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A LA MEMOIRE DE PIERRE SERGESCU
(1893-1954)

En déférent hommage a son admirable épouse qui I'a soutenu
de son affection dans les bons et les mauvais jours de sa vie

PAR

Arnold REymonp, Lausanne

Comme le dit si justement R. Taron, « Apres les déces
d’Aldo Mieli, de Pierre Brunet, de Maxime Laignel-Lavastine,
de Pierre Humbert, de Gino Loria et de Henri Berr, la mort de
Pierre Sergescu affecte tous ceux qui dans le monde entier
s'intéressent aux progrés de I'histoire des sciences. Elle peine
aussi les amis si nombreux de ce chercheur probe et infatigable,
de cet organisateur a la compétence éprouvée et au dévouement
sans bornes et de cet homme si droit et si généreux. »?

Sergescu est né a Turn-Severin, au bord du Danube, a I’en-
droit ou ce fleuve quitte la Hongrie et traverse les Portes de Fer.
(C’est dans cette ville qu’il fait ses études secondaires, pour prendre
ensuite a I’Université de Bucarest simultanément sa licence en
mathématiques, sa licence en philosophie ainsi que le concours
de sortie du Conservatoire de musique.

Lors de la premiére guerre mondiale, la Roumanie, comme
on le sait, opte pour les Alliés au coté desquels Sergescu combat
courageusement. Pris par les Allemands au début de 1917, il

vit dans un camp de déportation et est libéré aprés Parmistice
général de 1918.

1 Nous nous sommes beaucoup inspiré, pour rendre cet hommage, des beaux
articles de René Taton et de Pierre Costabel qui ont paru, le premier dans la Revue
d’Histoire des sciences et de leurs applications (janvier-mars 1955) et le second dans la
Revue générale des sciences pures et appliquées (janvier-mars 1955).
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Devenu agrégé de mathématiques, il obtient une bourse pour
Paris ou il conquiert brillamment sa licence et prépare son
doctorat és mathématiques. Rappelé en son pays, il y soutient
avec succes devant son maitre Lalescu sa these de doctorat. Il
est alors nommé en 1924 professeur suppléant a I’Université de
Bucarest et a I’Ecole polytechnique; peu apres il est appelé a
I’Université de Cluj. II publie la plusieurs cours et mémoires
importants de mathématiques. Soutenu par deux mathémati-
ciens éminents (D. Pompeiu et Tzitzeica), il fonde la revue
internationale Mathematica qui compte actuellement vingt-trois
volumes et qui assure dans le monde scientifique une place
honorable & son fondateur et aux mathématiciens roumains et
étrangers qui y collaborérent.

Des cette époque, P. Sergescu fait de fréquents séjours en
France ou 1l participe & de nombreux congrés et donne dans
diverses universités des séries de conférences tres appréciées.
Mais sans négliger ses recherches mathématiques, 1l est de plus
en plus attiré vers I'histoire des sciences; il suit assidiiment en
1922 le cours de Pierre Boutroux et vers 1930, Aldo Mieli, alors
secrétaire perpétuel de I’Académie internationale de I'histoire des
sciences, le pousse & publier des travaux sur I'histoire des mathé-
matiques. C’est ainsi qu’en 1933, dans la collection « Tableau du
xx¢€ siécle », parait I'ouvrage de Sergescu consacré a cette période
et a la fin du x1x¢ siecle. Vingt ans plus tard, en 1951, 1l publie
Un coup d’ceil sur les origines de la science exacte moderne.

Lorsque la deuxiéme guerre mondiale survient, il est encore
professeur a Cluj; il soutient avec ardeur la cause des Alliés,
secourant les réfugiés polonais et les prisonniers francais évadés
et faisant en public de nombreuses allocutions pour I’Alliance
francaise. Chassé de Cluj par 'occupation hongroise, il professe
aux Universités de Bucarest et Timisoara et en 1945 il est nommé
professeur et recteur de I'Ecole polytechnique de Bucarest, tAche
délicate a remplir étant donné les circonstances politiques et
sociales que la Roumanie traverse.

« Mais en 1946, devant le durcissement du climat politique,
il sent que cette tiche est pour lui terminée et 1l se résigne a
répondre a 'appel de ses amis francais qui l'invitent & veair
faire une série de conférences a Paris. Arrivé en France, ou il
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reprend contact avec les mathématiciens et les historiens des
~sciences, il participe activement & la création de I’Union inter-
" nationale d’Histoire des sciences aux cdtés de Pilerre Brunet,
~ d’Arnold Reymond et de Cortesao.»! Le Congrés international

de Lausanne (octobre 1947) consacre cette nouvelle organisation
dont le secrétariat général est confié & Pierre Sergescu. Peu apreés,
Aldo Mieli et Pierre Brunet étant décédés, 1l est nommé secré-
taire permanent de I’Académie internationale d’Histoire des
sciences et directeur de la revue des Archives internationales de
cette discipline.

Malgré ces lourdes charges, il continue ses travaux person-
nels, ses émissions culturelles & la radiodiffusion francaise; il
organise au Palais de la découverte des conférences mensuelles
ou des expositions commémoratives des grands savants des
siecles passés (Léonard de Vinei, Pascal, par exemple).

I1 prend part en outre aux Congres de I’Association francaise
pour l'avancement des sciences et aux Congrés internationaux
d’Histoire des sciences. Répudié par le gouvernement roumain
devenu communiste, il souffre cruellement d’étre apatride; il
fait tout ce qu’il peut pour soutenir ses compatriotes réfugiés
comme lui en France. ,

Tant d’épreuves morales et physiques finissent par avoir
raison de sa santé. Tombé malade en revenant du Congreés inter-
national d’Histoire des sciences tenu a Jérusalem (septembre
1953), il est contraint, au début de 1954, de passer trois mois
a I’hopital. Rentré chez lui, il se remet au travail, soigné par
sa femme avec un dévouement inlassable. Le 20 décembre 1954,
apres avoir travaillé tard dans la nuit avec quelques amis, il
s’est endormi pour ne plus se réveiller.

*
* X

Ce départ est un deuil terrible pour I’Académie et I’Union
internationales d’Histoire des sciences, pour les Archives inter-
nationales de cette discipline, pour les diverses institutions

- auxquelles il se dévouait corps et Ame. Cette mort crée également

1 R. Tatow, article cite, p. 79.
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un vide tres douloureux chez tous les amis que Sergescu avait en
France, en Suisse romande et ailleurs dans le monde civilisé,
car 1l excellait a susciter et a maintenir entre les savants d’ou
qu’ils vinssent des liaisons durables.

Sitot qu’il fut professeur a 1’Université de Cluj qu’il avait
puissamment contribué a organiser, I'un de ses premiers actes
fut d’inviter ses anciens maitres de Paris a venir y parler. Il
tint également a4 ce que la Suisse romande entrdt en contact
avec elle. C’est ainsi qu’Edouard Claparéde, Rolin Wavre, nous-
méme, entre autres, y donnérent des conférences. L’accueil qu’il
faisait a ses hotes laissait un souvenir inoubliable.

I1 avait, par exemple, organisé en 1936 une séance du Comité
d’histoire générale et du Comité d’histoire des sciences. Il nous
fit visiter toute la Roumanie, les peintures émouvaates des
vieilles églises, nous mettant en rapport avec les paysans et avec
les artisans (tissages et poteries). La variété des sites traversés
(montagnes et plaines) et des populations rencontrées nous ont
laissé des visions ineffacables.

Lorsque aprées la deuxiéme guerre il fut contraint de ne plus
rentrer dans son pays, i1l poursuivit inlassablement son activité
de rapprochement. Il confia souvent a un étranger le soin de
faire I'une des conférences d’histoire des sciences données au
Palais de la découverte et éditées par celui-ci.

Actioité scientifique.

Elle se divise tout naturellement en publications mathéma-
tiques et publications historiques.
- L’ceuvre mathématiqgue se situe surtout dans la période
antérieure a 1930, mais ne s’est pas réduite a ua unique secteur
des mathématiques. P. Sergescu, en effet, s’il s’est intéressé
avant tout a la théorie des polyndmes et aux équations inté-
grales, a donné également dans de nombreux domaines des
mémoires originaux, particulierement dans les Comptes rendus
de I’Académie des sciences. Parmi ces mémoires, il faut citer -
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entre autres dans le Bulletin mathématique de la société roumaine
les « Noyaux symeétrisables (théoréme de Laguerre) », Université
de Cluj, 1927; « Noyaux symétriques gauches, sur le mouvement
des particules électrisées », Congrés de 1’Associations francaise
pour Pavancement des sciences, 1930; « Module des zéros des
dérivées des fonctions bornées », Comptes rendus de I’ Académie
des sciences, Paris, 1924; « Extension aux noyaux symétrisables
du théoréeme de Weyl » — « Quelques inégalités de MM. Landau
et Lindelof concernant les fonctions monogenes » — «Théoréme
d’Hermite », Mathesis, 1922.

Quant & Phistoire des sciences, les sujets que Sergescu a traités
de préférence dans cette discipline sont: la pensée scientifique
médiévale, les mathématiciens du xvii® siecle, la science a
I'époque de la Révolution francaise et enfin, le développement
moderne des mathématiques.

Sur la pensée médiévale, a propos de l'exposé concernant
« les étapes de la pensée scientifique » que je fis en 1935 au Centre
de synthése, P. Sergescu me présenta la remarque suivante:
« Ne faudrait-il pas faire une place plus large au moyen age
dont P. Duhem nous a tracé des tableaux impressionnants ?
Pour moi, cette période a une importance capitale dans 1'évolu-
tion de la pensée scientifique. Les circonstances ayant au début
du moyen age détruit I'unité de la science grecque antique, il y
eut deux troncons séparés qui se sont cherchés sans parvenir a
se rejoindre. L'un est 'Ecole nominaliste de I’Université de
Paris. Celle-ci a développé jusqu’a la perfection les méthodes
déductives de la pensée scientifique (Jean de Murus, Grégoire
de Rimini, Albert de Saxe, Jean Buridan). D’un autre coté se
trouve I'Ecole 1talienne regardant surtout les faits sans trop
développer les raisonnements. » 1

Dans ses publications subséquentes, Sergescu revient &
diverses reprises sur la question qui jusqu’a la fin de sa vie I'a
préoccupé.

Dans I'étude « Pascal et la science de son temps» qui, au
Palais de la découverte, inaugure en 1950 la série des conférences

- mensuelles consacrées a I'histoire des sciences, il souligne a

1 Voir Arnold REYMoND, Philosophie spiritualiste, I, p. 318. Paris, Vrin, 194°2.
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nouveau que l'on ne saurait assez montrer I'importance du
moyen age dans le développement de la science actuelle.

Lors de la 18¢ Semaine de synthése, octobre 1952, il est
chargé d’exposer ses vues sur l'infiniment petit du moyen &ge
au x1x¢© siecle.

Il rappelle que 'unité de la Science grecque fut tragiquement
brisée au début du moyen age. Peut-étre que ’apport légué par
celui-ci a été de fournir & Paris, dans I’Ecole nominaliste, les
moyens de raisonnement qui pouvaient mouler les faits que le
second troncon de la science, la science archimédienne, avait par
les Arabes laissé subsister en partie dans la tradition italienne.
Saint Thomas d’Aquin, par exemple, distingue entre l'infini
créateur et 'infini créé.

En 1277, ’Eglise condamne les écrits physiques et mathé-
matiques d’Aristote. Pierre I'Espagnol, devenu le pape
Jean XXII, distingue l'infini en puissance (syncatégorique) et
I'infini en acte (catégorique). Mais peut-on passer du premier au
second, et comment ? Les discussions sur ce point préparent
I’avéenement du calcul différentiel et intégral.

Le dernier travail que Sergescu ait publié, Revue d’hisioire
des sciences, octobre-décembre 1954, est consacré a «Paul
Tannery et la science médiévale ». Les recherches faites dans ce
domaine par I’éminent historien portent surtout sur les Byzantins
(par exemple, ceuvre de Psellos concernant Diophante) et sur
I’Occident latin (role important de Nicolas Chuquet). «Sans
doute, dit Sergescu, le matériel recueilli & I’époque de Tannery
était-1l trop mince pour permettre de brosser une synthese de la
science du moyen &age, synthese que devait présenter pour la
premiere fois P. Duhem. En revanche, I'analyse de Tannery
apporte des connaissances essentielles en vue de cette synthése. »

Enfin, maintes allusions et précisions relatives a la science
médiévale se trouvent dans les quelques ouvrages que Sergescu
a publiés. Dans ces ouvrages, les développements historiques
sont accompagnés de réflexions philosophiques sobres, mais
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judicieuses, que par sa double culture a la fois scientifique et
littéraire Sergescu était remarquablement apte a présenter.

