdlt, ldsst
sich in zwei nichtleere, punktfremde und nichtseparierbare
Teilmengen zerlegen.

Hiezu vgl. F. W. Levi [36] und R. Rapo [46].

*
* ®

Wir wenden uns jetzt einem Fragenkreis zu, in dessen Mittel-
punkt das beriihmte Hellysche Theorem steht. Die zahlreichen
Varianten, Siatze vom Hellyschen Typ, die sich in der Regel auf
Eibereiche beziehen, bilden einen sehr typischen Teil der kom-
binatorischen Konvexgeometrie.

Unter einem FEibereich verstehen wir hier eine beschrinkte,
abgeschlossene und konvexe Punktmenge.

14. Haben je drei Eibereiche einer (endlichen oder unendlichen)
Menge von Eibereichen eitnen Punkt gemeinsam, so haben alle
Eibereiche der Menge einen Punkt gemeinsam.

Dies ist der ebene Sonderfall des bekannten Hellyschen
Satzes. Vgl. E. HELry [21], J. Rapox [48], D. Ko~N1g [35], u.a.m.-
Wie man unmittelbar mit einfachsten Beispielen einsieht, kann

1 die Anzahl drei nicht durch zwei ersetzt werden. Dies ist aber
. bei starken Voraussetzungen iiber die Gestalt der Eibereiche

moglich. So gilt die folgende Variante:

15. Haben je zwei Rechtecke einer Menge parallel orientierter
Rechtecke einen Punkt gemeinsam, so haben alle Rechtecke
der Menge einen Punkt gemeinsam.

Dagegen gilt: Ein Eibereich, der nicht ein Parallelogramm

% ist, lasst sich in drei Lagen verschieben, so dass je zwei der
4 translationsgleichen Eibereiche einen Punkt gemeinsam haben,
z& nicht aber alle drei. Fiir Parallelogramme ist dies nicht moglich
B Dic Giltigkeit einer Aussage der Art 15 mit leichter Modifikation
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ist demnach fiir Parallelogramme charakteristisch. Vgl. hierzu
auch B. Sz.-Naay [41]. |
Ein Korollar von 15 ist der Hellysche Satz fiir die Gerade:

16. Haben in einer Geraden je zwet Strecken einer Sireckenmenge
etnen Punkt gemeinsam, so haben alle Strecken der Menge
etnen Punkt gemeinsam.

Es 1st naheliegend und fiir viele Anwendungen niitzlich,
Satze vom Hellyschen Typ auch fiir die Kreislinie aufzustellen;
an Stelle der Eibereiche treten hier abgeschlossene Kreisbogen,
die selbstverstdndlich alle demselben Trégerkreis angehoren
sollen.

17. Hat eine Menge von Kreisbogen, die alle kleiner als Halb-
kreise sind, die Eigenschaft, dass je drev Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge etnen Punkit
gemeinsam.

Die Bedingung iiber die Grosse der Bogen kann hier nicht
gemildert werden, indem die Aussage bereits fiir Halbkreise
falsch wird. In der Tat haben von den vier Halbkreisen, die durch
zwel verschiedene Paare antipodischer Punkte der Kreislinie
entstehen, je drei, aber nicht alle vier einen Punkt gemeinsam.
Auch kann die Anzahl drei nicht durch zwei ersetzt werden.
Von den drei Drittelskreisen, die die ganze Kreislinie iiberdecken,
haben je zwei, aber nicht alle drei einen Punkt gemeinsam.
Dagegen gilt:

18. Hat eine Menge von Kreisbogen, die alle kleiner als Drittels-
kreise sind, die Eigenschaft, dass je zwei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen
Punkt gemeinsam.

Lassen wir jede Voraussetzung iiber die Grosse der Bogen
fallen, so gilt noch:

19. Hat eine Menge von Kreisbogen die Eigenschaft, dass je zwet
Bogen einen Punkt gemeinsam haben, so gibt es ewn antipo-
disches Punktepaar so, dass jeder Bogen der Menge wenigstens
einen Punkt des Paars enthdlt.
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Es gibt mit andern Worten eine Durchmessergerade des
Kreises, die alle Kreisbogen trifft. Sitze dieser Art wurden
w.a. von C. V. RoBinson [49] und A. Horn-F. A. VALENTINE [25]
aufgestellt. Hiilbsche Anwendungen, wie wir solche auch weiter
unten angeben werden, hat P. Vincensint [59] entdeckt.

20. Lidsst sich ein Eibereich stets so verschieben, dass er im Durch-
schnitt von je drei Bereichen einer Euibereichsmenge enthalten
ist, dann auch so, dass er im Durchschniit aller Eibereiche der
Menge liegt.

21. Ldsst sich ein Etbereich stets so verschieben, dass er je dret
Bereiche einer Eibereichmenge trifft, dann auch so, dass er
alle Bereiche der Menge trifft.

22. Ldsst sich ein Etbereich stets so verschieben, dass er je dret
Bereiche einer Etibereichmenge enthilt, dann auch so, dass
er alle Bereiche der Menge enthiilt.

Dies sind ebene Sonderfille allgemeinerer, sich auf hohere
Dimensionen beziehender Varianten des Hellyschen Satzes, die
von P. ViNcensiNI [58] und V. L. Kiee jr. [32] formuliert
wurden. Wesentlich fiir die Giiltigkeit dieser Aussagen ist die
Bedingung, dass die Eibereiche in der Ebene nur verschoben
und nicht etwa auch gedreht werden diirfen. Wird an Stelle der
Translationsgruppe die Bewegungsgruppe gesetzt, so sind alle
drei Aussagen falsch.

Wir belegen dies ausfiihrlicher durch ein Beispiel zu Aus-
sage 21. Man betrachte die Menge der n Kreise (n > 2) deren
Mittelpunkte durch die Polarkoordinaten p = 1 und ¢ = 2kn/n
(k =1, ..., n) gegeben sind, und deren Radius r = cos? (w/n)
bzw. r = cos? (n/n) + cos? (x/2n) — 1 ist, falls n gerade bzw.
ungerade gewdhlt wurde. Wie man jetzt bestitigen kann, ldsst
sich eine Strecke (uneigentlicher Eibereich) der Linge 2 stets
so legen, dass je n— 1 Kreisscheiben der Kreismenge, nicht
aber so, dass alle n Kreisscheiben getroffen werden. Die Strecke
muss hiezu jedoch passend gedreht und verschoben werden.
Fig. 3 illustriert dies im Falle n = 8.

L’Enscignement mathém., t. I, fasc. 1-3. )
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23. Haben je zwer Etibereiche einer Eibereichmenge einen Punkt
gemeinsam, so lasst sich durch jeden Punkt der Ebene eine
Gerade legen, welche alle Eibereiche der Menge trifft.

