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LES MATHÉMATIQUES APPLIQUÉES
DANS L'ANTIQUITÉ

Conférence donnée le 17 septembre 1954
dans la petite aula de l'Université de Helsinki

PAR

B. L. van der Waerden, Zurich

1. Le tunnel de Samos.

Nous ne savons malheureusement que très peu de choses

sur les origines de la mathématique grecque. On raconte que
Thalès l'a introduite de l'Egypte et que Pythagore l'a élevée

au rang d'une science pure; mais nous ignorons quelle part de

vérité cette tradition tardive contient. Le plus ancien fragment
mathématique conservé est celui de la quadrature des lunules
d'Hypocrate de Chios 1, qui a vécu plus d'un siècle après Thalès
et Pythagore. Ce fragment témoigne que les mathématiques
étaient déjà fort développées et qu'elles étaient en possession de

définitions, de constructions et de démonstrations exactes. Il
ne nous renseigne pas sur les origines. On pourrait toutefois
espérer d'obtenir quelques renseignements sur l'état des

mathématiques en observant l'architecture de l'époque. Le majestueux
temple d'Ephèse était célèbre et regardé comme une des sept
merveilles du monde. La construction d'un tel édifice n'exigeait-
elle pas un calcul mathématique

Une pareille conclusion serait cependant imprudente. On

peut, sans mathématique, ériger de grands et solides bâtiments.

1 Voir F. Rudio, Der Bericht des Simplicius über die Quadraturen des Antiphon und
des Hippokrates, Leipzig, 1907.
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La preuve en est donnée par les constructions romaines. Dans

son ouvrage De Architecturalitruve, architecte romain du temps

d'Auguste, nous décrit la construction d'un portique; les

mathématiques n'y jouent pas de rôle.

Il existe pourtant une construction qui nous donne quelques

vues sur les mathématiques appliquées de l'antiquité. C'est

l'aqueduc construit au travers du mont Kastro sur l'ordre du

tyran Polycrate de Samos vers 530 av. J.-C. Hérodote le décrit
comme suit au livre 3, chapitre 60, de ses Histoires.

« Je me suis étendu davantage sur le cas des Samiens, parce
que c'est chez eux qu'ont été exécutés trois ouvrages les plus
grands qu'il y ait chez tous les Grecs: dans une colline dont la
hauteur atteint 150 orgyes, un tunnel qui commence au pied
et a une ouverture sur chaque versant; la longueur en est de

7 stades, la hauteur et la largeur chacune de 8 pieds; d'un bout
à l'autre du tunnel est creusé un autre canal profond de 20 coudées

et large de 3 pieds, à travers lequel l'eau amenée par des

tuyaux, est conduite jusqu'en ville, venant d'une grande
fontaine; l'architecte de ce tunnel a été le Mégarien Eupalinos, fils
de Naustrophos. »

Au cours des fouilles qu'ils effectuèrent en 1882 dans l'île
de Samos, les archéologues allemands trouvèrent ce tunnel, tel
qu'Hérodote l'avait décrit, d'un kilomètre de long et de 2 mètres
de haut et de large. Un canal profond de 2 mètres à l'une de ses

extrémités et de 8 mètres à l'autre, y était creusé. Il est fort
probable que ce canal fut fait après coup, parce que la pente
d'abord prévue s'était révélée insuffisante 1.

Mais, ce qui nous importe surtout est le fait que le tunnel
fut percé à ses deux extrémités. Les deux galeries se rencontrent
au milieu avec une erreur de moins de 10 mètres latéralement
et de 3 mètres en hauteur.

Ce résultat est grandiose. Le roi de Judée Hiskia (environ
700 av. J.-C., donc 170 ans avant Eupalinos) avait aussi fait
percer un aqueduc à travers un rocher non loin de Jérusalem.
La distance des deux extrémités n'était que de 325 mètres, mais
le tunnel fut percé en zigzag et sa longueur devint presque deux

1 E. Fabricius, Mitteilungen clés deutschen archäol. Inst. Athen, 9 (1884), S. 165.
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fois plus longue 1. La direction avait été contrôlée et corrigée
à l'aide de trous percés du haut du rocher.