Le premier volume intitulé Les sciences mathématiques a paru
en 1933, ainsi que je I’ai signalé plus haut.

Comme ce volume fait partie du tableau du xxe siécle, les
savants dont il parle sont pour la plupart des contemporains.
Voici les titres des chapitres traités: I. L’héritage du xIxe siécle
— II. Henri Poincaré (belle caractéristique de son ceuvre: fonc-
tions fuchsiennes, analyse, géométrie, physique mathématique
et mécanique céleste). — 1II. Analyse mathématique et théorie
des fonctions. — IV. Géométrie et astronomie. — V. Mécanique
et physique mathématique. — VI. Philosophie et histoire des
mathématiques. — Index bibliographique.

Dans chaque chapitre sont cités les savants (accompagnés
de leur photographie) qui ont le plus contribué a la création et
au progres de la branche des mathématiques qui est envisagée
dans ce chapitre.

On ne peut qu’admirer la fagon remarquable dont Sergescu
remplit le programme qu’il s’est assigné. Il excelle a trouver
Iexpression ou l'image qui est la plus appropriée a faire
comprendre son texte.

Par exemple (page 35): « Considérons une fonction (un effet)
d’une variable (d’une cause). A chaque changement infiniment
petit de la cause, correspond un changement, en général infini-
ment petit, de I'effet. » -

De méme, page 58: « Les équations différentielles ordinaires
(1re étape) servent & préciser la loi liant un effet & une cause;

~ les équations aux dérivées partielles (2¢ étape) étudient les lois

liant un effet & plusieurs causes; mais parfois 1’ensemble des
causes, agissant sur un phénomeéne physique complexe, fait

- intervenir 'infini et le probléme se complique et conduit aux
~ équations fonctionnelles. »

En 1937, Sergescu collabore aveec G. Bouligand et bien

- d’autres savants a un livre collectif intitulé: L’Evolution des
- sciences physiques et mathématiques.

Enfin, la collection « Esprit et nature » (Sedes, Paris, 1951) fait

. paraitre une étude substantielle qui a pour titre Coup d’eeil sur

les origines de la science exacte moderne. « Le présent ouvrage, dit
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Sergescu dans sa préface, se compose de deux parties extréme-
ment différentes. La premiére représente une série de quatorze
causeries faites dans le cadre des émissions culturelles de la
Radiodiffusion francaise. La deuxiéme partie est une biblio-
graphie raisonnée des compléments mnécessaires pour une
connaissance plus approfondie des auteurs cités. »

Voici les titres des chapitres qui composent la premiére
partie: I. Introduction. — II. L’héritage du monde antique et
arabe. — III. Le probléme de I'infini. — IV. Le probléme du
mouvement. — V. Le probléeme du systéme du monde. — VI. Les
nouveaux outils intellectuels.

Ces six causerles résument et précisent la science grecque
ancienne de la pensée médiévale.

Viennent ensuite: VII. Abandon des théories d’Aristote.
Galilée. — VIII. Hésitations au début du xviie siecle. — IX. Deux
attitudes modernes: Descartes et Pascal. — X. La théorie
moderne de l'infini. Newton et Leibniz. — XI. Mécanique et
astronomie modernes. Newton. — XII. Le xvre siécle. Nais-
sance de la géodésie. — XTII. Le xvii® siecle. Systématisation
de la science moderne. — XIV. La chimie moderne. Lavoisier. —
XV. Conclusions. — Index des noms. — Index des matiéres. —
Notes bibliographiques.

L’index donne par ordre alphabétique les noms des auteurs
et une bréve analyse de leurs principaux ouvrages. Outre cet
index des noms, se trouve un index explicatif de quelques termes
techniques. Les notes bibliographiques indiquent les ouvrages
surtout historiques que I'on peut consulter.

En conclusion, la science exacte moderne s’est précisée et
systématisée par une étude constamment renouvelée des trois
questions suivantes: le probleme de I'infini, celui du mouvement
et enfin le mystere relatif au systéeme du monde.

A mesure que par I'expérimentation et la théorie une disci-
pline scientifique a étendu son domaine, des branches nouvelles
ont pris naissance et se sont développées sur cette discipline;
d’autres, au contraire, s’en sont détachées. Par exemple, la
logique et la psychologie faisaient partie de la philosophie; elles
s’en sont séparées au x1xe siécle et sont devenues des sciences
autonomes.




A LA MEMOIRE DE PIERRE SERGESCU 29

Comme nous I’avons dit & propos de ses précédents ouvrages,
Sergescu excelle & illustrer son texte par des comparaisons
ingénieuses ou par des résumés de quelques lignes, trés clairs
et suggestifs. Par exemple, page 22: « La notion d’infiniment
grand n’existe pas dans la science d’Aristote. Mais, en méme
temps, on y refuse l'existence des atomes, ce qui permet de
concevoir la divisibilité a I'infini de la matiere et, par conséquent,
la notion d’infiniment petit. Or les deux infinis, le grand et le
petit, sont des grandeurs réciproques. Il aurait fallu les accepter
ou les rejeter tous les deux a la fois. Aristote n’a pas saisi la
correspondance. » On pourrait citer bien d’autres passages
semblables.

En conclusion on ne peut qu’admirer la variété, I'ingéniosité
et I'exactitude des contributions que Sergescu est parvenu a
4 fournir au milieu des soucis politiques et administratifs dont sa
1 vie a été parsemdée.
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LA COMMUNAUTE DES SAVANTS

PAR

André Licuxerowicz, Paris

J’al fait quelques conférences dans ma viel. Mais dans
presque toutes, j’avais le secours inestimable du tableau noir
et du baton de craie. Il s’agissait de mathématiques ou de phy-
sique, de sciences exactes et je n’avais a exorciser que de braves
equations qui demeuraient fidélement sur le tableau ou se
transformaient conformément aux régles du ballet mathéma-
tique, mais ne nous posaient guére de problémes de conscience.

C’est, croyez-moi, une étrange aventure pour un mathéma-
ticien d’étre contraint de perdre la sécurité de son langage
familier et d’étre amené a se colleter avec certains des probléemes
les plus graves que pose I'aventure présente de la société des
humains. S’il y apporte quelque lourdeur et quelque maladresse,
je suis stir que vous voudrez bien les lui pardonner. Mais cette
contrainte, que je subis avec un mélange de joie et de désespoir,
ect le signe d’une contrainte infiniment plus grave qui pése sur
la communauté des savants tout entiere.

Mais qu’est-ce donc que ce savant dont je voudrais analyser
la condition ? Est-il celul qui sait, qui connait ou possede une
certaine vérité ? La question méme méconnait toute la démarche
de la science moderne. Celle-ci nous a appris que les vérités
possédées sont des vérités mortes, dont les cadavres sont livrés

1 Conférence faite & I’Université de Genéve. Une conférence sur le méme théme a
¢té donnée, sous les auspices de la Maison des Sciences, a Paris.




LA COMMUNAUTE DES SAVANTS 31

aux enfants sous forme de manuels de I’enseignement secondaire,
ou des vérités approximatives et en état de dépassement. Le
domaine du savant n’est certes pas celui de la possession.

Pour 'homme du xvirie siécle, la notion de savant était claire
et décrivait une certaine attitude d’esprit sur laquelle nous
reviendrons. Mais en ’an de grace 1955, notre vocabulaire est
devenu confus et traduit la confusion de nos esprits; nous
employons presque indifféremment les mots savant et technicien
et le qualificatif de chercheur a surgi et a connu depuis quelque
trente ans une fortune inespérée. Je connais méme, dans telle
rue de Paris, un institut de beauté qui s’intitule modestement
« Institut de recherches esthétiques», titre qui m’a plongé dans
une légitime perplexité.

Il y a quelque chose de sain dans cet accent mis sur la
recherche, car ’esprit scientifique n’est pas esprit de possession
mais esprit de recherche, d’approfondissement. Mais il est aussi
générateur de confusions et ces confusions ne sont point inno-
centes. Qu’est-ce qui distingue donc un savant et un technicien,
Lorentz et un grand ingénieur chef du laboratoire de recherches
d’une firme électronique importante — je prends volontairement
des exemples a grande échelle ? Tous deux ont été des chercheurs;
nous avons redécouvert — et cela est vrai — que les procédés
techniques de la recherche dite pure et ceux de la recherche dite
appliquée sont indistinguables. Cependant nous sentons une
différence fondamentale entre les attitudes d’esprit de ces deux
hommes. En gros, si vous me permettez de parler presque
brutalement, I'un peut trouver le couronnement de sa carriére
a devenir dans sa firme directeur général, sans trahir véritable-
ment sa vocation, 'autre pas. L’un appartient & une corporation
hautement estimable et d’une grande utilité pour notre société,
autre est membre d’'une des rares communautés spirituelles
qui existent en ce monde, la communauté des savants.

C’est peut-étre cette distinction qui a été perdue de vue avec
la notion de chercheur et c’est elle que je suis contraint de
reaffirmer avec quelque raideur. Quelle est donec attitude
d’esprit du savant ? Nous pouvons en bonne méthode I’examiner
soit & travers les comportements du savant contemporain, soit
a travers I'histoire de I'élaboration, au cours des siécles, de cette
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attitude humaine. Désirant parler de ce que je connais le moins
mal, je me limiteral aux sciences exactes et aux quelques impli-
cations de ces sciences dans le domaine des sciences humaines.

*
* *

Un savant est un homme qui participe activement a ’aven-
ture scientifique, qui est un militant de 'aventure scientifique.
Mais cette aventure est, par nature, une aventure collective et,
pour y participer, le savant a di faire certains voeux et pratiquer
une certaine ascése. Ascétisme intellectuel mais aussi ascétisme
moral indissolublement mélés. Si 'accent est généralement mis
sur le premier, le second non moins important est maintenant
souvent remis en question pour des raisons que nous étudierons.

Ce n’est pas le lieu 1ci de décrire le savant au travail et
d’analyser les disciplines qu’il s’est imposées et qui doivent
simultanément favoriser ’éclosion d’un certain type d’imagina-
tion et assurer le controle et la rigueur: cette nécessité de 'ouver-
ture d’esprit, d’un esprit prét a accueillir tout ce qui survient
avec une volonté délibérée d’attention et cet impitoyable esprit
critique destiné, en écartant toute spéculation confuse, a tresser
les matériaux scientifiques en un réseau contraignant et commu-
nicable a quiconque prend la peine de I’étudier. Cette absence
de respect, dans le domaine scientifique, pour toute pensée
extérieure qui serait limitative et en méme temps cette volonté
de clarté totale qui sacrifie sans regret tout ce qui est encore
trouble ou trop complexe.

Mais ces disciplines impliquent et imposent des choix
moraux. Comment garder & son esprit sa pleine disponibilité si
I'on vise avant toute chose I'application et ’application techni-
quement payante ? Comment lui assurer sa maitrise de soi, s’il
s’incline dans son domaine, devant des pouvoirs ou devant des
pensées religieuses ou philosophiques extérieures ? La volonté
d’autonomie, le désintéressement a 1’égard des applications
doivent étre, en des sens que je préciserai, des éléments fonda-
mentaux de 'attitude d’esprit du savant.

Il est enfin pour le savant des pieges plus subtils auxquels
nous succombons tous, peu ou prou. Le savant a voué sa vie a
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la recherche, mais il est bien rare qu’au cours des années I’étin-
celle jaillisse contintiment. Dans un carnet scientifique de
Pasteur, on trouve en note marginale: « En somme rien depuis
deux ans», et cette simple note traduit I’angoisse, normale chez
tout savant, de savoir si I’étincelle s’est définitivement arrétée
ou si la grace de créer de la science lui sera encore accordée.
C’est pourquoi étre chercheur, au vrai sens du terme, n’est pas
un métier, ou alors c’est le pire des métiers. A coté de sa recherche,
le savant exerce généralement un vrai métier, un métier rassu-
rant: 1l est professeur dans quelque université ou administre un
laboratoire. Mais il arrive que ce métier dévore chez lui le
chercheur ou qu’inversement le savant cherche, dans son métier,
un alibi.