24. Haben je zwer Eibereiche einer Etibereichmenge einen Punkt
gemewnsam, so ldisst sich zu jeder Geraden der Ebene eine
parallele Gerade legen, welche alle Eibereiche der Menge trifft.

Fic. 3

Auch diese beiden Aussagen 23 und 24 sind ebene Sonder-
fialle allgemeinerer Sétze von A. Horn [24] und V. L. KLEE jr.
[30]; sie beantworten die Frage, was sich an Stelle der Behaup-
tung des Hellyschen Satzes noch aussagen lasst, wenn die Anzahl
drei durch zwei ersetzt wird.

Man kann sich fragen, ob sich im Hellyschen Satz Punkt
durch Gerade in dem Sinn ersetzen lédsst, dass eine Aussage der
folgenden Form richtig ist: Werden je & Bereiche einer Eibereich-
menge von einer Geraden getroffen, so gibt es eine Gerade, welche
alle Bereiche der Menge trifft. Existiert eine solche Hellysche
Stichzahl ?

Die Antwort ist verneinend ! Bereits L. A. SaAnTALO [50] hat
bemerkt, dass zu jedem natiirlichen n> 2 eine Menge von n
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Eibereichen so konstruiert werden kann, dass je n — 1 Bereiche
der Menge eine gemeinsame Sekante, nicht aber alle n eine solche
aufweisen. Dasselbe belegt auch unser Beispiel; das wir an
Aussage 21 angeschlossen haben. Sétze der erwidhnten Art,
lassen sich nur aufstellen, wenn iiber Gestalt und Lage der
Eibereiche zusétzliche Voraussetzungen getroffen werden. So
hat L. A. SANTALO [50] bewiesen, dass alle Rechtecke einerMenge
parallel orientierter Rechtecke wvon einer Geraden getroffen

‘ /

/

A

/ .

Fic. 4

werden, falls dies fiir je sechs Rechtecke der Menge zutrifft. Wir
fiigen hier die folgende Aussage an:

25. Werden je drei Rechtecke einer Menge parallel orientierter
Rechiecke von einer ansteigenden Geraden getroffen, so gubt

es eine ansteigende Gerade, welche alle Rechtecke der Menge
trifft.

Wir nehmen hierbei an, dass die Rechtecke parallel zu einem
orthogonalen Koordinatensystem orientiert sind:; eine Gerade

1st ansteigend, wenn ihr Steigungsmass nichtnegativ ist. Vgl,
hiezu Fig. 4.

Das oben dargelegte Beispiel (Fig. 3), das die Nichtexistenz
einer Hellyschen Stichzahl % im allgemeinsten Fall beweist,
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zeigt die auffallende Sachlage, dass sich die Eibereiche (Kreis-
scheiben) gegenseitig teilweise iiberdecken. Hier ist es naheliegend
die Frage aufzuwerfen, ob sich eine Hellysche Stichzahl dann
angeben lasst, wenn vorausgesetzt wird, dass die Eibereiche paar-
weise fremd sind, d.h. keine Punkte gemeinsam haben. Die
Antwort auf diese auch von V. L. KLEE jr. [33] aufgeworfene
Frage 1st wieder verneinend.

N

~_| 7

Fig. 5

Wir konstruieren ein Beispiel — eine Kreissegmentrosette —
um diese Behauptung zu belegen. Es sei n > 1; S; und S
(i = 1, ..., 2n) sollen insgesamt 4n Kreissegmente der 2n kon-
zentrischen Kreise K; (i = 1, ..., 2n) mit Zentrum Z und den
Radien R; (i = 1, ..., 2n) bezeichnen, wobei sich S; und S}
beziiglich Z zentralsymmetrisch entsprechen sollen. Fir die
Radien sei zundchst nur 0 < R; < R, festgelegt. Die Segmente
der Kreise K; sollen nachfolgend durch die Polarkoordinaten der
Punkte ihrer Kreisbogen charakterisiert werden:

S;: p = Ry; (i-n+1) (/2n) < ¢ < (1+n-1) (w/2n)

Si: ¢ = Ry; (i+n+1) (x/2n) < ¢ < (i+3n-1) (n/2n).

1
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Auch im Hinblick auf weitere Verwendungsméglichkeiten wollen
wir einige Eigenschaften unserer Kreissegmentrosette festlegen:

A.

H.

Die Radien R; konnen so gewihlt werden, dass die 4n Seg-
mente paarweise fremd sind; sie miissen nur ausreichend
stark anwachsen. Fig. b zeigt eine Rosette dieser Art fiir
n = 2.

. Es gibt keine Gerade, welche alle 4n Segmente trifft. Be-

trachten wir zunéchst eine Gerade durch Z. Wegen der
4n-zihligen Drehsymmetrie in der Koordinate ¢ geniigt es
anzunehmen, dass der Winkel der Geraden im Intervall
0 < o < =w/2n liegt. Die Segmente S, und S} werden von
einer solchen Durchmessergeraden nicht getroffen. Eine zu
ihr parallele Gerade trifft aber entweder S, oder Sz nicht.

Es gibt keinen Punkt, der allen 4n Segmenten angehort. Dies
ist eine triviale Folgerung aus B.

. Im Falle R; = R (i = 1, ..., 2rn) haben je 2n — 1 Segment-

paare ein antipodisches Punktepaar gemeinsam. Es geniigt,
alle Paare ausser S, und S zu betrachten. Die beiden Punkte
o= R, 9 =0und p = R, ¢ = = gehoren ihnen an.

Im Falle R; = R (¢ = 1, ... 2n) gibt es kein antipodisches
Punktepaar, das allen Segmentpaaren angehort. Dies ist eine
triviale Folgerung von B.

Je 2n — 1 Segmente werden von einer durch Z laufenden
Geraden getroffen. Dies ist ein Korollar zu D; hier ist aber
die Bedingung iiber die Gleichheit der Radien unerheblich,
so dass die vorliegende Behauptung auch dann gilt, wenn
die Segmente paarweise fremd sind.

Im Falle R; = R (i =1, ..., 2n) gibt es zu jeder Auswahl
von je 2n — 1 Segmenten zwei Punkte so, dass jedes Seg-
ment der Auswahl wenigstens einen der beiden Punkte
enthélt. Dies ist ein Korollar zu D.

Es gibt nicht zwei Punkte so, dass jedes der 4n Segmente

wenigstens einen der beiden Punkte enthialt. Dies ist ein
Korollar zu B.
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Mit den Eigenschaften A, B, und F ergibt sich nun in der
Tat die Verneinung der oben erorterten Frage. Die gleiche
Rosette ermoglicht es weiter, auch die Nichtexistenz weiterer
Satze vom Hellyschen Typ, welche gelegentlich erwogen worden
sind, nachzuweisen.