Le tunnel d'Eupalinos est rectiligne. Il a donc dû avoir le

moyen de déterminer très exactement la direction des deux
galeries. Quelle méthode a-t-il pu employer

K f M L

Une méthode appropriée est donnée par Héron d'Alexandrie.
Héron enseignait vers l'an 60 après J.-C. les mathématiques
appliquées et la mécanique à Alexandrie 2. Il décrit dans son
livre Dioptra un instrument appelé dioptre, formé d'une colonne
verticale portant un disque circulaire horizontal centré sur elle.
Le disque peut tourner autour de son centre; deux plaques,
percées de trous placés exactement à la même hauteur, sont
montées sur lui. Cet instrument permet de mesurer les différences
de hauteur: on déplace des jalons verticaux d'un endroit à un

1 Conder The Siloam Tunnel, Palestine Exploration Fund Quarterly Statement,
1882. Voir de même: 2 Chron., 32.30.

2 Pour les dates voir 0. Neugebauer, Kgl. Danske Vid. Selsk. Hist-fil. Meddel,
26, Nr. 2 (1938).
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autre et on vise ces jalons à l'aide du dioptre, comme on le fait
encore aujourd'hui. On peut aussi mesurer à l'aide du dioptre
des angles dans le plan horizontal et en particulier reporter des

angles droits.
Après avoir expliqué l'emploi du dioptre, Héron pose le

problème suivant: «Percer dans une colline ABC un tunnel
rectiligne dont les extrémités B et D sont données. » Pour le

résoudre, il porte dans le plan à partir du point B un segment
rectiligne arbitraire BE, il construit ensuite à l'aide du dioptre
un second segment EZ perpendiculaire à BE et il continue ainsi,
toujours à l'angle droit, jusqu'au segment KL. Il place ensuite
le dioptre sur la droite KL au point M tel que l'extrémité D
du tunnel soit vue à angle droit. Les segments a, b1 c, d, e, /, g

peuvent être mesurés dans le plan. Pour trouver la direction du
tunnel, Héron prolonge en pensée EB à l'intérieur de la colline
et mène la perpendiculaire DN à DM. Soient DN x et BN
les côtés de l'angle droit du triangle rectangle BDN. Il est alors
évident que

x — b — d — /
y c + e — a—g

Le rapport des côtés de l'angle droit est donc connu. Soit,
par exemple, ce rapport égal à 1:5, dit Héron. On construit
alors sur BE et DM deux triangles rectangles ayant le même
rapport des côtés de l'angle droit et on sait comment il faut
percer. « Si on creuse le tunnel de cette manière, les ouvriers se

rencontreront », dit Héron.
Il est possible qu'Eupalinos ait appliqué cette méthode. Pour

la trouver, il fallait une idée géniale mais pour reconnaître son
exactitude on n'a pas besoin d'avoir de grandes connaissances
en géométrie: le bon sens suffit.

2. Perspective.

Lorsque vers 450 les tragédies d'Eschyle furent jouées à
Athènes, un certain Agatharchos construisit pour les représentations

des coulisses à effet perspectif. D'après Vitruve, il aurait
écrit un traité sur ce sujet. « A sa suite Démocrite et Anaxagore
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ont écrit sur la même chose, à savoir comment, ayant choisi un
certain point comme centre, il faut faire correspondre les lignes
dans le rapport naturel de la direction du regard et de l'extension
des rayons, afin que certaines images peintes sur les coulisses

simulent des bâtiments et que quelques parties dessinées sur les

avant-plans paraissent plus éloignées et d'autres plus
rapprochées. »