Quol qu’il en soit, aprés des années de travail, il a apporté
a 'ceuvre commune une contribution dont nul mieux que lui ne
sait combien elle est limitée, imbriquée dans tout I’effort d’une
génération et ne valant que par le travail séculaire des hommes
de science. Cette contribution, modeste ou notable, a d’ailleurs
au fur et & mesure cessé de l'intéresser: « ce n’était pas difficile
puisque cela a été fait », et il n’en tire, au fond de lui-méme nulle
gloire: 'aventure qui se joue dépasse largement le stade des
petits bilans personnels.

Il a vécu, quelques années ou une vie, I’esprit de la conquéte
scientifique, il a participé & Poeuvre de la communauté des
savants et c’est la son véritable honneur.

Cette attitude d’esprit, dont nous voyons le surgissement
dans notre temps, s’est lentement élaborée au cours des siécles
et c’est peut-étre la science qui a enseigné a la société des humains
ce qu’est la probité intellectuelle.

La science grecque a commencé & nous enseigner la rigueur
du discours, une rigueur que nous avons peu a peu resserrée
Jusquaux limites de Dl’axiomatique contemporaine, jusqu’a
pouvoir raisonner sans paralogisme sur les ensembles infinis et
bitir avec eux nos mathématiques. Mais il a fallu de longs et

I’Enseignement mathém., t. I, fasc. 1-3. 3
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pénibles efforts & la science moderne pour apprendre a dominer
certains aspects de ce que nous nommons le réel, en I'interro-
geant a l'aide d’expériences privilégiées et en l’enserrant au
moyen de nouveaux instruments de mathématification. La
théorie physique contemporaine, tentative de déduction mathé-
matique totale d’une large classe de phénomeénes, mais dont seul
le controle expérimental le plus strict assure qu’elle n’est pas
une théorie vaine, la théorie de quelque monde imaginaire,
apparait comme symbolisant la réussite méme de I'ambition
scientifique.

Mais avec la notion de données expérimentales, avec 1'im-
portance et 1’abondance des expériences privilégiées, il était
apparu quelque chose de nouveau dans la démarche scientifique.
Alors qu’en principe le mathématicien peut toujours vérifier la
démonstration d’un autre mathématicien et qu’en fait, il se
livre souvent a cet exercice, le physicien utilise des données
expérimentales, c’est-a-dire les résultats de beaucoup d’expé-
riences qu’il n’a ni le temps, ni1 les moyens matériels de refaire.
Il se fie aux travaux des autres, il est condamné a avoir confiance
dans les membres de sa communauté pour pouvoir pousser outre,
a penser qu’ils ont dit la vérité et toute la vérité. La probité
des comptes rendus d’expériences impose toutes les probités et
d’abord interdit le secret qui est aussi une atteinte a I’économie
de moyens de la science.

C’est avec la science expérimentale qu’apparait complete-
ment ce que nous nommons la communauté des savants, une
communauté encore bien peu nombreuse — la France, grand
pays scientifique du xvire siecle, ne contenait que quelques
dizaines de savants — mais des son apparition son idéal se révele
tres haut.

L.a pensée scientifique se veut totalement autonome, mais au
grand jour, et elle fuit 'ésotérisme dans lequel elle s’était
parfois réfugiée dans le passé. Tout le travail accompli doit étre
rendu public, afin de permettre a chacun, en toute liberté,
d’entrer dans la communauté ou d’utiliser en dehors d’elle les
résultats acquis. Les défis et secrets des siecles précédents sont
regardés comme enfantins et blamables. A travers les différents
pays, universités et académies assurent, avec la bienveillance
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de tous, la liberté de la recherche et celle de la diffusion des
résultats. Les guerres n’arrétent point ces échanges et, deés le
xviie siécle, on voit Huyghens venir siéger & 1’Académie des
sciences de Paris, en plein conflit de la France avec les Hollan-
dais, sans que Francais ni Hollandais ou Espagnols y trouvent
quol que ce soit a redire.

I1 est vrai que les applications, bénéfiques ou maléfiques, de
1 cette science qui nait sont encore & peu pres exclusivement du
domaine des espérances. Mais déja la conscience scientifique les
pressent et, avec un optimisme candide, juge qu’elles seront
généralement bonnes. Il lui faudra bien longtemps pour sortir
decette vue optimiste et elle ne parviendra pas & se sentir
quelque responsabilité dans le processus de prolétarisation consé-
cutif, en Angleterre et en France, a la premiere révolution
industrielle.

Cependant, devant ce blé en herbe des applications, la
réaction de la conscience scientifique est formelle: le savant doit
rester désintéressé, désintéressé dans ses buts de recherche et
désintéressé dans sa personne. C’est a d’autres que lui d’assumer
la grande tache des applications et des avantages matériels
durement conquis pour tous, de mettre patiemment au point de
+ difficiles et secrets procédés de fabrication. Le savant ne doit
' rien avoir a faire avec le secret, mais son désintéressement ne
| signifie pas qu’il doive étre totalement inattentif aux consé-
. quences de ses travaux pour la société des humains.
| On ignore d’ailleurs & quoi peut servir cette attention recom-
' mandée, mais comme les consequences ne peuvent étre que
' bonnes a longue échéance, tout est pour le mieux.

Tel est, tracé a grands traits, ce qu’on pourrait nommer
'idéal classique de la science.

C’est cet idéal plein d’une sagesse tout antique que nous
<3 sommes amenés douloureusement a remettre en question.
*i?; Qu’est-il arrivé ? La science a rencontré sur sa route les pouvoirs.
??"’ Des transformations si profondes de la société des humains
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qu’elle a suscitées ou permises, la conscience scientifique a été
I’une des plus notables victimes.

Depuis un siécle, notre univers quotidien s’est profondément
transformé, a fait explosion, dans tous les sens du terme, cela,
nous le savons tous. Cet univers scientifique et technique qui
est le ndtre nous apparait de plus en plus comme un univers
fabriqué, un univers artificiel qui nous sert a la fois de couveuse
et d'instrument, un univers qui peut se détraquer et que nous
nous sentons méme capables de casser dans un moment de délire
collectif. Le front d’onde de I’expansion humaine se meut main-
tenant s1 vite et est générateur de telles distorsions qu’il ne
semble plus permis de laisser a la lente éducation de nouvelles
générations le soin de conditionner la société des humains a ce
monde sans cesse refaconné. Nous rencontrons la sans doute
I’'une des raisons pour lesquelles cet univers pourtant humain
nous apparait comme artificiel, comme dangereusement autre.
Nous sommes tous et sans cesse surpris par I’événement.

Cet univers est autre par sa substance, par ses structures et
il oblige chacun de nous, au cours de sa vie, a la recherche pénible
d’un nouvel état d’équilibre, souvent remis en question, a la
recherche de nouveaux réflexes économiques comme de nouveaux
schéemes de pensée pour appréhender ce réel mouvant.

Du monde encore pesant et maladroit de la premiere révo-
lution industrielle, monde fait de fonte et d’acier et auquel la
machine a vapeur, avec son régulateur grossier, conférait quelque
autonomie, nous sommes en train de faire un monde léger et
savamment réglé, fait d’aciers spéciaux, d’aluminium ou de
magnésium, de verre et de matieres plastiques, riche d’énormes
quantités d’énergie — nous sommes en train de revendiquer
I’énergie solaire comme I’énergie atomique — et aux comporte-
ments subtilement contrdolés par I’électronique.

Dans ce monde les sources de richesses ont été profondément
modifiées et les distorsions sont plus graves que jamais. Certains
peuples vivent, a peu pres sans matiéres premieres, du revenu
de leur science et de leur technique incarnées dans des industries
de haute précision; d’autres, que les circonstances historiques
ont placés en dehors du grand courant de I’expansion scienti-
fique, s’efforcent a produire des matiéres premiéres brutes pour
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subsister; ce sont les peuples dits sous-développés qui sont avant
tout, comme P’a montré M. André Mayer, des peuples sous-
alimentés, avec cette circonstance aggravante qu’ayant souvent
bénéficié, pour une part, des progrés mondiaux de la médecine,
ils présentent une expansion démographique démesurée par
rapport & leurs ressources propres restées presque stationnaires.
Ce monde qui est le ndtre, avec ses prestiges et ses maléfices
bien apparents, il ne nous est pas permis de le refuser. Chanter
les louanges d’un monde révolu et brandir sur le ndtre I’anathéme
sont des activités pour mandarins irresponsables. Il ne nous est
pas permis de condamner a mort ces vieillards que nous avons
- sauveés « artificiellement », ces enfants, toujours plus nombreux,
| préservés des épidémies. Il nous faut trouver aux premiers un
| but dans la vie et ne pas les abandonner dans le désert d’une
- vieillesse inutile, 1l nous faut nourrir les uns et les autres, et nous
révons déja du jour ou, & grands coups d’énergie solaire, nous
pourrons fabriquer directement des aliments sans passer par les
techniques trop lentes de l'agriculture. Au premier rang des
préoccupations de tous les grands pays scientifiques figurent,
nous le savons, la photochimie, la photosynthése. Déja, jalons
© sur la voie d’une solution, quelques «usines d’algues» fonc-
| tionnent dans le monde. Des distorsions d’un univers scientifique,
nous nous efforcons de sortir par plus de science et une science
plus consciente d’elle-méme.
| Un autre aspect du probléme doit étre signalé: la science est -
- outil de prévision et toute une branche de la science contempo-
| raine s’efforce méme, a I'aide des techniques de la statistique et
-+ de la théorie des jeux, d’élaborer des instruments précis de
prévision des phénomenes économiques ou, plus généralement,
de phénomeénes sociaux, essaye de préparer une technique des
décisions rationnelles en matiére de conduite humaine. Une telle
science est, par nature, source de puissance et de richesse et
", elle Pest déja en fait dans ses quelques rares réalisations. Mais
cette science qui se crée et balbutie encore ne peut ambitionner
1 que la décision basée sur la prévision & court terme, quelques
;»g années peut-étre. Au-dela, la recherche scientifique elle-méme
% qui se révele comme le plus redoutable facteur d’instabilité de
notre monde, s’oppose a toute prévision valable: sur vingt ans,
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il nous est 1mpossible de présumer avec succés les résultats de
notre travail.

La science a donc rencontré les pouvoirs dans les conséquences
matérielles de ses résultats et méme dans certains de ses buts de
recherche. Elle a brusquement éprouvé le poids de ses responsa-
bilités devant la société des humains. Enfin il lui a été révélé
qu’elle avait besoin des pouvoirs dans sa tdche, méme la plus
classique, et que I'idéal du xviiie siecle devait étre remis en
question non pour des raisons de rapports de force, mais pour le
bien, pour la survie de la science elle-méme.

L’appareillage expérimental primitif était tout artisanal et
le savant lui-méme, aidé de quelque serrurier ou meécanicien,
suffisait a sa réalisation. Il était alors permis de minimiser le role
d’une industrie encore dans les limbes. Mais la recherche scien-
tifique repose désormais sur l'usine, utilise ’acquis de la science
non seulement directement, mais indirectement a travers son
incarnation dans des réalisations industrielles. Il y a choc en
retour sur le savant de ces applications laissées a d’autres. Un
grand laboratoire de recherches contemporain a les dimensions,
I’outillage, le personnel et jusqu’a certaines des méthodes d’une
véritable wusine, héritiere d’autres usines et, dans certains
domaines, en physique nucléaire par exemple, un seul appareil
est déja une énorme machine groupant autour d’elle savants et
techniciens par dizaines et nécessitant pour sa pleine utilisation
des laboratoires annexes dont chacun ett fait la joie d’un phy-
sicien il y a trente ans.

L’activité scientifique passe, dans de larges domaines, a
I’échelle industrielle la plus élevée et bien des savants, nos
contemporains, sont atterrés et ne parviennent pas a saisir
I’énormité des moyens nécessaires.