So teilte im Anschluss an eine Arbeit von L. A. SANTALO [51],
Th. MorzkIN ein Gegenbeispiel zu folgendem Satz mit: Haben

Fic. 6

je h Eibereichpaare einer Menge von Eibereichpaaren einen
Punkt gemeinsam, so haben alle Eibereichpaare der Menge einen
Punkt gemeinsam. Auch unsere Kreissegmentrosette widerlegt,
dies; im Falle gleicher Radien zeigen dies ndmlich die Eigen-
schaften D und E.

V. L. KigE jr. [31] hat einmal die Frage aufgeworfen, ob
es eine Hellysche Stichzahl & so gibt , dass der folgende Satz
richtig ist: Gibt es zu je h Eibereichen einer Eibereichmenge
zwei Punkte so, dass jeder Bereich der Auswahl wenigstens einen
der Punkte enthilt, so trifft dasselbe fiir alle Bereiche der Menge
zu. — Wieder existiert kein derartiger Satz; unsere Rosette
beweist auch das, und zwar sind es 1m Falle gleicher Radien
die Eigenschaften G und H, die den Nachweis liefern.
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Nicht entschieden ist die Frage, ob es im Falle von Mengen
paarweise fremder und kongruenter (oder translationsgleicher)
Eibereiche eine Hellysche Stichzahl % so gibt, dass alle Eibe-
reiche von einer Geraden getroffen werden, falls dies fiir je £
Eibereiche zutrifft. Es ist naheliegend, die Frage zuné&chst fur
Mengen paarweise fremder kongruenter Kreise zu untersuchen.
Obwohl die Existenz einer solchen Zahl % hier recht plausibel
gemacht werden kann, konnte keine Abklérung der Frage erzielt

\
0

D
&
\

Fic. 7

werden. Jedenfalls miisste 2 > 5 sein, wie die einfache in Fig. 6
dargestellte Menge von finf regelméssig angeordneten Kreisen
zeigt.

Dagegen gilt folgende Aussage iiber dhnliche, gleichliegende
Eibereiche:

26. Werden je vier Bereiche einer Menge homothetischer Eibereiche
von einer Geraden getroffen, so gibt es vier (paarweise parallele
bzw. orthogonale) Geraden derart, dass jeder Eibereich der
Menge von mindestens einer der Geraden getroffen wird.

Die vorliegende Gruppe der Aussagen vom Hellyschen Typ
wollen wir noch mit einer von P. VinceEnsint [59] entdeckten
Variante abschliessen. Ein System von Eibereichen wollen wir
total separierbar nennen, wenn es eine Richtung so gibt, dass
jede Gerade dieser Richtung hochstens einen Eibereich des
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Systems trifft. Es lasst sich dann in der Ebene ein System von
paarweise fremden Parallelstreifen bilden, so dass jeder Streifen
genau einen Eibereich des Systems enthilt. Vgl. hiezu Fig. 7.
Es gilt:

27. Werden je drei Etbereiche eines total separierbaren Eibereich-
systems von einer geeigneten Geraden getroffen, so gibt es eine
Gerade, die alle Bereiche des Systems trifft.

-~

Fic. 8

Die von P. VINCENsINI angegebene Stichzahl war kA = 4.
Anschliessend hat V. L. KLEE jr. [34] bemerkt, dass sich der
Satz verschirfen lidsst, indem man die Stichzahl auf 2 = 3
reduzieren kann.

Ein Korollar zu 27 ist der Satz von L. A. SANTALO [50] (vgl.
auch H. RADEMACHER-I. J. SCHOENBERG [44]), wonach alle
Strecken einer Menge paralleler Strecken eine gemeinsame
Transversale aufweisen, falls dies bereits fiir je drei Strecken der
Menge zutrifft.

Im Hinblick auf Aussage 27 interessiert die Frage, welche
weitern, Eigenschaften eines Eibereichsystems es erlauben, auf
seine totale Separierbarkeit zu schliessen. In diesem Zusammen-
hang erwihnen wir, dass dies zum Beispiel dann moglich ist,
wenn die Eibereiche in der Ebene hinreichend diinn verstreut
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sind; dies lasst sich durch die Grosse der Gesichtswinkel
beschreiben. Vgl. hiezu Fig. 8. Es gilt:

28. Sind die Eibereiche eines Systems so diinn verstreut, dass von
keinem Blickpunkt der Ebene aus mehr als ein Bereich des
Systems unter einem Gesichtswinkel von w/3 oder grisser
erscheint, so ist das System total separierbar.

& * *

Es folgt nun zum Schluss eine kleine Gruppe von Aussagen,
die lose mit dem bekannten Satz von H. W. E. Junc [26] tiber
die Grosse des Hiillkreises einer Punktmenge von gegebenem
Durchmesser zusammenhéingen. Zunéchst sollen einige Erkla-
rungen vorausgeschickt werden.

Eine Punktmenge nennt man bekanntlich beschrdinkt, wenn
sie durch einen Kreisbereich iberdeckt werden kann. Im Zusam-
menhang mit den unten folgenden Feststellungen wollen wir eine
Geradenmenge beschrinkt nennen, wenn sie keine parallele
Geraden enthélt und wenn die Menge der Schnittpunkte, die
durch thre Geraden erzeugt werden, beschrankt ist.

Der Deckradius einer beschrénkten Punktmenge ist der
Radius des kleinsten (abgeschlossenen) Kreisbereichs, der alle
Punkte der Menge enthélt. Entsprechend definieren wir: Der
Treffradius einer beschrdnkten Geradenmenge ist der Radius
eines kleinsten (abgeschlossenen) Kreisbereichs, der alle Geraden
der Menge trifft. o

Der Durchmesser einer beschriankten Punktmenge ist die
obere Grenze der Menge der Distanzen, die durch Punktepaare
der Menge gebildet werden. Entsprechend definieren wir: Der
Durchmesser einer beschréankten Geradenmenge ist der Durch-
messer der Schnittpunktmenge.

29. Lassen sich je drei Punkte einer beschrinkten Punktmenge
durch einen Kreisbereich vom Radius R iiberdecken, so ldisst
sich die ganze Menge durch einen solchen Kreisbereich
iiberdecken.

30. Lassen sich je drei Geraden einer beschrinkten Geradenmenge
durch einen Kreisbereich vom Radius r treffen, so gibt es
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einen solchen Kreisbereich, der alle Geraden der Menge
trifft.

Es handelt sich hier um Spezialfille von Aussage 21.

