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LES MATHEMATIQUES APPLIQUEES
DANS L’ANTIQUITE

Conférence donnée le 17 septembre 1954
dans la petite aula de I’Université de Helsinki

PAR

B. L. vax pEr WAERDEN, Zurich

1. LE TUNNEL DE SAMOS.

Nous ne savons malheureusement que trés peu de choses
sur les origines de la mathématique grecque. On raconte que
Thalés I’a introduite de 'Egypte et que Pythagore I’a élevée
au rang d’une science pure; mais nous ignorons quelle part de
vérité cette tradition tardive contient. Le plus ancien fragment
mathématique conservé est celui de la quadrature des lunules
d’Hypocrate de Chios !, qui a vécu plus d’un siécle apres Thales
et Pythagore. Ce fragment témoigne que les mathématiques
étaient déja fort développées et qu’elles étaient en possession de
définitions, de constructions et de démonstrations exactes. Il
ne nous renseigne pas sur les origines. On pourrait toutefois
espérer d’obtenir quelques renseignements sur I’état des mathé-
matiques en observant ’architecture de I’époque. Le majestueux
temple d’Epheése était célebre et regardé comme une des sept
merveilles du monde. La construction d’un tel édifice n’exigeait-
elle pas un calcul mathématique ?

Une pareille conclusion serait cependant imprudente. On
peut, sans mathématique, ériger de grands et solides batiments.

1 Voir F. Rubpio, Der Bericht des Simplicius tiber die Quadraturen des Anliphon und
des Hippokrates, Leipzig, 1907.
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La preuve en est donnée par les constructions romaines. Dans
son ouvrage De Architectura Vitruve, architecte romain du temps
d’Auguste, nous décrit la construction d’un portique; les mathé-
matiques n’'y jouent pas de role.

I1 existe pourtant une construction qui nous donne quelques
vues sur les mathématiques appliquées de l'antiquité. C’est
'aqueduc construit au travers du mont Kastro sur Pordre du
tyran Polycrate de Samos vers 530 av. J.-C. Hérodote le décrit
comme suit au livre 3, chapitre 60, de ses Histoires.

« Je me suis étendu davantage sur le cas des Samiens, parce
que c’est chez eux qu’ont été exécutés trois ouvrages les plus
grands qu’il y ait chez tous les Grecs: dans une colline dont la
hauteur atteint 150 orgyes, un tunnel qui commence au pied
et a une ouverture sur chaque versant; la longueur en est de
7 stades, la hauteur et la largeur chacune de 8 pieds; d’un bout
a 'autre du tunnel est creusé un autre canal profond de 20 cou-
dées et large de 3 pieds, a travers lequel ’eau amenée par des
tuyaux, est conduite jusqu’'en ville, venant d’une grande fon-
taine; I’architecte de ce tunnel a été le Mégarien Eupalinos, fils
de Naustrophos. »

Au cours des fouilles qu’ils effectuérent en 1882 dans I'ile
de Samos, les archéologues allemands trouvérent ce tunnel, tel
qu’Hérodote ’avait décrit, d’un kilometre de long et de 2 metres
de haut et de large. Un canal profond de 2 métres & 'une de ses
extrémités et de 8 metres & autre, y était creusé. Il est fort
probable que ce canal fut fait apres coup, parce que la pente
d’abord prévue s’était révélée insuflfisante 1.

Mais, ce qui nous importe surtout est le fait que le tunnel
fut percé a ses deux extrémités. Les deux galeries se rencontrent
au milieu avec une erreur de moins de 10 meétres latéralement
et de 3 métres en hauteur.

Ce résultat est grandiose. Le roi de Judée Hiskia (environ
700 av. J.-C., donc 170 ans avant Eupalinos) avait aussi fait
percer un aqueduc a travers un rocher non loin de Jérusalem.
La distance des deux extrémités n’était que de 325 métres, mais
le tunnel fut percé en zigzag et sa longueur devint presque deux
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L E. FaBricius, Mitleilungen des deulschen archdol. Inst. Athen, 9 (1884), S. 165.
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fois plus longue !. La direction avait été contrdlée et corrigée
a l'aide de trous percés du haut du rocher.