La science n’est plus cette activité de luxe pour gens sérieux
qu’elle fut au xviie siecle, elle intéresse et inquiete terriblement
les pouvoirs et est conduite a leur demander des moyens maté-
riels qui ne sont plus ceux qui conviennent & l'encouragement
des arts d’agrément, mais ceux qui correspondent, pour une
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nation, & un investissement vital. Le scientifique et le financier
se trouvent tous deux contraints au dialogue, un dialogue plein
d’ambiguités.

| Ce sont certaines de ces ambiguités du dialogue des pouvoirs
~avec la communauté des savants que je voudrais analyser
. brievement. Chacun y a, sans doute, une bonne conscience et
. quelques mauvaises pensées.
‘, Il aurait fallu aux pouvoirs, aux intéréts privés comme &
" I'Etat, une vue singuliérement élevée pour comprendre spon-
- tanément 'idéal scientifique. Tant que la science était, s1 j’ose
~dire, un art d’agrément, passe encore. Mais il s’agit maintenant
de choses sérieuses, de gagner des batailles économiques ou des
batailles tout court, d’investir des sommes considérables,
détournées de la collectivité vers des recherches, il s’agit de
- choses sans aucun doute infiniment trop sérieuses pour les laisser
aux mains des savants.
Les pouvoirs sentent confusément que, pour l'exercice de
- leur mission, ils n’ont pas besoin de savants, mais en fait de
~techniciens, ou, si vous préférez, de chercheurs au sens moderne
du terme. Il faut laiciser ces clercs. Les pouvoirs ont, par nature,
le choix des décisions et les responsabilités; aux techniciens
- employés d’assurer la réalisation des objectifs, 'accomplissement
~du plan, sans se poser de problemes graves. I.’avance — scien-
* tifique ou technique, peu importe, — obtenue dans un domaine
~doit étre conservée et le secret la couvrira. Aux savants propre-
- ment dits, a ceux qui persistent, sera permise une certaine
~activité marginale; ils seront aussi utilisés a former des techni-
~clens. Telle est, partout dans le monde, la démarche naturelle
~de pensée de dirigeants qui ne peuvent, a cause de leur expérience
propre, que méconnaitre 'idéal scientifique.
~ Le secret, en matiére scientifique, a fait sa réapparition et
-nous voyons en effet cet idéal méconnu dans les grandes choses
 comme dans les petites. Les grandes sont trop connues pour que
‘2‘] y revienne, mais les petites peuvent servir de signes. Tel
dlrlgeant d’entreprise privée comprend mal pourquoi un géologue
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de mes amis, lui ayant fourni un renseignement précieux, refuse
toute compensation personnelle, tel homme politique pourquoi
un autre savant refuse de diriger un trop grand organisme de
recherche de peur de devenir un directeur et de ne plus étre un
chercheur. I’Unesco elle-méme a récemment essayé de définir
et d’étudier un droit de propriété scientifique, un droit du savant,
et s’est gravement demandé s’il s’agissait d’un droit de création
ou d’un droit de découverte. La réponse que j’ai été amené a
donner a ses demandes était la suivante: « Il ne peut y avoir de
droit personnel de propriété scientifique, mais seulement peut-
étre un droit collectif qui appartient a la communauté des
savants. Le savant est par définition celul qui ne revendique pas
de propriété personnelle sur les résultats de ses travaux, mais
les livre librement a tous. S’1l désirait se réserver une part
d’avantages matériels, il n’avait qu’a prendre un brevet. Si vous
étes amenés a reconnaitre un droit collectif, ce choix ne peut étre
qu’'un droit moral & moins que vous ne considériez comme contre-
partie les moyens mis & la disposition de la recherche scienti-
fique.» La plupart des savants consultés ont répondu dans le
méme sens, mais ce point de vue n’a pas paru satisfaisant aux
juristes. Il est cependant le seul conforme a la vocation du
savant. ’

Ce que je viens de dire des pouvoirs est, naturellement, un
peu caricatural, mais la caricature a du vrai. Il faut aussi noter
que les pouvoirs sont, par nature, techniquement incompétents;
en fait ils sont amenés, dans la plupart des cas, a suivre les
suggestions de leurs techniciens, de leurs experts ou se trouvent
pris dans des batailles de techniciens sans véritables possibilités
d’arbitrage. Mais dans beaucoup de ces techniciens, le microbe
du savant est présent.

La communauté scientifique a donc da, tout récemment,
affronter les problémes nouveaux de ses rapports avec la société.
Elle y était fort peu préparée et montrait peu de gott pour cette
remise en question pour laquelle elle ne se sentait point armée.
Peu de savants semblaient disposés a réfléchir sur ces problémes,
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des taches strictement scientifiques leur paraissant plus
urgentes.

Mais personne n’était 1a pour se substituer a eux. Il est
curieux et attristant de constater combien l'aventure scienti-
fique intéresse peu la pensée philosophique de notre temps. N1
Husserl, ni Jaspers, ni Sartre n’ont apporté de vues valables
sur la science. Le monde du labeur scientifique ot nous baignons
leur demeure comme fermé, et aucun d’entre eux n’a entrepris
de dégager patiemment et honnétement la philosophie implicite
qui est au cceur de la pensée scientifique. Mais, en vérité, ¢’était
aux savants d’abord a réfléchir sur leurs propres problemes.
Nulle aide ne peut leur venir de 'extérieur.

Pendant longtemps, ils s’étaient bornés soit & manifester une
candide fierté de thaumaturges involontaires, soit a se réfugier,
s'ils étaient mécontents, dans quelque doctrine politique pré-
fabriquée, soit & expliquer leur parfait accord avec les diri-
geants: ils ne prétendaient assumer aucune responsabilité dans
cette histoire sombre et impure et ne désiraient pas se salir les
mains.

Aupres des financiers au contraire, ils tentaient de se justifier
par leur utilité directe et expliquaient longuement que si la
recherche libre, spontanée, diminuait ou disparaissait, la
recherche dirigée, appliquée, planifiée s’étiolerait treés vite et
perdrait la plus grande part de son pouvoir de renouvellement,
ce qui est certainement vral. ’

Les pouvoirs claironnaient: un savant ne doit pas « faire de
politique » et beaucoup de savants s’enorgueillissaient en effet
de «ne pas faire de politique» et prétendaient vaguement
négocier leur abstention contre des moyens matériels de recherche
mis a leur disposition, alors que d’autres, en quéte d’évasion, se
précipitaient téte baissée, souvent avec générosité, dans une
action politique et se retrouvaient pris dans les réts de quelque
faction qui les utilisait comme mages.

Beaucoup de savants se sont cependant trouvés las de ces
positions également inconfortables, également ascientifiques, las
soit de jouer au bateleur de foires, soit d’arborer une bonne
conscience qui émanait du ponce-pilatisme le moins noble. Ni

| le role d’homme prophétique ni celui d’académicien inoffensif
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ne sied au savant. Quant a ’objection de conscience individuelle,
elle n’est qu'une attitude enfantine et qui dissimule encore uu
ponce-pilatisme.

Prise dans le tourbillon de I'offensive des pouvoirs, la com-
munauté scientifique a failli perdre, de la maniére la moins
honorable, son autonomie et a dii, pour survivre, faire face et
réfléchir. Ce n’est certes pas un hasard si, dans le monde, les
réunions de savants portant sur ces problémes se multiplient,
s1 les journaux scientifiques leur font écho. A la suite de longues
discussions certaines grandes sociétés scientifiques nationales ou
internationales ont interdit a leurs membres de participer a toute
réunion scientifique dans quelques universités dont les dirigeants
avaient méconnu les libertés des savants, et cette excommunica-
tion publique s’est révélée un mode de pression remarquablement
efficace.

Dans I’héritage de I'idéal classique de la science, il est une
part inaltérable sans laquelle il n’y a plus de communauté
scientifique vivante, mais un syndicat de manceuvres qualifiés
qui irait vite se sclérosant et, a travers vents et marées, notre
communauté réaffirme cette part faite de loyauté dans la dis-
cussion, de liberté de la recherche et de la communication, de
désintéressement a I’égard des avantages matériels. Mais cet
héritage s’est alourdi: des devoirs nouveaux envers la société
des humains sont apparus.

Cette communauté scientifique est en train de prendre
conscience d’elle-méme en tant que communauté sociale qui
défend, non les intéréts matériels de ses membres, mais une
volonté morale commune, qui doit préserver I'intégrité de la
conscience scientifique. Elle sait qu’elle doit veiller désormais
d’une maniére active aux conséquences humaines de ’ceuvre
scientifique et s’efforcer de réfléchir sur ces conséquences et de
les prévoir avec toutes les ressources de I'imagination critique
de ses membres.

Elle doit non plus seulement enseigner la science, mais
informer la société des implications sociales de ses résultats,
communiquer ses espoirs et ses craintes, dégager pour tous
Pesprit de son travail. L’information scientifique est peut-étre
devenue le premier des devoirs nouveaux du savant, mais une
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information faite avec la méme probité intellectuelle que la
# science elle-méme et qui ne contribue pas a parer du prestige
t de la science des préférences philosophiques personnelles, une

information qui élabore les éléments d’une culture scientifique
authentique.

La communauté des savants doit ainsi travailler, dans un
monde de plus en plus technifié, & permettre les options claires,
a conserver a chacun une possibilité véritable de controle, de
choix, un choix qui ne soit pas une capitulation devant la
publicité, la propagande ou I'autorité qui s’affirme compétente.
Elle sait qu’elle doit augmenter son influence dans le monde,
détacher des ambassadeurs auprés des puissants et leur faire
| sentir sa force, non par appétit de pouvoir, mais par souci
' d’assumer, en fait, et non formellement, la part de responsabilités
qui est la sienne.

Ce sont de bien lourdes taches que celles que désormais la
communauté des savants doit accomplir en méme temps que son
ceuvre proprement scientifique. Je pense qu’elle s’en montrera
digne.
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LES MATHEMATIQUES APPLIQUEES
DANS L’ANTIQUITE

Conférence donnée le 17 septembre 1954
dans la petite aula de I’Université de Helsinki

PAR

B. L. vax pEr WAERDEN, Zurich

1. LE TUNNEL DE SAMOS.

Nous ne savons malheureusement que trés peu de choses
sur les origines de la mathématique grecque. On raconte que
Thalés I’a introduite de 'Egypte et que Pythagore I’a élevée
au rang d’une science pure; mais nous ignorons quelle part de
vérité cette tradition tardive contient. Le plus ancien fragment
mathématique conservé est celui de la quadrature des lunules
d’Hypocrate de Chios !, qui a vécu plus d’un siécle apres Thales
et Pythagore. Ce fragment témoigne que les mathématiques
étaient déja fort développées et qu’elles étaient en possession de
définitions, de constructions et de démonstrations exactes. Il
ne nous renseigne pas sur les origines. On pourrait toutefois
espérer d’obtenir quelques renseignements sur I’état des mathé-
matiques en observant ’architecture de I’époque. Le majestueux
temple d’Epheése était célebre et regardé comme une des sept
merveilles du monde. La construction d’un tel édifice n’exigeait-
elle pas un calcul mathématique ?

Une pareille conclusion serait cependant imprudente. On
peut, sans mathématique, ériger de grands et solides batiments.

1 Voir F. Rubpio, Der Bericht des Simplicius tiber die Quadraturen des Anliphon und
des Hippokrates, Leipzig, 1907.
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La preuve en est donnée par les constructions romaines. Dans
son ouvrage De Architectura Vitruve, architecte romain du temps
d’Auguste, nous décrit la construction d’un portique; les mathé-
matiques n’'y jouent pas de role.

I1 existe pourtant une construction qui nous donne quelques
vues sur les mathématiques appliquées de l'antiquité. C’est
'aqueduc construit au travers du mont Kastro sur Pordre du
tyran Polycrate de Samos vers 530 av. J.-C. Hérodote le décrit
comme suit au livre 3, chapitre 60, de ses Histoires.

« Je me suis étendu davantage sur le cas des Samiens, parce
que c’est chez eux qu’ont été exécutés trois ouvrages les plus
grands qu’il y ait chez tous les Grecs: dans une colline dont la
hauteur atteint 150 orgyes, un tunnel qui commence au pied
et a une ouverture sur chaque versant; la longueur en est de
7 stades, la hauteur et la largeur chacune de 8 pieds; d’un bout
a 'autre du tunnel est creusé un autre canal profond de 20 cou-
dées et large de 3 pieds, a travers lequel ’eau amenée par des
tuyaux, est conduite jusqu’'en ville, venant d’une grande fon-
taine; I’architecte de ce tunnel a été le Mégarien Eupalinos, fils
de Naustrophos. »

Au cours des fouilles qu’ils effectuérent en 1882 dans I'ile
de Samos, les archéologues allemands trouvérent ce tunnel, tel
qu’Hérodote ’avait décrit, d’un kilometre de long et de 2 metres
de haut et de large. Un canal profond de 2 métres & 'une de ses
extrémités et de 8 metres & autre, y était creusé. Il est fort
probable que ce canal fut fait apres coup, parce que la pente
d’abord prévue s’était révélée insuflfisante 1.