31. Fiir den Deckradius einer Punktmenge vom Durchmesser
D=1 gilt R<1/4/3.

Dies ist der ebene Spezialfall des Jungschen Satzes. Vgl. dazu
die ausfiihrliche Darstellung bei H. RapemacHER-O. ToEPLITZ
[45].

32. Fir den Treffradius r einer Geradenmenge vom Durchmesser
D=1 gilt r < 1/24/3.

Diese Aussage bildet ein duales Gegenstiick zum Jungschen
Satz. ’

33. Eine Punktmenge vom Durchmesser D = 1 lisst sich durch
etnen reguldiren Dreieckbereich der Seitenlinge s = /3
liberdecken.

34. Eine Punktmenge vom Durchmesser D = 1 ldsst sich durch
einen reguliren Sechseckbereich der Seitenlinge s = 1/+/3
iiberdecken.

Einen universellen Bereich, der die Eigenschaft aufweist,
dass jede Punktmenge vom Durchmesser D = 1 damit zugedeckt
werden kann, nennt man einen (normierten) Deckel. In diesem
Sinn ist der Kreisbereich vom Radius R = 1/4/3 ein Deckel
(Jungscher Deckel). Nach den Aussagen 33 und 34 ist der dem
Kreis mit Durchmesser D = 1 umschriebene regulire n-Eck-
bereich ein Deckel, falls n = 3 oder n = 6 ist. Aussage 33 ist
der ebene Sonderfall eines von D. GALE [15] fiir beliebige Dimen-
sionen aufgestellten Gegenstiicks zum Jungschen Satz. Aus-
sage 34 stammt von J. PAL [42].

35. Jede Punktmenge vom Durchmesser D = 1 lisst sich durch
dreir Punktmengen iiberdecken, deren Durchmesser nicht
grosser als 4/ 3/2 ausfallen.

Dies ist eine von D. GALE [15] angegebene Verschirfung des
von K. Borsuk [b] stammenden Satzes, wonach eine ebene
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Punktmenge stets in drei Teile von kleinerem Durchmesser
zerlegt werden kann. Eine von K. Borsux aufgestellte Ver-
mutung bezieht sich auf Punktmengen des k-dimensionalen
Raumes und sieht eine Zerlegung in %k 4+ 1 Teilmengen mit
kleineren Durchmessern vor; sie ist zur Zeit noch unbewiesen
fir £k > 3; fir K = 3 gab neuerdings H. G. EceLEsTon [10]
einen Beweis.

Der oben erwihnte Satz von K. Borsuk (ohne die Ver-
scharfung von D. GALE) ist — wenigstens fiir endliche Punkt-
mengen — auch eine Folgerung einer Aussage iiber die Anzahl
der Punktepaare, welche den Durchmesser realisieren. Es gilt:

36. In einer endlichen Punkitmenge vom Durchmesser D = 1 gibt
es hichstens n verschiedene Punktepaare der Distanz 1, wenn n
die Anzahl der Punkte der Menge bezeichnet.

Ein kurzer Beweis findet sich bei P. Erpds [13], ferner vgl.
man eine Aufgabe von H. Hoprr-E. PaANNwITZ [23].

Die engen Zusammenhdnge zwischen den verschiedenen
Satzgruppen soll schliesslich das folgende Korollar zu 34, als
Aussage vom Hellyschen Typ formuliert, vor Augen fiihren:

37. Haben je zwer Kreisscheiben einer Menge kongruenter Kreise
vom Radius R = 1 einen Punkt gemeinsam, so gibt es dret
Punkte vom gegenseitigen Abstand d = 1 derart, dass jede
Kreisscheibe der Menge mindestens etnen von thnen enthilt.

Ahnliche, teils noch unbewiesene Aussagen finden sich bei
L. Frses Toru [14], S. 97.

II. TeiL

Die vorstehend formulierten Aussagen sollen hier unter
Benutzung der oben zitierten Quellen durch kurze Beweise
belegt werden. Dabei erzwingen Raumgriinde, dass oft nur der
Gedankengang knapp angedeutet werden kann. Die Argumenta-
tion stiitzt sich vorwiegend auf elementare Sachverhalte, hie und

da ergénzt durch einfache punktmengengeometrische Uber-
legungen.




76 H. HADWIGER UND H. DEBRUNNER

1. Légen die Punkte Py, ..., P, nicht auf einer Geraden und
gilt fiir sie doch die Voraussetzung des Satzes, so ergibt sich ein
Widerspruch wie folgt: Durch eine projektive Abbildung werde
genau einer der Punkte, etwa P,, in einen Fernpunkt transfor-
miert. Das System der Punkte und ihrer Verbindungsgeraden
geht dabei iiber in eine Schar von Parallelen (durch P,), von
denen jede im Endlichen zwei der Punkte enthilt, und in eine
endliche Mengen von Transversalen, von denen jede mindestens
drei der Punkte enthélt. G sei die Transversale, die mit den
Parallelen den kleinsten Winkel einschliesst und Py, P;, Py in
dieser Anordnung die drei auf G liegenden Mengenpunkte. Die
zur Parallelenschar gehorige Verbindungsgerade von P; und P;
enthélt noch einen Punkt P, der Menge. Nun bildet aber
entweder die Verbindungsgerade durch P; und P, oder jene
durch P, und P, mit den Parallelen einen kleinern Winkel
als G, im Widerspruch zur Konstruktion.

2 1st zu 1 dual.

3 erscheint als Korollar zu 1, wenn man durch Inversion an
einem Kreis mit einem Mengenpunkt als Zentrum alle Kreise
durch diesen Punkt in Geraden iibergehen ldsst, die die Vor-
aussetzungen von 1 erfiillen.

4. Der kleinste Deckkreis (d.h. der kleinste abgeschlossene
Kreisbereich, der alle Punkte der Menge bedeckt) enthalt auf
seiner Peripherie Mengenpunkte, die keinen Halbkreisbogen frei
lassen, u.a. einen Punkt P. Weitere Mengenpunkte, z.B. ein
Punkt Q, konnen nicht im Innern liegen, da Spiegelung an der
Symmetrieachse von P und Q zeigt, dass dann auch ausserhalb
des Deckkreises Mengenpunkte wiren. — Ist die Zahl der
Mengenpunkte endlich und > 2, so sei ¢ der kleinste Winkel
zwischen je zwei verschiedenen Symmetrieachsen der Menge.
Spiegelung an diesen beiden Achsen kommt einer Drehung um
20 gleich, also ist die Menge drehsymmetrisch beziiglich des
Winkels 2¢. Die n-Ecke mit dem Zentriwinkel ¢ = 27/n erweisen
sich jetzt als die einzigen Mengen mit diesen Dreh- und Spiegel-
symmetrieeigenschaften, so dass jede endliche Menge mit den
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in 4 genannten Eigenschaften die Eckpunktmenge eines regu-
laren Vielecks ist.