Le tunnel d’Eupalinos est rectiligne. Il a donc di avoir le
moyen de déterminer trés exactement la direction des deux
galeries. Quelle méthode a-t-il pu employer ?
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Fig. 1

Une méthode appropriée est donnée par Héron d’Alexandrie.
Héron enseignait vers Ian 60 apres J.-C. les mathématiques
appliquées et la mécanique a Alexandrie 2. Il décrit dans son
livre Dioptra un instrument appelé dioptre, formé d’une colonne
verticale portant un disque circulaire horizontal centré sur elle.
Le disque peut tourner autour de son centre; deux plaques,
percées de trous placés exactement a la méme hauteur, sont
montées sur Jui. Cet instrument permet de mesurer les différences
de hauteur: on déplace des jalons verticaux d’un endroit & un

1 ConDER The Siloam Tunnel, Palestine Exploration Fund Quarterly Statement,
1882. Voir de méme: 2 Chron., 32.30.

2 Pour les dates voir O. NEUGEBAUER, Kgl. Danske Vid. Selsh. Hist.-fil. Meddel,
26, Nr. 2 (1938).
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autre et on vise ces jalons a I’aide du dioptre, comme on le fait
encore aujourd’hui. On peut aussi mesurer & I'aide du dioptre
des angles dans le plan horizontal et en particulier reporter des
angles droits.

Apreés avoir expliqué I'emploi du dioptre, Héron pose le
probleme suivant: « Percer dans une colline ABC un tunnel
rectiligne dont les extrémités B et D sont données.» Pour le
résoudre, il porte dans le plan a partir du point B un segment
rectiligne arbitraire BE, il construit ensuite a ’aide du dioptre
un second segment EZ perpendiculaire & BE et il continue ainsi,
toujours a I'angle droit, jusqu’au segment KL. Il place ensuite
-+ le dioptre sur la droite KL au point M tel que 'extrémité D
| du tunnel soit vue & angle droit. Les segments a, b, ¢, d, e, f, g
. peuvent étre mesurés dans le plan. Pour trouver la direction du
" tunnel, Héron prolonge en pensée EB a I'intérieur de la colline

et meéne la perpendiculaire DN a DM. Soient DN = x et BN

 les cOtés de 'angle droit du triangle rectangle BDN. Il est alors
~ évident que

’ z=0b—d—f

y—=c¢c+e—a—g

| Le rapport des cotés de ’angle droit est donc connu. Soit,
 par exemple, ce rapport égal & 1:5, dit Héron. On construit
. alors sur BE et DM deux triangles rectangles ayant le méme
. rapport des cotés de langle droit et on sait comment il faut -
. percer. «Si on creuse le tunnel de cette maniére, les ouvriers se
~ rencontreront », dit Héron.

11 est possible qu’Eupalinos ait appliqué cette méthode. Pour
| la trouver, il fallait une idée géniale mais pour reconnaitre son
 exactitude on n’a pas besoin d’avoir de grandes connaissances
~ en géométrie: le bon sens suffit.

2. PERSPECTIVE.

~ Lorsque vers 450 les tragédies d’Eschyle furent jouées a
éAthénes, un certain Agatharchos construisit pour les représen-
- tations des coulisses a effet perspectif. D’aprés Vitruve, il aurait
écrit un traité sur ce sujet. « A sa suite Démocrite et Anaxagore
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ont écrit sur la méme chose, a savoir comment, ayant choisi un
certain point comme centre, il faut faire correspondre les lignes
dans le rapport naturel de la direction du regard et de I’extension
des rayons, afin que certaines images peintes sur les coulisses
simulent des batiments et que quelques parties dessinées sur les
avant-plans paraissent plus éloignées et d’autres plus
rapprochées. »