Mais, ce qui nous importe surtout est le fait que le tunnel
fut percé a ses deux extrémités. Les deux galeries se rencontrent
au milieu avec une erreur de moins de 10 meétres latéralement
et de 3 métres en hauteur.

Ce résultat est grandiose. Le roi de Judée Hiskia (environ
700 av. J.-C., donc 170 ans avant Eupalinos) avait aussi fait
percer un aqueduc a travers un rocher non loin de Jérusalem.
La distance des deux extrémités n’était que de 325 métres, mais
le tunnel fut percé en zigzag et sa longueur devint presque deux
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fois plus longue !. La direction avait été contrdlée et corrigée
a l'aide de trous percés du haut du rocher.

Le tunnel d’Eupalinos est rectiligne. Il a donc di avoir le
moyen de déterminer trés exactement la direction des deux
galeries. Quelle méthode a-t-il pu employer ?

K f M L

e Y

D

Fig. 1

Une méthode appropriée est donnée par Héron d’Alexandrie.
Héron enseignait vers Ian 60 apres J.-C. les mathématiques
appliquées et la mécanique a Alexandrie 2. Il décrit dans son
livre Dioptra un instrument appelé dioptre, formé d’une colonne
verticale portant un disque circulaire horizontal centré sur elle.
Le disque peut tourner autour de son centre; deux plaques,
percées de trous placés exactement a la méme hauteur, sont
montées sur Jui. Cet instrument permet de mesurer les différences
de hauteur: on déplace des jalons verticaux d’un endroit & un

1 ConDER The Siloam Tunnel, Palestine Exploration Fund Quarterly Statement,
1882. Voir de méme: 2 Chron., 32.30.

2 Pour les dates voir O. NEUGEBAUER, Kgl. Danske Vid. Selsh. Hist.-fil. Meddel,
26, Nr. 2 (1938).
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autre et on vise ces jalons a I’aide du dioptre, comme on le fait
encore aujourd’hui. On peut aussi mesurer & I'aide du dioptre
des angles dans le plan horizontal et en particulier reporter des
angles droits.

Apreés avoir expliqué I'emploi du dioptre, Héron pose le
probleme suivant: « Percer dans une colline ABC un tunnel
rectiligne dont les extrémités B et D sont données.» Pour le
résoudre, il porte dans le plan a partir du point B un segment
rectiligne arbitraire BE, il construit ensuite a ’aide du dioptre
un second segment EZ perpendiculaire & BE et il continue ainsi,
toujours a I'angle droit, jusqu’au segment KL. Il place ensuite
-+ le dioptre sur la droite KL au point M tel que 'extrémité D
| du tunnel soit vue & angle droit. Les segments a, b, ¢, d, e, f, g
. peuvent étre mesurés dans le plan. Pour trouver la direction du
" tunnel, Héron prolonge en pensée EB a I'intérieur de la colline

et meéne la perpendiculaire DN a DM. Soient DN = x et BN

 les cOtés de 'angle droit du triangle rectangle BDN. Il est alors
~ évident que

’ z=0b—d—f

y—=c¢c+e—a—g

| Le rapport des cotés de ’angle droit est donc connu. Soit,
 par exemple, ce rapport égal & 1:5, dit Héron. On construit
. alors sur BE et DM deux triangles rectangles ayant le méme
. rapport des cotés de langle droit et on sait comment il faut -
. percer. «Si on creuse le tunnel de cette maniére, les ouvriers se
~ rencontreront », dit Héron.

11 est possible qu’Eupalinos ait appliqué cette méthode. Pour
| la trouver, il fallait une idée géniale mais pour reconnaitre son
 exactitude on n’a pas besoin d’avoir de grandes connaissances
~ en géométrie: le bon sens suffit.

2. PERSPECTIVE.

~ Lorsque vers 450 les tragédies d’Eschyle furent jouées a
éAthénes, un certain Agatharchos construisit pour les représen-
- tations des coulisses a effet perspectif. D’aprés Vitruve, il aurait
écrit un traité sur ce sujet. « A sa suite Démocrite et Anaxagore
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ont écrit sur la méme chose, a savoir comment, ayant choisi un
certain point comme centre, il faut faire correspondre les lignes
dans le rapport naturel de la direction du regard et de I’extension
des rayons, afin que certaines images peintes sur les coulisses
simulent des batiments et que quelques parties dessinées sur les
avant-plans paraissent plus éloignées et d’autres plus
rapprochées. »

Tableau I

Des expressions comme « direction du regard » et « extension
des rayons » dont Vitruve se sert se retrouvent dans les écrits
orecs d’Euclide et de Ptolémée sur 'optique. Il y est question
de rayons visuels qui vont de Iceil aux objets. Le « certain point
qui est choisi comme centre » dont Vitruve parle est probable-
ment la position de I'ceil. Le traité d’Agatharchos contenait sans
doute des regles pratiques sur la maniere de réaliser la perspective
sur les coulisses. D’autre part, il faut croire que Démocrite et
Anaxagore, qui étaient des savants notoires, ne se sont pas
contentés de connaitre ces regles pratiques, mais qu’ils en ont
donné une justification théorique basée sur les « rayons visuels »
partant de 1’ceil.
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Il est étonnant que les Grecs aient regardés les rayons visuels
qui partent de I’ceil comme une réalité physique au méme titre
que les rayons lumineux. Nous tAtons pour ainsi dire les objets
avec nos rayons visuels. Nous apercevons une chose lorsqu’un
rayon visuel rencontre sur sa surface un rayon lumineux partant
de la source de la lumiére. Voir a ce sujet A. LEJEUNE, Fuclide

et Ptolémée, deux stades de optique géométrique grecque, Louvain,
1948.

/
B i/‘?;f) /

I
7

Fig. 2

Vitruve désigne du nom de skénographie la science de la

perspective; 1l témoigne par la une fois de plus que I’origine de -
| cette science est & chercher dans la peinture des décors de
| théatre.

On a trouvé a Pompéi des peintures murales exécutées sui-

- vant les régles de la perspective. Les prolongements des droites
. qui paraissent s’éloigner convergent vers un point (tableau I).
Ceux qui les ont peintes étaient des contemporains de Vitruve;
. leur maniére de peindre perspective venait probablement de
| celle des scénes thédtrales grecques.

3. LA PROJECTION STEREOGRAPHIQUE.

La projection stéréographique est une représentation de la

¢ surface d’une sphére dans le plan qui s’apparente & la perspec-

L’Enseignement mathém., t. I, fasc. 1-3. 4
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tive. C’est une projection centrale de la surface sphérique sur
le plan équatorial a partir du pdle Sud S (fig. 2). La propriété
principale de la projection stéréographique est: la projection
d’un cercle est un cercle.

Cette proposition est aisée a démontrer en s’appuyant sur
le théoréme 5 du premier livre d’Apollonius sur les coniques,
qui dit que certaines sections d’un cdne circulaire oblique sont
aussi des cercles. Pour formuler le plus simplement la condition
de ce théoréme, prenons comme plan du tableau (fig. 3) le plan

S

Fig. 3

de symétrie de la figure, c’est-a-dire le plan passant par les
poles Nord et Sud et le centre du cercle. Le plan du cercle
donné coupe le plan du tableau suivant le diametre AB. De méme,
le plan équatorial coupe le plan du tableau suivant CD. Ces
deux plans sont perpendiculaires au plan du tableau. Le cercle
de diametre AB est projeté a partir de S suivant un cone cir-
culaire oblique. Le théoréme d’Apollonius dit alors: la section
de ce cone par le plan CD est encore un cercle si les angles ABS
et CDS sont égaux.

Dans notre cas, le cercle AB étant situé sur la spheére, la
condition d’Apollonius est satisfaite. En effet, si on meéne par
le point S une tangente ST parallele & CD, ’angle CDS est égal
a Pangle DST qui est inscrit dans le méme segment circulaire
que Pangle ABS. Donc CDS = DST = ABS.
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I1 résulte donc du théoréme d’Apollonius que la section du
come par le plan équatorial est un cercle, c’est-a-dire que la
projection stéréographique d’un cercle est un cercle.

Le célebre astronome Ptolémée traite de la méthode de la
projection stéréographique dans son Planisphaertum, mais son
prédécesseur Hipparque (130 av. J.-C.) en avait déja parlé dans
un traité qui a disparu.

Tableau II

L’astrolabe est un instrument basé sur cette méthode de
projection. Il était trés répandu et apprécié au moyen age, sur-
tout dans le monde islamique. Le tableau II représente un astro-
labe persan de I'année 1223, qui se trouve maintenant au Musée
d’histoire des sciences a Oxford. L’anneau extérieur est divisé
en 360 degrés. Un disque circulaire mobile, centré sur ’anneau
extérieur et appelé araignée, porte des indications d’étoiles et un
cercle excentrique représentant Pécliptique. L’araignée est la
projection stéréographique de la spheére céleste. Sa rotation
imite la rotation journaliére (apparente) du ciel étoilé. Derriere
Paraignée se trouve un disque sur lequel ces cercles sont graveés.
L’arc de cercle qui partage la partie supérieure du disque repré-
sente I'horizon. Les cercles compris & Pintérieur de I’arc de
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I'horizon sont des cercles d’élévation paralléles & I’horizon
indiquant des élévations de 3°, 60, etc., en projection stéréogra-
phique. Le disque reste immobile lorsque I’araignée tourne. Si
on la tourne & droite et si on suit la course d’un des indicateurs
d’étoiles on voit d’abord I’étoile apparaitre a I’horizon, puis
culminer au méridien et enfin disparaitre a I’horizon. Le disque
est interchangeable afin que ’on puisse se servir de ’astrolabe
pour d’autres latitudes.

L’astrolabe peut servir a déterminer le temps aussi bien
pendant la nuit que de jour. Un dioptre se trouve en effet sur
sa partie postérieure. Si on suspend verticalement I'instrument
et qu’on vise une étoile ou le soleill a I'aide du dioptre, on peut
déterminer leur élévation sur le cercle gradué. A cette élévation
correspond un cercle d’élévation sur la partie frontale de I'ins-
trument. Observe-t-on une étoile, on tourne l’araignée jusqu’a
ce que I'indicateur de I’étoile se trouve exactement sur le cercle
d’élévation. Observe-t-on le soleil, 1l faut d’abord connaitre sa
position sur ’écliptique au jour en question. Marquant cette
position, on tourne le disque de maniere qu’elle soit située sur
Ihorizon (lever du soleil), puis on continue a le tourner a
droite jusqu’a ce qu’elle se trouve sur le cercle d’élévation. La
différence des deux lectures sur le limbe donne le temps écoulé
entre le lever du soleil et le moment de 'observation. On déter-
mine de la méme maniére le temps écoulé entre le coucher du
soleil et 'observation d’une étoile.

Le plus ancien astrolabe conservé jusqu’a nos jours est un
instrument arabe datant de ’an 984 . Mais Ptolémée mentionne
déja dans son Planisphaerium un appareil horoscopique avec une
araignée et la tradition rapporte d’Hipparque qu’il n’avait inséré
que 16 étoiles dans son astrolabe 2. On peut remonter encore plus
haut, car on trouve dans I’Architectura 1X 8 de Vitruve I'indi-
cation suivante: « C’est Eudoxe qui a inventé I’araignée, mais
d’apres les dires de quelques-uns, ce serait Apollonius. » Cela est
plausible si 'on admet qu’Eudoxe a inventé un instrument a
forme sphérique muni d’une araignée et qu’Apollonius ait

1 Voir T. G. GUENTHER, The asirolabes of the world, Oxford, 1932. T.e tableau II

provient de cette ceuvre magnifique.
2 Q0. NEUGEBAUER, The early history of the Astrolabe, Isis, 40 (1949), p. 240.
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construit I'astrolabe plan en utilisant la projection stéréogra-
phique. Apollonius était un grand mathématicien et il connais-
sait le théoréme sur les sections circulaires du cdne oblique
rappelé ci-dessus. S’il en est ainsi, on comprend que quelques-uns
attribuent 4 Eudoxe et d’autres a4 Apollonius l'invention de
I'araignée. Mais cela n’est qu’une hypothese.