5. Gibt es dem Gitter eingelagerte regulire n-Ecke (n fest),
dann auch solche mit kleinster Seitenlinge, weil hiefiir nur die
Werte /2442 (p, ¢ ganz) in Frage kommen. Diese Existenz
vorausgesetzt, seien P;, Py, ..., P, die Ecken eines kleinsten
reguléiren Gitter-n-ecks in ihrer natiirlichen Reihenfolge. Trégt
man von diesen Gitterpunkten aus bzgl. die Gittervektoren
P, P,, P, P,, ..., P, P, ab, so fiihren ihre Endpunkte wieder auf
Gitterpunkte. Fiir n =5 und n > 7 bilden diese ein kleineres
regulidres Gitter-n-eck, im Widerspruch zur Minimalbedingung.
— Fiir n = 3 sieht man die Unmdoglichkeit eines dem Gitter
eingelagerten reguliren n-Ecks wie folgt ein: Die Fliache s? 4/3 /4
wire wegen der Ganzzahligkeit von s? eine irrationale Zahl,
anderseits ergibt sich, etwa nach Determinantenformeln berech-

net, ein rationaler Wert. Gleiches gilt von reguldren Sechsecken
mit der Flache 3s% 4/3/2.

6. Die Flache s? sin « eines Gitterrhombus ist, nach Deter-
minantenformeln berechnet, ganzzahlig. Nach 8 ist daher
o« = 7/6 oder « = w/2. Die erste Moglichkeit entfallt, da bei
einer Drehung um =/2 um eine Ecke der Rhombus wieder in
einen Gitterrhombus iiberginge (jeder Gitterpunkt geht dabei
in einen Gitterpunkt tiber!); dabei wire ein regulires Gitter-
dreieck zu erkennen, im Widerspruch zu 5.

7. Einfache Folgerung von 8.

8. Man beachte, dass die Argumentation des Beweises von 5
fir n = 5 und n > 7 auch in jedem Rechteckgitter moglich ist.
Aus dieser schirfern Aussage, dass sich in einem Rechteckgitter
von den reguldaren Vielecken nur Dreiecke, Vierecke und
Sechsecke einlagern lassen, ergibt sich 8. In der Tat: Sei
o = (m/n)2r und der Bruch m/n nicht kiirzbar. Ist cos « rational,
dann ist nach goniometrischen Formeln cos va = a,, sin vo =
b, sin o mit rationalen a,, b, (v =1, 2, ..., n). N sei der gemein-
same Nenner der 2n Werte a,, b,. Erzeugt ein Rechteck der
Lénge 1/N und der Breite (sin «)/N ein Rechteckgitter, so
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fallen daher von der Einheitskreislinie um einen Gitterpunkt
alle Punkte mit den Phasen va (v =1, ..., n) auf Gitterpunkte.
Anderseits bilden diese Punkte wegen o = (m/n)2w ein regu-
lares n-Eck. Wie eingangs erwihnt, folgt daraus, dass n einen
der Werte 1, 2, 3, 4, 6 besitzt. Zusammen mit der Nebenbedin-
gung 0 < a << /2 ergibt sich « = =/3.

9. Ist eine Punktmenge mit lauter ganzzahligen Punkt-
distanzen gegeben, in der es drei nicht auf einer Geraden liegende
Punkte A, B, C gibt, und bezeichnet k die grossere der Distanzen
d (AB), d (BC), so gibt es hochstens 4 (k + 1)2, also endlich viele
Punkte P so, dass d (PA) — d (PB) und d (PB) — d (PC) ganz-
zahlig ausfallen. Es ist ndmlich [d (PA) — d (PB) I < d (AB)
und kann somit nur einen der Werte 0, 1, ..., & annehmen, so
dass P auf einer von & + 1 Hyperbeln liegt. Ebenso liegt P auf
einer von k£ -+ 1 Hyperbeln, die durch B und C bestimmt werden.
All diese (verschiedenen) Hyperbeln schneiden sich in héchstens
4 (k 4 1)? Punkten.

10. Die Aussage ,,dann’ ist trivial. Die Aussage ,,nur dann’’
ist klar fiir endliche Punktmengen, da deren konvexe Hiille ein
konvexes Polygon ist, dessen KEcken zur Menge gehoren; wird
dieses von einer KEcke aus trianguliert, so liegt jeder Punkt in
einem der Teildreiecke, also in der konvexen Hiille von drei
Punkten der Menge. Es bleibt fiir unendliche Punktmengen M
zu zeigen, dass die Menge N aller Punkte, die schon in der
konvexen Hiille endlich vieler Punkte aus M enthalten sind,

mindestens so umfassend ist wie die konvexe Hiille M von M.
In der Tat: N enthélt, wie man sich sofort zurechtlegt, mit zwei
Punkten auch jeden Punkt der Verbindungsstrecke, ferner
enthdlt N jeden Punkt von M. Da M als kleinste Menge mit
diesen Eigenschaften definiert wurde, ist der Beweis abge-
schlossen.

11. Nicht trivial ist einzig die Aussage ,,nur dann’. Ein
innerer Punkt P der konvexen Hiille M von M ist auch innerer

Punkt eines Dreiecks mit Ecken in M. Da jede dieser Ecken
nach 10 in der konvexen Hiille von drei Punkten aus M liegt,
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ist das ganze Dreieck in der konvexen Hiille von endlich vielen
Punkten aus M enthalten. Wird dieses konvexe Vieleck mit
Ecken aus M von einer Ecke aus trianguliert, so ist P in der
Vereinigung zweier aneinandergrenzender Dreiecke als innerer
Punkt enthalten, also in der konvexen Hiille von vier Punkten
aus M.

12. Die Aussage ,,nur dann’’ ist trivial. Es bleibt zu zeigen,
dass zu zwei nicht separierbaren Mengen M und N zwel eben-
solche Teilmengen M’ und N’ mit gesamthaft hochstens vier
Punkten angegeben werden konnen. Nun sind M und N genau

dann nicht separierbar, wenn ihre konvexen Hiillen M und N
Punkte gemeinsam haben. Zu einem solchen gemeinsamen
Punkt gibt es nach 10 zwei je dreipunktige Mengen M"” und N/,

deren konvexe Hiillen M und N’ diesen Punkt gemeinsam
haben. Nun ist entweder eine dieser konvexen Hiillen in der

andern enthalten, etwa M in N'’, oder die Dreiecke M’ und N"’
besitzen sich schneidende Randstrecken. Im ersten Falle bestehe
M’ aus einem der Punkte von M”, N’ = N"’; im zweiten Falle
bestehe M’ und N’ je aus den beiden Endpunkten des sich
schneidenden Streckenpaares. In beiden Fillen sind M" und N’
nicht separierbar, weil M’ und N’ Punkte gemeinsam haben.