Tableau I

Des expressions comme « direction du regard » et « extension
des rayons » dont Vitruve se sert se retrouvent dans les écrits
orecs d’Euclide et de Ptolémée sur 'optique. Il y est question
de rayons visuels qui vont de Iceil aux objets. Le « certain point
qui est choisi comme centre » dont Vitruve parle est probable-
ment la position de I'ceil. Le traité d’Agatharchos contenait sans
doute des regles pratiques sur la maniere de réaliser la perspective
sur les coulisses. D’autre part, il faut croire que Démocrite et
Anaxagore, qui étaient des savants notoires, ne se sont pas
contentés de connaitre ces regles pratiques, mais qu’ils en ont
donné une justification théorique basée sur les « rayons visuels »
partant de 1’ceil.
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Il est étonnant que les Grecs aient regardés les rayons visuels
qui partent de I’ceil comme une réalité physique au méme titre
que les rayons lumineux. Nous tAtons pour ainsi dire les objets
avec nos rayons visuels. Nous apercevons une chose lorsqu’un
rayon visuel rencontre sur sa surface un rayon lumineux partant
de la source de la lumiére. Voir a ce sujet A. LEJEUNE, Fuclide

et Ptolémée, deux stades de optique géométrique grecque, Louvain,
1948.

/
B i/‘?;f) /
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7

Fig. 2

Vitruve désigne du nom de skénographie la science de la

perspective; 1l témoigne par la une fois de plus que I’origine de -
| cette science est & chercher dans la peinture des décors de
| théatre.

On a trouvé a Pompéi des peintures murales exécutées sui-

- vant les régles de la perspective. Les prolongements des droites
. qui paraissent s’éloigner convergent vers un point (tableau I).
Ceux qui les ont peintes étaient des contemporains de Vitruve;
. leur maniére de peindre perspective venait probablement de
| celle des scénes thédtrales grecques.

3. LA PROJECTION STEREOGRAPHIQUE.

La projection stéréographique est une représentation de la

¢ surface d’une sphére dans le plan qui s’apparente & la perspec-

L’Enseignement mathém., t. I, fasc. 1-3. 4
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tive. C’est une projection centrale de la surface sphérique sur
le plan équatorial a partir du pdle Sud S (fig. 2). La propriété
principale de la projection stéréographique est: la projection
d’un cercle est un cercle.

Cette proposition est aisée a démontrer en s’appuyant sur
le théoréme 5 du premier livre d’Apollonius sur les coniques,
qui dit que certaines sections d’un cdne circulaire oblique sont
aussi des cercles. Pour formuler le plus simplement la condition
de ce théoréme, prenons comme plan du tableau (fig. 3) le plan

S

Fig. 3

de symétrie de la figure, c’est-a-dire le plan passant par les
poles Nord et Sud et le centre du cercle. Le plan du cercle
donné coupe le plan du tableau suivant le diametre AB. De méme,
le plan équatorial coupe le plan du tableau suivant CD. Ces
deux plans sont perpendiculaires au plan du tableau. Le cercle
de diametre AB est projeté a partir de S suivant un cone cir-
culaire oblique. Le théoréme d’Apollonius dit alors: la section
de ce cone par le plan CD est encore un cercle si les angles ABS
et CDS sont égaux.

Dans notre cas, le cercle AB étant situé sur la spheére, la
condition d’Apollonius est satisfaite. En effet, si on meéne par
le point S une tangente ST parallele & CD, ’angle CDS est égal
a Pangle DST qui est inscrit dans le méme segment circulaire
que Pangle ABS. Donc CDS = DST = ABS.
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I1 résulte donc du théoréme d’Apollonius que la section du
come par le plan équatorial est un cercle, c’est-a-dire que la
projection stéréographique d’un cercle est un cercle.

Le célebre astronome Ptolémée traite de la méthode de la
projection stéréographique dans son Planisphaertum, mais son
prédécesseur Hipparque (130 av. J.-C.) en avait déja parlé dans
un traité qui a disparu.