—

4. LLES HORLOGES A EAU.

Vitruve décrit une horloge a eau, basée elle aussi sur ’emploi
de la projection stéréographique. Au lieu d’avoir des aiguilles
tournantes comme en ont nos montres, cette horloge posséde
un disque tournant, monté sur un axe horizontal. Cet axe est mu
par un cordon dont les extrémités sont attachées a un flotteur
et & un contrepoids (fig. 4). D’un récipient constamment rempli
d’eau jusqu’au bord débite un courant stationnaire dans un plus
grand vase. Le niveau de I’eau s’éléve dans ce vase et avec lui
le flotteur; d’ott un mouvement de rotation uniforme du disque.

Le ciel étoilé est reproduit stéréographiquement sur le disque.
Le cercle excentrique de la figure 5 représente 1’écliptique. Sur
son limbe 365 ou 366 trous sont percés, un pour chaque jour de
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Pannée. Une cheville figurant le soleil est enfoncée chaque jour
dans le trou correspondant. 183 trous suffisent si la cheville n’est
enfoncée que chaque deuxiéme jour dans le trou suivant .

Le débit de I'’eau est réglé de telle facon que le disque effectue
un tour par jour stellaire. La rotation du disque correspond alors
exactement au mouvement journalier de la sphére céleste et du
soleil.

Un réseau formé d’un arc d’horizon et de 11 lignes horaires
est placé devant le disque. La sixiéme ligne horaire est une
droite (le méridien), la douziéme est la partie droite de I'arc
d’horizon, celle du coucher du soleil.

Les Grecs et les Romains divisaient le jour en 12 heures,
depuis le lever jusqu’au coucher du soleil (de méme la nuit).
Les heures du jour étaient donc plus longues en été qu’en hiver.
Cela obligeait de tenir compte de la marche du soleil et des
saisons dans la construction des horloges. Leur construction efit
été bien plus simple si toutes les heures avaient été égales: une
aiguille unique et un seul cadran eussent suffit comme dans nos
horloges. Toute la complication de la mesure du temps dans
I'antiquité provient de I'inégalité des heures du jour et de la nuit.

On pouvait régler ’horloge & chaque lever ou coucher du
soleil: 1l suffisait pour cela de placer le disque de la maniére
que la cheville figurant le soleil soit située exactement sur le
cercle d’horizon. Au besoin, I’horloge pouvait étre réglée a midi,
en observant le passage du soleil par le méridien. L’horloge per-
mettait de connaitre ’heure au cours de la journée, méme si le
soleil était caché, ce qui n’est pas possible avec une horloge
solaire.

L’horloge a eau n’existait pas seulement sur le papier dans
le traité de Vitruve; elle existait aussi en réalité. On a trouvé
un fragment du disque en bronze d’une telle horloge au cours
des fouilles effectuées dans un camp militaire romain a Salzbourg
(Autriche). Albert REaM a reconstruit le disque a partir de ce
fragment en se laissant guider par la description de Vitruve 2.

1 A. REHM, Zur Salzburger Bronzescheibe, Jahreshefte dsterr. archdol. Inst. Wien,
6 (1903), p. 41.

2 La description de Vitruve manque de clarté. Albert Reum a interprété le passage
de Vitruve en se basant sur sa reconstruction du disque en bronze de Salzbourg (voir
ci-dessous). I.a description que nous donnons ici repose sur celle de Rehm.
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Le tableau 11T montre cette reconstruction & c6té du fragment
trouvé. Le diamétre du disque était de 2 métres; horloge était
probablement placée sur une place publique comme le sont les

m"deV¢is des ,5“‘“\30“

Tableau I1I Tableau IV

tours & horloge. Le cercle de I’écliptique était divisé en 12 parties
correspondant aux 12 signaux zodiacaux.

Le tableau IV montre le réseau servant a la lecture des heures,
tel que REuM I’a construit d’aprés les données de Vitruve. Les
cercles concentriques représentent I'équateur et quelques
paralleles sur lesquels le soleil se meut aux différentes saisons.
Sur chaque parallele I'arc d’horizon est divisé en 12 parties
égales. Les lignes horaires joignent les points de division.
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AUSGEWAHLTE EINZELPROBLEME
DER KOMBINATORISCHEN GEOMETRIE
IN DER EBENE

VON

H. Hapwicer und H. DEBRUNNER, Bern

Es gibt verschiedene mathematische Sachgebiete, wo elemen-
tare Aufgaben unmittelbar in hohere und teilweise ungeloste
Fragestellungen iibergehen, so dass dort einfachste Gegensténde
der Schulmathematik eng benachbart mit solchen sind, die
wissenschaftliches Interesse bieten und von Spezialisten bear-
beitet werden. Wesentlich ist dabei, dass die beiden fachlichen
Standorte nicht wie iblich durch weit ausgebaute hohere
Theorien und vielschichtige Begriffsskalen voneinander getrennt
sind.

Ein Sachgebiet dieser Art ist die kombinatorische Geo-
metrie, die bei Beschrinkung auf die Ebene einen besonders
einfachen Charakter aufweist. Thre Fragestellungen kniipfen
unmittelbar an die Grundbegriffe der ebenen Elementar-
geometrie an und beziehen sich dann auf die Vielfalt der pri-
mitivsten Vorginge und Verkniipfungen wie diejenigen des
Umfassens, Treffens und Zerlegens usw. und auf die hier in
Erwigung zu ziehenden kombinatorischen Moglichkeiten.

Das Gebiet 1st mit der kombinatorischen Topologie verwandt;
jedoch tritt die eigentlich topologische Betrachtungsweise stark
zuriick, und die Problematik bleibt der Elementargeometrie
verpflichtet. Wie dies von H. Horr [22] ! ausfiihrlicher geschil-

1 Eckige Klammern verweisen auf das Literaturverzeichniss am Schluss der Arbeit.
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dert worden ist, treten in der kombinatorischen Geometrie
metrische und topologische Gesichtspunkte in eine gewisse Wech-
selbeziehung.

Die von uns vorgenommene Zusammenstellung zahlreicher
Einzelprobleme hélt sich tibrigens nicht vollkommen streng an
den methodischen Rahmen der kombinatorischen Geometrie;
diese bildet nur das engste Kernstiick eines Fragenkreises, der
durch die Ganzheit und Einfachheit seiner Gegenstédnde und
durch den rein kombinatorischen Habitus der erforderlichen
Schliisse einen besonderen Anreiz auszuiiben vermag.

Wie man — um dieser Geschmacksrichtung zu folgen und
um sich damit einer Wandlung anzupassen, die methodisch und
sachlich vom gewohnten klassischen Machtbereich zu einem mehr
neuzeitlich orientierten Arbeitsgebiet mit neuartigen reizvollen
Moglichkeiten iiberfiihrt — ausgeriistet mit nur elementaren
Begriffen fragen kann, das soll durch die hier zusammengetrage-
nen Beispiele dem Leser nahe gebracht werden.

An Vorkenntnissen ist ausser den allgemeinen Grundlagen
der Elementargeometrie und der Lehre von den reellen Zahlen
wenig erforderlich; eine gewisse Vertrautheit mit dem mengen-
méssigen Denken ist niitzlich; wichtig ist der Begriff der ebenen
Punktmenge. Wo erforderlich, werden weniger gelaufige Bezeich-
nungen kurz erldutert.

In Teil I. werden ausgesuchte Lehrsitze, nach Aussagen-
gruppen geordnet, ohne Beweis, aber mit einldasslicherem Komni-
mentar und mit Literaturhinweisen zusammengestellt. Die
Beweise — vielfach nur kurz angedeutet — folgen in Teil II.
So findet mancher Leser auch Gelegenheit, sich im Aufsuchen und
Ausfiithren eigener Beweisideen zu iiben. Besondere Interessenten
mogen durch die zahlreichen Zitate auch da und dort den Weg
zu aktueller Fachliteratur finden und auch die angedeuteten
ungelosten Probleme weiterverfolgen.

Wir hoffen mit diesen ausgewihlten Einzelproblemen Anre-
gung zu intensiverer Beschéftigung mit den anziehenden Fragen
der kombinatorischen Geometrie zu bieten und den in diesem
Sachgebiet bestehenden unmittelbaren Kontakt zwischen Schul-
mathematik und wissenschaftlicher Forschung zu lebendiger
Wirkung gelangen zu lassen.
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I. TeIL.

Die Aussagen der ersten kleinen Gruppe beziehen sich auf
Inzidenzverhiltnisse bei Punkten, Geraden und Kreisen und
gehoren also der kombinatorischen Elementargeometrie an.

1. Liegt auf der Verbindungsgeraden je zweier Punkte einer end-
lichen Punktmenge stets wenigstens ein dritter Punkt der
Menge, so liegen alle Punkte auf einer Geraden.

NVAAVA .
VAVAV
VAVAV:

VAVAVA
SVAVA

AVAVAY
QVAVAVAYY

Fic. 1

Zu diesem 1893 von J. J. SYLVESTER [b5] vermuteten Theo-
rem findet sich ein kurzer Beweis von T. Gavrra1 (Grinwald) bei
N. G. pE Brunyn-P. Erpos [6], wo die Aussage auch als Korollar
eines rein kombinatorischen Satzes erscheint. Fir weitere
Beweise, Verallgemeinerungen und Varianten vgl. P. Erpos [11],
H. S. M. CoxetERr [7], G. A. Dirac [9] und Th. Morzxin [39].

2. Geht durch den Schnittpunkt je zweier Geraden einer endlichen
Geradenmenge stets wenigstens eine dritte Gerade, so gehen
alle Geraden durch einen Punkt.

Die Aussagen 1 und 2 sind nicht mehr richtig, wenn die
Punkt- und Geradenmengen nicht endlich sind. Dies zeigt bei-




KOMBINATORISCHE GEOMETRIE IN DER EBENE 59

spielsweise fiir beide Aussagen simultan das regulére abzihlbar-
unendliche Punkt- und Geradensystem in Fig. 1.

3. Liegt auf jeder Kreislinie durch je drei Punkte einer endlichen
Punktmenge stels wenigstens ein vierter Punkt der Menge, so
liegen alle Punkte auf einer Kreislinte.

In Voraussetzung und Behauptung eng mit Aussage 3 ver-
wandt ist der folgende Satz iiber beschrénkte (d.h. in einem
Kreis von endlichem Radius enthaltene) abgeschlossene Punkt-
mengen:

4. Hat eine beschrinkte, abgeschlossene Punktmenge die Eigen-
schaft, dass die Symmetrieachse je zweter Punkte auch Symme-
irteachse der ganzen Menge ist, so lieger. thre Punkte auf einer
Kreuslinie.

Dass die Aussagen 3 und 4 fir nicht endliche und nicht
beschrinkte Punktmengen unrichtig werden, ist dann trivial,
wenn man kontinuierlich-unendliche Punktmengen in Betracht
zieht. In der Tat gentiigt es, die ganze Ebene als Punktmenge zu
betrachten. Dagegen gibt es auch abzihlbar-unendliche Punkt-
mengen, fiir welche die Voraussetzungen von Aussage 3 und 4
erfilllt sind, ohne dass sie Tellmengen einer Kreislinie sind. In
der Tat: Man wihle eine aus vier Punkten bestehende Menge A,
die nicht auf einer Kreislinie oder einer Geraden liegt. Nun
konstruiere man auf rekursive Weise eine aufsteigende
Folge endlicher Punktmengen A, (n = 0, 1, ...), indem man
AL =9 (A (n =1, 2, ...) setzt, wobei ¢ (A) die Vereinigungs-
menge aller Punktmengen bezeichnet, die durch Spiegelung
von A an sdmtlichen Symmetrieachsen von Punktepaaren aus A
hervorgehen. Wie man sich leicht iiberlegt, ist die Vereinigungs-
menge S = U A, eine abzdhlbar-unendliche Punktmenge mit
der gewiinschten Symmetrieeigenschaft; auf jeder durch drei
| Punkte von S gelegten Kreislinie liegt stets wenigstens ein vierter
Punkt von S, falls die drei Punkte nicht ein reguldres Dreieck
¢ Dbilden, und bei geringfiigiger Erweiterung der Konstruktion o
48 cuch in diesern letztern Falle.
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Wir lassen eine weitere Gruppe von Aussagen folgen, in
welchen die Ganzzahligkeit oder auch die Rationalitit von
Distanzen eine Rolle spielt.

Die Menge der Punkte, deren Koordinaten beziiglich eines
orthogonalen Koordinatensystems ganz sind, bilden das ebene
Einheitsgitter; ihre Punkte heissen Gitterpunkte.