13. Man wihle vier Punkte der gegebenen Menge M. Bildet
ihre konvexe Hiille nicht ein (nichtentartetes) Viereck, so ist ein
Punkt N in der konvexen Hiille der iibrigen drei Punkte, umso-
mehr in der konvexen Hiille von M — N enthalten, und die
beiden fremden Mengen N und M — N sind nicht separierbar.
Bildet hingegen die konvexe Hiille ein Viereck, so bestehe N aus
den Endpunkten einer Diagonale. N und M — N bilden wieder
fremde, nichtseparierbare Teilmengen von M.

14. Fir endlich viele Eibereiche folgt der Hellysche Satz
durch vollsténdige Induktion aus folgendem Hilfssatz: Es sei
k> 4. Haben je k —1 von k Eibereichen Punkte gemeinsam, so
haben alle k Eibereiche Punkte gemeinsam. Beweis: C,, ..., C, seien
die £ Eibereiche und P; bezeichne einen Punkt, der in allen ausser
eventuell in C; enthalten ist. Nach 13 lassen sich die Punkte P,
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(=1, ..., k)in zwei fremde Gruppen M’ :{P P-m}und M* ===

il’ 1
{le x daby Pjn} aufteilem, so dass deren konvexe Hiillen M’ und

M’ einen Punkt P gemeinsam haben. Nun gehort aber

jeder Punkt von M’ und damit wegen der Konvexitat der C;
G

auch M zu allen Eibereichen ausser eventuell © . .., i
?

I

ebenso M’ zu allen ausser eventuell Cil’ s Cjn‘ Der Punkt P

gehort zu M’ und M'”’, somit zu allen Eibereichen ohne Aus-
nahme.

Wire in einem unendlichen Eibereichsystem kein Punkt
allen Bereichen gemeinsam, so konnte man zu jedem Punkt des
Bereichs C; des Systems einen weitern Bereich C; des Systems
angeben, der diesen Punkt und damit auch eine ganze Kreis-
umgebung nicht trifft; C; und diese Umgebung seien einander
zugeordnet. Nach dem Theorem von Heine-Borel geniigen
endlich viele dieser Kreisumgebungen, um C; zu iiberdecken.
Die 1hnen zugeordneten endlich vielen Eibereiche C; und Cy
haben nach Konstruktion keinen Punkt gemeinsam, im Wider-
spruch zum obigen Ergebnis, dass endlich viele Eibereiche des
Systems einen Punkt gemeinsam haben, sobald die Voraus-
setzungen von 14 erfiillt sind.

15 ergibt sich aus 14, wenn man einsieht, dass drei Rechtecke
R;, Ry, R; immer dann Punkte gemeinsam haben, wenn dies
schon fiir je zwel zutrifft. In der Tat: Bezeichnet P, (z;, v;) in
einem kartesischen Koordinatensystem, dessen Achsen parallel
zu den Rechtecken liegen, einen Punkt, der in allen drei
Rechtecken ausser eventuell in R; (i = 1, 2, 3) enthalten 1st,
also in R; und Ry, so bemerkt man, dass mit P; und P; nicht
nur die ganze Verbindungsstrecke in R, enthalten ist, sondern
das ganze achsenparallele Rechteck tiber ihr, also alle P (z, y),
fir die x im Intervall (z;, z;) und y in (y;,y;) liegt. Wéhlt man
die Numerierung so, dass z; < 2y < 23 und y; <y; <y, glt,
so erfillt P (z,, y;) diese Bedingungen fiir jedes der drei
Rechtecke, so dass er allen angehort.

16 ist Korollar zu 15, weil Rechtecke zu Strecken entarten
konnen.
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17 kann auf 14 zuriickgefithrt werden. Eine Menge von
Kreisbogen, jeder kleiner als ein Halbkreis, hat nédmlich dann
und nur dann einen Punkt gemeinsam, wenn dasselbe von den
zugehorigen Kreissegmenten gilt, und dafiir geniigt nach 14,
dass je drei einen Punkt gemeinsam haben.

18 folgt aus 16. In der Tat lassen Bogen, jeder kleiner als ein
Drittelskreis und paarweise nicht punktfremd, einen Peripherie-
punkt unbedeckt, z.B. den zu einer Bogenmitte antipodischen.
Der Kreis kann somit hier aufgeschnitten und auf eine Gerade
abgewickelt werden, so dass jeder Bogen in eine Strecke iibergeht.

19. Es sei G («) die gerichtete Gerade durch das Kreis-
zentrum, die mit einer festen Richtung den Winkel o einschliesst.
Werden die gegebenen Bogen, die paarweise Punkte gemeinsam
haben, auf G («) orthogonal projiziert, so haben die Bildstrecken
dieselbe Eigenschaft. Somit ist der Durchschnitt all dieser
Strecken ein Punkt oder eine Strecke, jedenfalls aber nicht leer
(16). Fir mindestens einen Winkel «, enthdlt D («) das Kreis-
zentrum. In der Tat: D («) und D (« 4+ =) liegen in ihren
gerichteten Geraden spiegelsymmetrisch beziiglich Z; da nun
jede Orthogonalprojektion eines Bogens und also auch D («)
stetig mit o &dndert, muss D («) bei einer Drehung der Geraden
um 7 fiir eine Lage o, das Zentrum bedecken. G (o, + 7/2), die
projizierende Gerade durch Z, ist dann eine Durchmessergerade,
die alle Bogen trifft.

Die Varianten 20-28 ergeben sich aus den grundlegenden
Aussagen 14, 16,17, 19 durch mannigfache Abbildungsmethoden.

20-22. Die Lage eines gegebenen Eibereiches A ldsst sich bei
Verschiebungen durch die Lage eines starr mit ihm verbundenen
Punktes P charakterisieren. Ohne Miihe bestitigt man, dass P
emen Eibereich B* durchlauft, wenn der bewegliche Eibereich A
alle Lagen einnimmt, bei denen er in einem Eibereich B enthalten
1st. Gleiches gilt von allen Lagen, bei denen A einen Eibereich B
trifft, bzw. umschliesst. Jeder Eibereich bildet sich auf diese
Weise in einen Eibereich B* ab, und bei diesen Abbildungen
gehen die Aussagen 20-22 in 14 iiber.

[’ Enseignement mathém., t. I, fasc. 1-3. 6
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23." Werden Eibereiche mit paarweise gemeinsamen Punkten
durch Zentralprojektion auf eine Kreislinie abgebildet, so gehen
sie in Bogen tiber, die 19 erfiillen. Die projizierende Gerade
durch die in allen Bildbogen enthaltenen antipodischen Punkte
trifft alle Eibereiche des Systems.