Tableau II

L’astrolabe est un instrument basé sur cette méthode de
projection. Il était trés répandu et apprécié au moyen age, sur-
tout dans le monde islamique. Le tableau II représente un astro-
labe persan de I'année 1223, qui se trouve maintenant au Musée
d’histoire des sciences a Oxford. L’anneau extérieur est divisé
en 360 degrés. Un disque circulaire mobile, centré sur ’anneau
extérieur et appelé araignée, porte des indications d’étoiles et un
cercle excentrique représentant Pécliptique. L’araignée est la
projection stéréographique de la spheére céleste. Sa rotation
imite la rotation journaliére (apparente) du ciel étoilé. Derriere
Paraignée se trouve un disque sur lequel ces cercles sont graveés.
L’arc de cercle qui partage la partie supérieure du disque repré-
sente I'horizon. Les cercles compris & Pintérieur de I’arc de
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I'horizon sont des cercles d’élévation paralléles & I’horizon
indiquant des élévations de 3°, 60, etc., en projection stéréogra-
phique. Le disque reste immobile lorsque I’araignée tourne. Si
on la tourne & droite et si on suit la course d’un des indicateurs
d’étoiles on voit d’abord I’étoile apparaitre a I’horizon, puis
culminer au méridien et enfin disparaitre a I’horizon. Le disque
est interchangeable afin que ’on puisse se servir de ’astrolabe
pour d’autres latitudes.

L’astrolabe peut servir a déterminer le temps aussi bien
pendant la nuit que de jour. Un dioptre se trouve en effet sur
sa partie postérieure. Si on suspend verticalement I'instrument
et qu’on vise une étoile ou le soleill a I'aide du dioptre, on peut
déterminer leur élévation sur le cercle gradué. A cette élévation
correspond un cercle d’élévation sur la partie frontale de I'ins-
trument. Observe-t-on une étoile, on tourne l’araignée jusqu’a
ce que I'indicateur de I’étoile se trouve exactement sur le cercle
d’élévation. Observe-t-on le soleil, 1l faut d’abord connaitre sa
position sur ’écliptique au jour en question. Marquant cette
position, on tourne le disque de maniere qu’elle soit située sur
Ihorizon (lever du soleil), puis on continue a le tourner a
droite jusqu’a ce qu’elle se trouve sur le cercle d’élévation. La
différence des deux lectures sur le limbe donne le temps écoulé
entre le lever du soleil et le moment de 'observation. On déter-
mine de la méme maniére le temps écoulé entre le coucher du
soleil et 'observation d’une étoile.

Le plus ancien astrolabe conservé jusqu’a nos jours est un
instrument arabe datant de ’an 984 . Mais Ptolémée mentionne
déja dans son Planisphaerium un appareil horoscopique avec une
araignée et la tradition rapporte d’Hipparque qu’il n’avait inséré
que 16 étoiles dans son astrolabe 2. On peut remonter encore plus
haut, car on trouve dans I’Architectura 1X 8 de Vitruve I'indi-
cation suivante: « C’est Eudoxe qui a inventé I’araignée, mais
d’apres les dires de quelques-uns, ce serait Apollonius. » Cela est
plausible si 'on admet qu’Eudoxe a inventé un instrument a
forme sphérique muni d’une araignée et qu’Apollonius ait

1 Voir T. G. GUENTHER, The asirolabes of the world, Oxford, 1932. T.e tableau II

provient de cette ceuvre magnifique.
2 Q0. NEUGEBAUER, The early history of the Astrolabe, Isis, 40 (1949), p. 240.
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construit I'astrolabe plan en utilisant la projection stéréogra-
phique. Apollonius était un grand mathématicien et il connais-
sait le théoréme sur les sections circulaires du cdne oblique
rappelé ci-dessus. S’il en est ainsi, on comprend que quelques-uns
attribuent 4 Eudoxe et d’autres a4 Apollonius l'invention de
I'araignée. Mais cela n’est qu’une hypothese.