/ B ~~
[
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[
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~~— _ l
Fic. 2

5. Bilden n Gitterpunkte (n > 2) ein regulires n — Eck, so ist
n =4, d.h. das Quadrat ist das einzige regulire Viereck, das
im Einheitsgitter eingelagert werden kann.

Einen originellen Beweis hierfiir gab W. ScueERRER [52], fiir
den Fall n = 3 vgl. auch G. PoLyaA-G. Szecé [43], Bd. 2, S. 156,
Aufgabe 238.

Ein Quadrat lasst sich selbstverstandlich auch auf nicht-
triviale Weise im Gitter einlagern; dies illustriert Fig. 2. Uber
die Eckenwinkel eingelagerter Rhomben gilt die Aussage:

6. DBilden vier Gitterpunkte einen nichiquadratischen Rhombus
mit dem Eckenwinkel o, so tst o/ trrational ; d.h. das Quadrat
ist der einzige im Einheitsgitter eingelagerte Rhombus, dessen
Eckenwinkel mit dem vollen Winkel kommensurabel sind.

Im engsten Zusammenhang hiermit steht eine Feststellung
tiber die Winkel in pythagoreischen Dreiecken, d.h. in recht-
winkligen Dreiecken mit ganzzahligen Seitenlingen. Hier gilt:
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7. Ist o ein Basiswinkel eines pythagoreischen Dreiecks, so ist a/n
irrational.

Die Aussagen 6 und 7 sind geometrische Korollarien des

folgenden goniometrischen Satzes (vgl. H. Hapwicer [18]):

¥ 8. [st0< o< 7/2 und fallt cos o rational aus, so ist entweder

o = /3 oder ofm ist irrational.

9. Hat eine unendliche Punktmenge die Eigenschaft, dass thre

Punktepaare ganzzahlige Distanzen aufweisen, so liegt ste ganz
auf einer Geraden.

Dieser Satz von P. Erpos [12] (vgl. auch A. DeLAcCHET [8],
S. 50 und E. Trosrt [b7]) darf als besonders typisch fiir eine
gewisse Kategorie von Aussagen gelten, die uns dadurch beson-

. ders ansprechen, dass aus einfachsten Voraussetzungen eine

starke und unerwartete Folgerung gezogen wird.

Besonders beachtenswert ist der Umstand, dass aus 9 nicht
der Schluss gezogen werden darf, es gebe eine Hochstzahl £
derart, dass die Behauptung immer schon dann gilt, wenn die
Anzahl % der Punkte mit ausschliesslich ganzzahligen Punkt-
distanzen grosser 1st als k,. Es gibt ndmlich zu jedem % derartige
Punktmengen, die nicht linear sind, sogar solche der Eigenschaft,
dass keine drei Punkte auf einer Geraden liegen. Solche Punkt-
mengen wurden wiederholt konstruiert, u.a. von M. ALtweaa [1],
A. MULLER [40] und F. StEIGER [53].

Nach einer Idee von A. MULLER ldsst sich eine auf der
Einheitskreislinie dicht liegende, abzéhlbar-unendliche Punkt-
menge angeben, welche die Eigenschaft aufweist, dass jedes

¢ Punktepaar eine rationale Distanz besitzt. Es sei ndmlich P,
B der Punkt mit den Polarkoordinaten p =1, ¢ = 2n6, wo 6 durch
cos 0 = 4/5 bestimmt 1st, so dass nach Aussage 8 6/ irrational
¥ wird. Die Punkte der Folge P, (n = 0, 1, ...) sind paarweise
f verschieden und die erzeugte abzihlbar-unendliche Punktmenge
| liegt auf der Einheitskreislinie. Sie liegt dort dicht und nach dem
B Gleichverteilungstheorem von H. WEeyL sogar gleichverteilt,
| doch ist dies hier ohne Bedeutung. Fiir eine Distanz eines

Punktepaares ergibt sich d (P,, P,) = 2 l sin (n — m) 0 ], und
wegen sin 6 = 3/5 und cos O = 4/5 ist dies nach goniometri-
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schen Formeln eine rationale Zahl. Betrachtet man jetzt &
Punkte dieser Menge, so lisst sich durch eine geeignete dhnliche
Vergrosserung erzielen, dass alle auftretenden Distanzen ganz-
zahlig werden. Dabei liegen keine drei Punkte auf einer Geraden !

*
* %

Die folgende Aussagengruppe befasst sich mit der Hiillen-
bildung und Separation bei ebenen Punktmengen. Zunéchst
einige Erkldrungen: FEine Punktmenge heisst bekanntlich
konvex, wenn sie mit zwei Punkten stets auch die ganze Ver-
bindungsstrecke enthilt. Unter der konvexen Hiille einer Punkt-
menge versteht man die kleinste konvexe Punktmenge, welche
jene als Teil enthilt. Mit andern Worten ist die konvexe Hiille
der Durchschnitt aller konvexen Punktmengen, welche die
gegebene als Teil enthalten.

10. Ein Punkt gehirt dann und nur dann zur konvexen Hiille
einer Punktmenge, wenn er bereits der konvexen Hiille von
drei geeigneten Punkten der Menge angehort.

Aus dieser Aussage folgt, dass die konvexe Hiille identisch
ist mit der Vereinigungsmenge aller Dreiecksbereiche, deren
Ecken der gegebenen Menge zugehoren.

11. Eiwn Punkt ist dann und nur dann tnnerer Punkt der konvexen
Hiille einer Punktmenge, wenn er bereits innerer Punkt der
konvexen Hiille yvon vier geeigneten Punkten der Menge ist.

Die Aussagen 10 und 11 sind ebene Sonderfille niitzlicher,
von E. SteiniTz [54] und W. Gustin [17] stammender Sitze.
Vgl. auch O. HannNeEr-H. RapsTrom [20] und C. V. RoBINsON
[49].

Zwel Punktmengen wollen wir separierbar nennen, wenn es
eine Gerade gibt, welche keine der Mengen trifft und sie vonein-
ander trennt; beide Punktmengen liegen dann im Innern der
beiden Halbebenen, die durch die Gerade erzeugt werden. Uber
die Separierbarkeit gilt das folgende Kriterium von P. Kircn-
BERGER [29] (vgl. auch H. RApEMACHER-I. J. SCHOENBERG [44]):
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Zwei Punktmengen sind dann und nur dann separierbar,
wenn je zwei threr Teilmengen, deren Vereinigung hochstens
vier Punkte enthalt, separierbar sind.

Jede Punktmenge, die wenigsiens vier Punkte enthdlt, ldsst
sich in zwei nichtleere, punktfremde und nichtseparierbare
Teilmengen zerlegen.

Hiezu vgl. F. W. Levi [36] und R. Rapo [46].

*
* ®

Wir wenden uns jetzt einem Fragenkreis zu, in dessen Mittel-
punkt das beriihmte Hellysche Theorem steht. Die zahlreichen
Varianten, Siatze vom Hellyschen Typ, die sich in der Regel auf
Eibereiche beziehen, bilden einen sehr typischen Teil der kom-
binatorischen Konvexgeometrie.

Unter einem FEibereich verstehen wir hier eine beschrinkte,
abgeschlossene und konvexe Punktmenge.

14. Haben je drei Eibereiche einer (endlichen oder unendlichen)
Menge von Eibereichen eitnen Punkt gemeinsam, so haben alle
Eibereiche der Menge einen Punkt gemeinsam.

Dies ist der ebene Sonderfall des bekannten Hellyschen
Satzes. Vgl. E. HELry [21], J. Rapox [48], D. Ko~N1g [35], u.a.m.-
Wie man unmittelbar mit einfachsten Beispielen einsieht, kann

1 die Anzahl drei nicht durch zwei ersetzt werden. Dies ist aber
. bei starken Voraussetzungen iiber die Gestalt der Eibereiche

moglich. So gilt die folgende Variante:

15. Haben je zwei Rechtecke einer Menge parallel orientierter
Rechtecke einen Punkt gemeinsam, so haben alle Rechtecke
der Menge einen Punkt gemeinsam.

Dagegen gilt: Ein Eibereich, der nicht ein Parallelogramm

% ist, lasst sich in drei Lagen verschieben, so dass je zwei der
4 translationsgleichen Eibereiche einen Punkt gemeinsam haben,
z& nicht aber alle drei. Fiir Parallelogramme ist dies nicht moglich
B Dic Giltigkeit einer Aussage der Art 15 mit leichter Modifikation
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ist demnach fiir Parallelogramme charakteristisch. Vgl. hierzu
auch B. Sz.-Naay [41]. |
Ein Korollar von 15 ist der Hellysche Satz fiir die Gerade:

16. Haben in einer Geraden je zwet Strecken einer Sireckenmenge
etnen Punkt gemeinsam, so haben alle Strecken der Menge
etnen Punkt gemeinsam.

Es 1st naheliegend und fiir viele Anwendungen niitzlich,
Satze vom Hellyschen Typ auch fiir die Kreislinie aufzustellen;
an Stelle der Eibereiche treten hier abgeschlossene Kreisbogen,
die selbstverstdndlich alle demselben Trégerkreis angehoren
sollen.

17. Hat eine Menge von Kreisbogen, die alle kleiner als Halb-
kreise sind, die Eigenschaft, dass je drev Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge etnen Punkit
gemeinsam.

Die Bedingung iiber die Grosse der Bogen kann hier nicht
gemildert werden, indem die Aussage bereits fiir Halbkreise
falsch wird. In der Tat haben von den vier Halbkreisen, die durch
zwel verschiedene Paare antipodischer Punkte der Kreislinie
entstehen, je drei, aber nicht alle vier einen Punkt gemeinsam.
Auch kann die Anzahl drei nicht durch zwei ersetzt werden.
Von den drei Drittelskreisen, die die ganze Kreislinie iiberdecken,
haben je zwei, aber nicht alle drei einen Punkt gemeinsam.
Dagegen gilt:

18. Hat eine Menge von Kreisbogen, die alle kleiner als Drittels-
kreise sind, die Eigenschaft, dass je zwei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen
Punkt gemeinsam.

Lassen wir jede Voraussetzung iiber die Grosse der Bogen
fallen, so gilt noch:

19. Hat eine Menge von Kreisbogen die Eigenschaft, dass je zwet
Bogen einen Punkt gemeinsam haben, so gibt es ewn antipo-
disches Punktepaar so, dass jeder Bogen der Menge wenigstens
einen Punkt des Paars enthdlt.
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Es gibt mit andern Worten eine Durchmessergerade des
Kreises, die alle Kreisbogen trifft. Sitze dieser Art wurden
w.a. von C. V. RoBinson [49] und A. Horn-F. A. VALENTINE [25]
aufgestellt. Hiilbsche Anwendungen, wie wir solche auch weiter
unten angeben werden, hat P. Vincensint [59] entdeckt.

20. Lidsst sich ein Eibereich stets so verschieben, dass er im Durch-
schnitt von je drei Bereichen einer Euibereichsmenge enthalten
ist, dann auch so, dass er im Durchschniit aller Eibereiche der
Menge liegt.

21. Ldsst sich ein Etbereich stets so verschieben, dass er je dret
Bereiche einer Eibereichmenge trifft, dann auch so, dass er
alle Bereiche der Menge trifft.

22. Ldsst sich ein Etbereich stets so verschieben, dass er je dret
Bereiche einer Etibereichmenge enthilt, dann auch so, dass
er alle Bereiche der Menge enthiilt.

Dies sind ebene Sonderfille allgemeinerer, sich auf hohere
Dimensionen beziehender Varianten des Hellyschen Satzes, die
von P. ViNcensiNI [58] und V. L. Kiee jr. [32] formuliert
wurden. Wesentlich fiir die Giiltigkeit dieser Aussagen ist die
Bedingung, dass die Eibereiche in der Ebene nur verschoben
und nicht etwa auch gedreht werden diirfen. Wird an Stelle der
Translationsgruppe die Bewegungsgruppe gesetzt, so sind alle
drei Aussagen falsch.

Wir belegen dies ausfiihrlicher durch ein Beispiel zu Aus-
sage 21. Man betrachte die Menge der n Kreise (n > 2) deren
Mittelpunkte durch die Polarkoordinaten p = 1 und ¢ = 2kn/n
(k =1, ..., n) gegeben sind, und deren Radius r = cos? (w/n)
bzw. r = cos? (n/n) + cos? (x/2n) — 1 ist, falls n gerade bzw.
ungerade gewdhlt wurde. Wie man jetzt bestitigen kann, ldsst
sich eine Strecke (uneigentlicher Eibereich) der Linge 2 stets
so legen, dass je n— 1 Kreisscheiben der Kreismenge, nicht
aber so, dass alle n Kreisscheiben getroffen werden. Die Strecke
muss hiezu jedoch passend gedreht und verschoben werden.
Fig. 3 illustriert dies im Falle n = 8.