24. Orthogonalprojektion der Eibereiche erzeugt auf einer
Geraden eine Streckenmenge, die 16 erfiillt. Die projizierende
Gerade durch den in allen Strecken der Menge enthaltenen Punkt
trifft alle Eibereiche der Menge.

25. Gibt es unter den parallelen Rechtecken der Menge zwei,
die nur eine einzige positiv orientierte Treffgerade gemeinsam
haben, so ist die Aussage evident, da diese Gerade jedes weitere
Rechteck der Menge treffen muss. Andernfalls diirfen wir voraus-
setzen, dass je drel Rechtecke der Menge eine positiv orientierte
Treffgerade besitzen, die zu keiner Rechteckseite parallel ist.
Dasselbe gilt dann von je endlich vielen Rechtecken der Menge.
In der Tat: Man lege parallel zu den Rechtecken orientiert zwei
Parallelen und charakterisiere ihre Punkte durch eine Langen-
koordinate in ihnen. Jede Transversale ldsst sich dann in einen
Punkt einer Hilfsebene abbilden, indem man die linearen Koordi-
naten ihrer Schnittpunkte mit den Parallelen als kartesische
Koordinaten der Hilfsebene deutet. Die Menge aller ansteigenden
Geraden, welche ein Rechteck der Menge treffen, geht dabel in
eine konvexe, abgeschlossene, abernicht beschrankte Punktmenge
iiber. Je drei dieser Mengen haben nach unsern Voraussetzungen
im Endlichen Punkte gemeinsam. Greift man endlich viele dieser
konvexen Mengen heraus, so sind ihre Durchschnitte mit einem
ausreichend grossen Kreis Eibereiche, die nach 14 einen Punkt
gemeinsam haben. Die diesem Punkt entsprechende Gerade trifft
die herausgegriffenen endlich vielen Rechtecke. — Um den
Beweis auch fiir unendliche Rechteckmengen zu fiihren (ohne
eine stirkere Variante von 14 zu benutzen) brauchen wir vom
bisher Bewiesenen nur, dass je vier Rechtecke der Menge eine
gemeinsame Treffgerade aufweisen. Lisst man nun jeder Gera-
den, die mit den gelegten zwei Parallelen den Winkel ¢ ein-
schliesst, auf einer Kreisperipherie den Punkt mit Phase o
entsprechen, so bildet sich die Menge aller ansteigenden Geraden,
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welche zwel herausgegriffene Rechtecke der Menge treffen, in
einen Bogen kleiner als ein Drittelskreis ab. Diese Abbildung,
fiir alle Rechteckpaare der Menge ausgefiihrt, liefert eine Bogen-
menge mit paarweise gemeinsamen Punkten, weil je vier
Rechtecke eine gemeinsame Treffgerade aufweisen. Der allen
Bogen gemeinsame Punkt (18) entspricht einer Geraden, zu der
je zwei Rechtecke der Menge eine parallele Treffgerade gemein-
sam haben:; mit andern Worten: durch Projektionsstrahlen
parallel zu dieser Geraden bildet sich die Rechteckmenge auf
einer Transversalen als Streckenmenge ab, die nach 16 einen
Punkt gemeinsam hat. Der Projektionsstrahl durch ihn trifft alle
Rechtecke der Menge.

26. P sei ein Peripheriepunkt eines Kreises. Zu Jeder
Geraden G der Ebene lege man eine Parallele durch P; ihr
zweiter Durchstosspunkt mit dem Kreis sei das Bild der Geraden
G. Bei dieser Abbildung geht die Menge der Geraden, welche
zwel feste Eibereiche treffen, in einen Bogen iiber. Fiihrt man
dies fiir alle Bereichpaare einer Menge von Eibereichen, die zu
je vier eine Treffgerade gemeinsam haben, durch, so erhilt man
eine Bogenmenge mit paarweise gemeinsamen Punkte. Dem
antipodischen Punktepaar, das alle Bogen trifft (19), entsprechen
zwel orthogonale Richtungen, so dass man findet: Haben je vier
Eibereiche einer Eibereichmenge eine gemeinsame Treffgerade, so
gibt es zwet orthogonale Richtungen derart, dass je zwet Eiberetche
der Menge eine gemeinsame T'reffgerade mit einer dieser Richtungen
aufweisen. — Sind nun die Eibereiche dieser Menge zueinander
homothetisch, so treffen die vier Geraden der erwidhnten Richtun-
gen, die ein einem Bereich der Menge umbeschriebenes Rechteck
bilden, alle nichtkleinern Bereiche der Menge. Gibt es also in
der Menge einen kleinsten Eibereich, so treffen die ihm derart
umbeschriebenen Geraden alle Bereiche der Menge. Gibt es in
der Menge keinen kleinsten Eibereich, so fiihren einige zusitz-
liche Uberlegungen iiber das Konvergenzverhalten nach Grosse
und Lage der Bereiche zum gewiinschten Resultat. Sind die
Eibereiche nicht nur homothetisch, sondern zudem kongruent,
s0 lasst sich weiter einsehen, dass stets schon drei von diesen vier
Treffgeraden alle Bereiche treffen.
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27. Eine Gerade in der Separationsrichtung werde als
x-Achse ausgezeichnet. Jede andere Gerade der Ebene bildet
mit der 2-Achse einen Winkel 0 < ¢ < 7w gemessen im positiven
Drehsinn. Der Menge aller Geraden, welche zwei Eibereiche des
Systems, etwa A und B treffen, entspricht auf einer ¢-Achse ein
Winkelintervall zwischen 0 und =, das wir mit (AB) bzw.
analog bezeichnen. Wir behaupten, dass je zwei dieser Winkel-
intervalle Punkte gemeinsam haben. Dies vorausgesetzt, schliesst
man mit 16, dass ein Winkel ¢, existiert, so dass je zwei Eibe-
reiche des Systems durch eine Gerade der Richtung ¢, getroffen
werden konnen. Mit andern Worten: die Parallelprojektionen
der Eibereiche in dieser Richtung auf die x-Achse bilden eine
Streckenmenge mit paarweise gemeinsamen Punkten. Die
projizierende Gerade durch den allen Strecken gemeinsamen
Punkt (16) trifft dann alle Eibereiche des Systems. — Es bleibt
nachzutragen, dass je zwei Winkelintervalle Punkte gemeinsam
haben. Fiir die Intervalle (AB), (BC) (bzw. analog) wird dies
durch die Voraussetzung gemeinsamer Treffgeraden zu A, B, C
gesichert. Hatten aber zwei Intervalle, etwa (AB), (CD) keinen
Punkt gemeinsam, so zeigt sich ein Widerspruch wie folgt: Jedes
der Intervalle (AC), (AD), (BC), (BD) hat sowohl mit (AB) wie
mit - (CD) Punkte gemeinsam, so dass fir einen Winkel o’
,,zwischen” (AB) und (CD) folgende Sachlage eintritt: Durch
Geraden der Richtung ¢’ sind die Eibereiche A und B, ebenfalls C
und D separierbar (daraus folgt die Separierbarkeit eines
weitern Paares durch jede dieser beiden Separationsgeraden !),
nicht aber A und C, A und D, B und C, B und D. Dies ist offen-
sichtlich ein Widerspruch.