Tableau I

Des expressions comme « direction du regard » et « extension
des rayons » dont Vitruve se sert se retrouvent dans les écrits

grecs d'Euclide et de Ptolémée sur l'optique. Il y est question
de rayons visuels qui vont de l'œil aux objets. Le « certain point
qui est choisi comme centre » dont Vitruve parle est probablement

la position de l'œil. Le traité d'Agatharchos contenait sans

doute des règles pratiques sur la manière de réaliser la perspective
sur les coulisses. D'autre part, il faut croire que Démocrite et

Anaxagore, qui étaient des savants notoires, ne se sont pas
contentés de connaître ces règles pratiques, mais qu'ils en ont
donné une justification théorique basée sur les « rayons visuels »

partant de l'œil.
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1 II est étonnant que les Grecs aient regardés les rayons visuels

qui partent de l'œil comme une réalité physique au même titre

g que les rayons lumineux. Nous tâtons pour ainsi dire les objets
I avec nos rayons visuels. Nous apercevons une chose lorsqu'un
1 rayon visuel rencontre sur sa surface un rayon lumineux partant
;! de la source de la lumière. Voir à ce sujet A. Lejeune, Euclide
H et Ptolémée, deux stades de Voptique géométrique grecque, Louvain,
d 1948.

Fig. 2

Vitruve désigne du nom de skénographie la science de la
perspective; il témoigne par là une fois de plus que l'origine de

cette science est à chercher dans la peinture des décors de

théâtre.
On a trouvé à Pompéi des peintures murales exécutées

suivant les règles de la perspective. Les prolongements des droites
qui paraissent s'éloigner convergent vers un point (tableau I).
Ceux qui les ont peintes étaient des contemporains de Vitruve ;

leur manière de peindre perspective venait probablement de

celle des scènes théâtrales grecques.

3. La projection stéréographique.

La projection stéréographique est une représentation de la
surface d'une sphère dans le plan qui s'apparente à la perspec-

L'Enseignement mathém., I. I, fasc. 1-3. 4
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tive. C'est une projection centrale de la surface sphérique sur
le plan équatorial à partir du pôle Sud S (fig. 2). La propriété
principale de la projection stéréographique est: la projection
(Tun cercle est un cercle.

Cette proposition est aisée à démontrer en s'appuyant sur
le théorème 5 du premier livre d'Apollonius sur les coniques,
qui dit que certaines sections d'un cône circulaire oblique sont
aussi des cercles. Pour formuler le plus simplement la condition
de ce théorème, prenons comme plan du tableau (fîg. 3) le plan

Fig. 3

de symétrie de la figure, c'est-à-dire le plan passant par les

pôles Nord et Sud et le centre du cercle. Le plan du cercle
donné coupe le plan du tableau suivant le diamètre AB. De même,
le plan équatorial coupe le plan du tableau suivant CD. Ces

deux plans sont perpendiculaires au plan du tableau. Le cercle
de diamètre AB est projeté à partir de S suivant un cône
circulaire oblique. Le théorème d'Apollonius dit alors: la section
de ce cône par le plan CD est encore un cercle si les angles ABS
et CDS sont égaux.

Dans notre cas, le cercle AB étant situé sur la sphère, la
condition d'Apollonius est satisfaite. En effet, si on mène par
le point S une tangente ST parallèle à CD, l'angle CDS est égal
à l'angle DST qui est inscrit dans le même segment circulaire

que l'angle ABS. Donc CDS DST ABS.
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Il résulte donc du théorème d'Apollonius que la section du
cône par le plan équatorial est un cercle, c'est-à-dire que la

projection stéréographique d'un cercle est un cercle.

Le célèbre astronome Ptolémée traite de la méthode de la

projection stéréographique dans son Planisphaerium, mais son

prédécesseur Hipparque (130 av. J.-G.) en avait déjà parlé dans

un traité qui a disparu.