—

4. LLES HORLOGES A EAU.

Vitruve décrit une horloge a eau, basée elle aussi sur ’emploi
de la projection stéréographique. Au lieu d’avoir des aiguilles
tournantes comme en ont nos montres, cette horloge posséde
un disque tournant, monté sur un axe horizontal. Cet axe est mu
par un cordon dont les extrémités sont attachées a un flotteur
et & un contrepoids (fig. 4). D’un récipient constamment rempli
d’eau jusqu’au bord débite un courant stationnaire dans un plus
grand vase. Le niveau de I’eau s’éléve dans ce vase et avec lui
le flotteur; d’ott un mouvement de rotation uniforme du disque.

Le ciel étoilé est reproduit stéréographiquement sur le disque.
Le cercle excentrique de la figure 5 représente 1’écliptique. Sur
son limbe 365 ou 366 trous sont percés, un pour chaque jour de
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Pannée. Une cheville figurant le soleil est enfoncée chaque jour
dans le trou correspondant. 183 trous suffisent si la cheville n’est
enfoncée que chaque deuxiéme jour dans le trou suivant .

Le débit de I'’eau est réglé de telle facon que le disque effectue
un tour par jour stellaire. La rotation du disque correspond alors
exactement au mouvement journalier de la sphére céleste et du
soleil.

Un réseau formé d’un arc d’horizon et de 11 lignes horaires
est placé devant le disque. La sixiéme ligne horaire est une
droite (le méridien), la douziéme est la partie droite de I'arc
d’horizon, celle du coucher du soleil.

Les Grecs et les Romains divisaient le jour en 12 heures,
depuis le lever jusqu’au coucher du soleil (de méme la nuit).
Les heures du jour étaient donc plus longues en été qu’en hiver.
Cela obligeait de tenir compte de la marche du soleil et des
saisons dans la construction des horloges. Leur construction efit
été bien plus simple si toutes les heures avaient été égales: une
aiguille unique et un seul cadran eussent suffit comme dans nos
horloges. Toute la complication de la mesure du temps dans
I'antiquité provient de I'inégalité des heures du jour et de la nuit.

On pouvait régler ’horloge & chaque lever ou coucher du
soleil: 1l suffisait pour cela de placer le disque de la maniére
que la cheville figurant le soleil soit située exactement sur le
cercle d’horizon. Au besoin, I’horloge pouvait étre réglée a midi,
en observant le passage du soleil par le méridien. L’horloge per-
mettait de connaitre ’heure au cours de la journée, méme si le
soleil était caché, ce qui n’est pas possible avec une horloge
solaire.

L’horloge a eau n’existait pas seulement sur le papier dans
le traité de Vitruve; elle existait aussi en réalité. On a trouvé
un fragment du disque en bronze d’une telle horloge au cours
des fouilles effectuées dans un camp militaire romain a Salzbourg
(Autriche). Albert REaM a reconstruit le disque a partir de ce
fragment en se laissant guider par la description de Vitruve 2.

1 A. REHM, Zur Salzburger Bronzescheibe, Jahreshefte dsterr. archdol. Inst. Wien,
6 (1903), p. 41.

2 La description de Vitruve manque de clarté. Albert Reum a interprété le passage
de Vitruve en se basant sur sa reconstruction du disque en bronze de Salzbourg (voir
ci-dessous). I.a description que nous donnons ici repose sur celle de Rehm.
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Le tableau 11T montre cette reconstruction & c6té du fragment
trouvé. Le diamétre du disque était de 2 métres; horloge était
probablement placée sur une place publique comme le sont les

m"deV¢is des ,5“‘“\30“

Tableau I1I Tableau IV

tours & horloge. Le cercle de I’écliptique était divisé en 12 parties
correspondant aux 12 signaux zodiacaux.

Le tableau IV montre le réseau servant a la lecture des heures,
tel que REuM I’a construit d’aprés les données de Vitruve. Les
cercles concentriques représentent I'équateur et quelques
paralleles sur lesquels le soleil se meut aux différentes saisons.
Sur chaque parallele I'arc d’horizon est divisé en 12 parties
égales. Les lignes horaires joignent les points de division.
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