28. Durch die beim Beweis 26 benutzte Abbildung wird 28
auf die beim Beweis 18 erwihnte Sachlage zuriickgefiihrt, dass
Kreisbogen mit paarweise gemeinsamen Punkten, jeder kleiner
als ein Drittelskreis, einen Peripheriepunkt unbedeckt lassen.

29. Spezialfall von 21.

30. Die Geraden konnen durch ausreichend lange Strecken
ersetzt werden, wodurch ein Spezialfall von 21 entsteht.
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31. Bei Beriicksichtigung von 29 geniigt es, die Aussage fiir
eine dreipunktige Menge vom Durchmesser 1 zu beweisen. Bildet
diese ein stumpfwinkliges Dreieck, so ist dessen langste Seite
Deckkreisdurchmesser, so dass hier sogar R < 1, zutrifft.
Bestimmt die dreipunktige Menge ein spitzwinkliges Dreieck,
so wird der Deckkreis vom Umkreis gebildet, dessen Durch-
messer bekanntlich durch 2R = a/sin « bestimmt ist; a ist irgend
eine Dreieckseite, o der gegeniiberliegende Winkel. In jedem
Dreieck gibt es einen Winkel o > w/3, so dass zugleich
sin o > Y5 4/3 und ¢ <1 gilt. Also ist 2R = afsin o < 2/4/3.

32 braucht ebenfalls nur noch fiir drei Geraden mit Durch-
messer 1 bewiesen zu werden. Diese bilden ein Dreieck mit
Umfang U < 3, das dem kleinsten Treffkreis umbeschrieben ist.
Da das regulidre Dreieck mit Umfang 6r4/3 das umfangkleinste
Dreieck ist, das sich einem Kreis mit Radius r umbeschreiben
lasst, gilt 6ry/3 < U < 3, also r < 1/24/3.

33. Die Punktmenge darf als abgeschlossen vorausgesetzt
werden. Ist S ein reguldres Umdreieck (so dass jede Seite einen
Mengenpunkt enthilt) und S* ein solches in gespiegelter Lage,
so ist entweder S oder S* ein regulidres Dreieck der Seitenlinge
s < 4/ 3. Féllt man némlich von irgend einem Punkt, der in S
und S* enthalten ist, die Lote auf die Seiten von S bzw. S*, so
ist deren Summe nach einem planimetrischen Satz gleich der
Hohe von S bzw. S*. Die Summe je eines Lotes auf S und des
entsprechenden auf S* ist wegen der Durchmesserbedingung
< 1, so dass eines der Dreiecke eine Hohe < 3/2 aufweist. Seine
Seiten betragen hochstens /3.

34. Anschliessend an den Beweis 33 stellen wir fest, dass die
Seitenldnge des reguliaren Umdreiecks S eine stetige Funktion
der Basisrichtung ist und bei Drehung um = in die von S*
ibergeht. Daher sind S und S* fiir eine spezielle Richtung gleich
gross; 1thr Durchschnitt, in dem die Menge mit D = 1 enthalten
ist, bildet dann ein (eventuell entartetes) zentralsymmetrisches
Sechseck, bei dem parallele Seiten einen Abstand < 1 haben.
Es ist ganz im reguldren Sechseck mit demselben Symmetrie-
zentrum und denselben Seitenrichtungen enthalten, dessen
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parallele Seiten den Abstand 1 aufweisen. Dieses regulire
Sechseck besitzt die Seitenlinge 1/4/3 und enthilt die gegebene
Menge.

35 ergibt sich ausgehend von 34, wenn in dem der Menge
vom Durchmesser 1 umbeschriebenen reguldren Sechseck der
Seitenldnge 1/4/3 vom Zentrum aus drei Lote mit Zwischen-
winkeln 27/3 auf drei Seiten gefillt werden. Dadurch zerfillt
das Sechseck in drei kongruente Fiinfecke vom Durchmesser
4/3/2, die die gegebene Menge iiberdecken.

36. Es sei n > 4 und die Menge Py, ..., P, habe den Durch-
messer D = 1. Zu zwel Punkten P;, P, mit Abstand 1 zeichne
man stets die Verbindungsstrecke P, P,. Gehen dann von jedem
P, hochstens zwei Strecken aus, so ist die Streckenzahl < n, wie
behauptet. Existiert aber ein Punkt, etwa P;, von dem min-
destens 3 Strecken, etwa zu P;, P;, Py, auslaufen, so sei P; im
spitzen Winkelraum P; P, Py enthalten. Ist nun d (P, P.)) = 1,
so muss P; P, sowohl P, P; wie auch P, P, treffen, da andern-
falls D > 1 wére. Daraus folgt P, = Py, d.h. P; kann nur von P,
den Abstand 1 haben. Lasst man P; weg, so fillt eine einzige
Verbindungsstrecke dahin. Durch vollstindige Induktion folgt
daraus 36. — Da also unter n Punkten mit D = 1 stets einer
von hochstens zwei andern den Abstand 1 hat, so folgt durch
Induktion auch der Borsuksche Satz. Denn jener Punkt lasst
sich derjenigen der drei Teilmengen der restlichen n — 1 Punkte
zugesellen, die die beiden weitferntesten Punkte nicht enthélt;
dadurch bleiben alle Durchmesser << 1.

37. Die Mittelpunkte der Kreise vom Radius R = 1 mit
paarweise gemeinsamen Punkten bilden eine Punktmenge vom
Durchmesser D < 2. Diese kann nach 34 durch ein reguléres
Sechseck der Seitenlinge 2/4/3 iiberdeckt werden. In diesem
Sechseck lassen sich drei Punkte vom gegenseitigen Abstand 1,
namlich drei Diagonalenmittelpunkte, angeben, so dass jeder
Sechseckpunkt, speziell jedes der Kreiszentren, von einem
dieser drei Punkte einen Abstand < 1 aufweist. Demnach ist
stets mindestens einer dieser Punkte in jedem der gegebenen
Kreise enthalten.
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