Tableau II

L'astrolabe est un instrument basé sur cette méthode de

projection. Il était très répandu et apprécié au moyen âge,
surtout dans le monde islamique. Le tableau II représente un astrolabe

persan de l'année 1223, qui se trouve maintenant au Musée
d'histoire des sciences à Oxford. L'anneau extérieur est divisé
en 360 degrés. Un disque circulaire mobile, centré sur l'anneau
extérieur et appelé araignée, porte des indications d'étoiles et un
cercle excentrique représentant l'écliptique. L'araignée est la
projection stéréographique de la sphère céleste. Sa rotation
imite la rotation journalière (apparente) du ciel étoilé. Derrière
1 araignée se trouve un disque sur lequel ces cercles sont gravés.
L'arc de cercle qui partage la partie supérieure du disque représente

l'horizon. Les cercles compris à l'intérieur de l'arc de
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l'horizon sont des cercles d'élévation parallèles à l'horizon
indiquant des élévations de 3°, 6°, etc., en projection stéréogra-
phique. Le disque reste immobile lorsque l'araignée tourne. Si

on la tourne à droite et si on suit la course d'un des indicateurs
d'étoiles on voit d'abord l'étoile apparaître à l'horizon, puis
culminer au méridien et enfin disparaître à l'horizon. Le disque
est interchangeable afin que l'on puisse se servir de l'astrolabe
pour d'autres latitudes.

L'astrolabe peut servir à déterminer le temps aussi bien
pendant la nuit que de jour. Un dioptre se trouve en effet sur
sa partie postérieure. Si on suspend verticalement l'instrument
et qu'on vise une étoile ou le soleil à l'aide du dioptre, on peut
déterminer leur élévation sur le cercle gradué. A cette élévation
correspond un cercle d'élévation sur la partie frontale de

l'instrument. Observe-t-on une étoile, on tourne l'araignée jusqu'à
ce que l'indicateur de l'étoile se trouve exactement sur le cercle
d'élévation. Observe-t-on le soleil, il faut d'abord connaître sa

position sur l'écliptique au jour en question. Marquant cette
position, on tourne le disque de manière qu'elle soit située sur
l'horizon (lever du soleil), puis on continue à le tourner à

droite jusqu'à ce qu'elle se trouve sur le cercle d'élévation. La
différence des deux lectures sur le limbe donne le temps écoulé

entre le lever du soleil et le moment de l'observation. On détermine

de la même manière le temps écoulé entre le coucher du
soleil et l'observation d'une étoile.

Le plus ancien astrolabe conservé jusqu'à nos jours est un
instrument arabe datant de l'an 984 1. Mais Ptolémée mentionne
déjà dans son Planisphaerium un appareil horoscopique avec une
araignée et la tradition rapporte d'Hipparque qu'il n'avait inséré

que 16 étoiles dans son astrolabe 2. On peut remonter encore plus
haut, car on trouve dans VArchitectura IX 8 de Vitruve
l'indication suivante: «C'est Eudoxe qui a inventé l'araignée, mais

d'après les dires de quelques-uns, ce serait Apollonius. » Cela est

plausible si l'on admet qu'Eudoxe a inventé un instrument à

forme sphérique muni d'une araignée et qu'Apollonius ait

1 Voir T. G. Guenther, The astrolabes of the world, Oxford, 1932. Le tableau II
provient de cette œuvre magnifique.

2 0. Neugebauer, The early history of the Astrolabe, Isis, 40 (1949), p. 240.
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construit l'astrolabe plan en utilisant la projection stéréogra-

phique. Apollonius était un grand mathématicien et il connaissait

le théorème sur les sections circulaires du cône oblique
rappelé ci-dessus. S'il en est ainsi, on comprend que quelques-uns
attribuent à Eudoxe et d'autres à Apollonius l'invention de

l'araignée. Mais cela n'est qu'une hypothèse.

1 A
•
•
• rhil

Fig. 4

4. Les horloges a eau.

Vitruve décrit une horloge à eau, basée elle aussi sur l'emploi
de la projection stéréographique. Au lieu d'avoir des aiguilles
tournantes comme en ont nos montres, cette horloge possède
un disque tournant, monté sur un axe horizontal. Cet axe est mu
par un cordon dont les extrémités sont attachées à un flotteur
et à un contrepoids (fig. 4). D'un récipient constamment rempli
d'eau jusqu'au bord débite un courant stationnaire dans un plus
grand vase. Le niveau de l'eau s'élève dans ce vase et avec lui
le flotteur; d'où un mouvement de rotation uniforme du disque.

Le ciel étoilé est reproduit stéréographiquement sur le disque.
Le cercle excentrique de la figure 5 représente l'écliptique. Sur
son limbe 365 ou 366 trous sont percés, un pour chaque jour de
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l'année. Une cheville figurant le soleil est enfoncée chaque jour
dans le trou correspondant. 183 trous suffisent si la cheville n'est
enfoncée que chaque deuxième jour dans le trou suivant1.

Le débit de l'eau est réglé de telle façon que le disque effectue
un tour par jour stellaire. La rotation du disque correspond alors
exactement au mouvement journalier de la sphère céleste et du
soleil.

Un réseau formé d'un arc d'horizon et de 11 lignes horaires
est placé devant le disque. La sixième ligne horaire est une
droite (le méridien), la douzième est la partie droite de l'arc
d'horizon, celle du coucher du soleil.

Les Grecs et les Romains divisaient le jour en 12 heures,
depuis le lever jusqu'au coucher du soleil (de même la nuit).
Les heures du jour étaient donc plus longues en été qu'en hiver.
Cela obligeait de tenir compte de la marche du soleil et des

saisons dans la construction des horloges. Leur construction eût
été bien plus simple si toutes les heures avaient été égales: une
aiguille unique et un seul cadran eussent suffit comme dans nos
horloges. Toute la complication de la mesure du temps dans

l'antiquité provient de l'inégalité des heures du jour et de la nuit.
On pouvait régler l'horloge à chaque lever ou coucher du

soleil: il suffisait pour cela de placer le disque de la manière

que la cheville figurant le soleil soit située exactement sur le
cercle d'horizon. Au besoin, l'horloge pouvait être réglée à midi,
en observant le passage du soleil par le méridien. L'horloge
permettait de connaître l'heure au cours de la journée, même si le
soleil était caché, ce qui n'est pas possible avec une horloge
solaire.

L'horloge à eau n'existait pas seulement sur le papier dans
le traité de Vitruve; elle existait aussi en réalité. On a trouvé
un fragment du disque en bronze d'une telle horloge au cours
des fouilles effectuées dans un camp militaire romain à Salzbourg
(Autriche). Albert Rehm a reconstruit le disque à partir de ce

fragment en se laissant guider par la description de Vitruve 2.

1 A. Rehm, Zur Salzburger Bronzescheibe, Jahreshefte österr. archäol. Inst. Wien,
6 (1903), p. 41.

2 La description de Vitruve manque de clarté. Albert Rehm a interprété le passage
de Vitruve en se basant sur sa reconstruction du disque en bronze de Salzbourg (voir
ci-dessous). La description que nous donnons ici repose sur celle de Rehm.
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Le tableau III montre cette reconstruction à côté du fragment
trouvé. Le diamètre du disque était de 2 mètres; l'horloge était

probablement placée sur une place publique comme le sont les

tours à horloge. Le cercle de l'écliptique était divisé en 12 parties
correspondant aux 12 signaux zodiacaux.

Le tableau IV montre le réseau servant à la lecture des heures,
tel que Rehm l'a construit d'après les données de Vitruve. Les
cercles concentriques représentent l'équateur et quelques
parallèles sur lesquels le soleil se meut aux différentes saisons.
Sur chaque parallèle l'arc d'horizon est divisé en 12 parties
égales. Les lignes horaires joignent les points de division.

JuvAvum

Tableau IV
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