L’Enscignement mathém., t. I, fasc. 1-3. )
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23. Haben je zwer Etibereiche einer Eibereichmenge einen Punkt
gemeinsam, so lasst sich durch jeden Punkt der Ebene eine
Gerade legen, welche alle Eibereiche der Menge trifft.

24. Haben je zwer Eibereiche einer Etibereichmenge einen Punkt
gemewnsam, so ldisst sich zu jeder Geraden der Ebene eine
parallele Gerade legen, welche alle Eibereiche der Menge trifft.

Fic. 3

Auch diese beiden Aussagen 23 und 24 sind ebene Sonder-
fialle allgemeinerer Sétze von A. Horn [24] und V. L. KLEE jr.
[30]; sie beantworten die Frage, was sich an Stelle der Behaup-
tung des Hellyschen Satzes noch aussagen lasst, wenn die Anzahl
drei durch zwei ersetzt wird.

Man kann sich fragen, ob sich im Hellyschen Satz Punkt
durch Gerade in dem Sinn ersetzen lédsst, dass eine Aussage der
folgenden Form richtig ist: Werden je & Bereiche einer Eibereich-
menge von einer Geraden getroffen, so gibt es eine Gerade, welche
alle Bereiche der Menge trifft. Existiert eine solche Hellysche
Stichzahl ?

Die Antwort ist verneinend ! Bereits L. A. SaAnTALO [50] hat
bemerkt, dass zu jedem natiirlichen n> 2 eine Menge von n
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Eibereichen so konstruiert werden kann, dass je n — 1 Bereiche
der Menge eine gemeinsame Sekante, nicht aber alle n eine solche
aufweisen. Dasselbe belegt auch unser Beispiel; das wir an
Aussage 21 angeschlossen haben. Sétze der erwidhnten Art,
lassen sich nur aufstellen, wenn iiber Gestalt und Lage der
Eibereiche zusétzliche Voraussetzungen getroffen werden. So
hat L. A. SANTALO [50] bewiesen, dass alle Rechtecke einerMenge
parallel orientierter Rechtecke wvon einer Geraden getroffen

‘ /
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Fic. 4

werden, falls dies fiir je sechs Rechtecke der Menge zutrifft. Wir
fiigen hier die folgende Aussage an:

25. Werden je drei Rechtecke einer Menge parallel orientierter
Rechiecke von einer ansteigenden Geraden getroffen, so gubt

es eine ansteigende Gerade, welche alle Rechtecke der Menge
trifft.

Wir nehmen hierbei an, dass die Rechtecke parallel zu einem
orthogonalen Koordinatensystem orientiert sind:; eine Gerade

1st ansteigend, wenn ihr Steigungsmass nichtnegativ ist. Vgl,
hiezu Fig. 4.

Das oben dargelegte Beispiel (Fig. 3), das die Nichtexistenz
einer Hellyschen Stichzahl % im allgemeinsten Fall beweist,
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zeigt die auffallende Sachlage, dass sich die Eibereiche (Kreis-
scheiben) gegenseitig teilweise iiberdecken. Hier ist es naheliegend
die Frage aufzuwerfen, ob sich eine Hellysche Stichzahl dann
angeben lasst, wenn vorausgesetzt wird, dass die Eibereiche paar-
weise fremd sind, d.h. keine Punkte gemeinsam haben. Die
Antwort auf diese auch von V. L. KLEE jr. [33] aufgeworfene
Frage 1st wieder verneinend.

N

~_| 7

Fig. 5

Wir konstruieren ein Beispiel — eine Kreissegmentrosette —
um diese Behauptung zu belegen. Es sei n > 1; S; und S
(i = 1, ..., 2n) sollen insgesamt 4n Kreissegmente der 2n kon-
zentrischen Kreise K; (i = 1, ..., 2n) mit Zentrum Z und den
Radien R; (i = 1, ..., 2n) bezeichnen, wobei sich S; und S}
beziiglich Z zentralsymmetrisch entsprechen sollen. Fir die
Radien sei zundchst nur 0 < R; < R, festgelegt. Die Segmente
der Kreise K; sollen nachfolgend durch die Polarkoordinaten der
Punkte ihrer Kreisbogen charakterisiert werden:

S;: p = Ry; (i-n+1) (/2n) < ¢ < (1+n-1) (w/2n)

Si: ¢ = Ry; (i+n+1) (x/2n) < ¢ < (i+3n-1) (n/2n).

1
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Auch im Hinblick auf weitere Verwendungsméglichkeiten wollen
wir einige Eigenschaften unserer Kreissegmentrosette festlegen:

A.

H.

Die Radien R; konnen so gewihlt werden, dass die 4n Seg-
mente paarweise fremd sind; sie miissen nur ausreichend
stark anwachsen. Fig. b zeigt eine Rosette dieser Art fiir
n = 2.

. Es gibt keine Gerade, welche alle 4n Segmente trifft. Be-

trachten wir zunéchst eine Gerade durch Z. Wegen der
4n-zihligen Drehsymmetrie in der Koordinate ¢ geniigt es
anzunehmen, dass der Winkel der Geraden im Intervall
0 < o < =w/2n liegt. Die Segmente S, und S} werden von
einer solchen Durchmessergeraden nicht getroffen. Eine zu
ihr parallele Gerade trifft aber entweder S, oder Sz nicht.

Es gibt keinen Punkt, der allen 4n Segmenten angehort. Dies
ist eine triviale Folgerung aus B.

. Im Falle R; = R (i = 1, ..., 2rn) haben je 2n — 1 Segment-

paare ein antipodisches Punktepaar gemeinsam. Es geniigt,
alle Paare ausser S, und S zu betrachten. Die beiden Punkte
o= R, 9 =0und p = R, ¢ = = gehoren ihnen an.

Im Falle R; = R (¢ = 1, ... 2n) gibt es kein antipodisches
Punktepaar, das allen Segmentpaaren angehort. Dies ist eine
triviale Folgerung von B.

Je 2n — 1 Segmente werden von einer durch Z laufenden
Geraden getroffen. Dies ist ein Korollar zu D; hier ist aber
die Bedingung iiber die Gleichheit der Radien unerheblich,
so dass die vorliegende Behauptung auch dann gilt, wenn
die Segmente paarweise fremd sind.

Im Falle R; = R (i =1, ..., 2n) gibt es zu jeder Auswahl
von je 2n — 1 Segmenten zwei Punkte so, dass jedes Seg-
ment der Auswahl wenigstens einen der beiden Punkte
enthélt. Dies ist ein Korollar zu D.

Es gibt nicht zwei Punkte so, dass jedes der 4n Segmente

wenigstens einen der beiden Punkte enthialt. Dies ist ein
Korollar zu B.
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Mit den Eigenschaften A, B, und F ergibt sich nun in der
Tat die Verneinung der oben erorterten Frage. Die gleiche
Rosette ermoglicht es weiter, auch die Nichtexistenz weiterer
Satze vom Hellyschen Typ, welche gelegentlich erwogen worden
sind, nachzuweisen.

So teilte im Anschluss an eine Arbeit von L. A. SANTALO [51],
Th. MorzkIN ein Gegenbeispiel zu folgendem Satz mit: Haben

Fic. 6

je h Eibereichpaare einer Menge von Eibereichpaaren einen
Punkt gemeinsam, so haben alle Eibereichpaare der Menge einen
Punkt gemeinsam. Auch unsere Kreissegmentrosette widerlegt,
dies; im Falle gleicher Radien zeigen dies ndmlich die Eigen-
schaften D und E.

V. L. KigE jr. [31] hat einmal die Frage aufgeworfen, ob
es eine Hellysche Stichzahl & so gibt , dass der folgende Satz
richtig ist: Gibt es zu je h Eibereichen einer Eibereichmenge
zwei Punkte so, dass jeder Bereich der Auswahl wenigstens einen
der Punkte enthilt, so trifft dasselbe fiir alle Bereiche der Menge
zu. — Wieder existiert kein derartiger Satz; unsere Rosette
beweist auch das, und zwar sind es 1m Falle gleicher Radien
die Eigenschaften G und H, die den Nachweis liefern.
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Nicht entschieden ist die Frage, ob es im Falle von Mengen
paarweise fremder und kongruenter (oder translationsgleicher)
Eibereiche eine Hellysche Stichzahl % so gibt, dass alle Eibe-
reiche von einer Geraden getroffen werden, falls dies fiir je £
Eibereiche zutrifft. Es ist naheliegend, die Frage zuné&chst fur
Mengen paarweise fremder kongruenter Kreise zu untersuchen.
Obwohl die Existenz einer solchen Zahl % hier recht plausibel
gemacht werden kann, konnte keine Abklérung der Frage erzielt

\
0

D
&
\

Fic. 7

werden. Jedenfalls miisste 2 > 5 sein, wie die einfache in Fig. 6
dargestellte Menge von finf regelméssig angeordneten Kreisen
zeigt.

Dagegen gilt folgende Aussage iiber dhnliche, gleichliegende
Eibereiche:

26. Werden je vier Bereiche einer Menge homothetischer Eibereiche
von einer Geraden getroffen, so gibt es vier (paarweise parallele
bzw. orthogonale) Geraden derart, dass jeder Eibereich der
Menge von mindestens einer der Geraden getroffen wird.

Die vorliegende Gruppe der Aussagen vom Hellyschen Typ
wollen wir noch mit einer von P. VinceEnsint [59] entdeckten
Variante abschliessen. Ein System von Eibereichen wollen wir
total separierbar nennen, wenn es eine Richtung so gibt, dass
jede Gerade dieser Richtung hochstens einen Eibereich des
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Systems trifft. Es lasst sich dann in der Ebene ein System von
paarweise fremden Parallelstreifen bilden, so dass jeder Streifen
genau einen Eibereich des Systems enthilt. Vgl. hiezu Fig. 7.
Es gilt:

27. Werden je drei Etbereiche eines total separierbaren Eibereich-
systems von einer geeigneten Geraden getroffen, so gibt es eine
Gerade, die alle Bereiche des Systems trifft.

-~

Fic. 8

Die von P. VINCENsINI angegebene Stichzahl war kA = 4.
Anschliessend hat V. L. KLEE jr. [34] bemerkt, dass sich der
Satz verschirfen lidsst, indem man die Stichzahl auf 2 = 3
reduzieren kann.

Ein Korollar zu 27 ist der Satz von L. A. SANTALO [50] (vgl.
auch H. RADEMACHER-I. J. SCHOENBERG [44]), wonach alle
Strecken einer Menge paralleler Strecken eine gemeinsame
Transversale aufweisen, falls dies bereits fiir je drei Strecken der
Menge zutrifft.

Im Hinblick auf Aussage 27 interessiert die Frage, welche
weitern, Eigenschaften eines Eibereichsystems es erlauben, auf
seine totale Separierbarkeit zu schliessen. In diesem Zusammen-
hang erwihnen wir, dass dies zum Beispiel dann moglich ist,
wenn die Eibereiche in der Ebene hinreichend diinn verstreut
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sind; dies lasst sich durch die Grosse der Gesichtswinkel
beschreiben. Vgl. hiezu Fig. 8. Es gilt:

28. Sind die Eibereiche eines Systems so diinn verstreut, dass von
keinem Blickpunkt der Ebene aus mehr als ein Bereich des
Systems unter einem Gesichtswinkel von w/3 oder grisser
erscheint, so ist das System total separierbar.

& * *

Es folgt nun zum Schluss eine kleine Gruppe von Aussagen,
die lose mit dem bekannten Satz von H. W. E. Junc [26] tiber
die Grosse des Hiillkreises einer Punktmenge von gegebenem
Durchmesser zusammenhéingen. Zunéchst sollen einige Erkla-
rungen vorausgeschickt werden.

Eine Punktmenge nennt man bekanntlich beschrdinkt, wenn
sie durch einen Kreisbereich iberdeckt werden kann. Im Zusam-
menhang mit den unten folgenden Feststellungen wollen wir eine
Geradenmenge beschrinkt nennen, wenn sie keine parallele
Geraden enthélt und wenn die Menge der Schnittpunkte, die
durch thre Geraden erzeugt werden, beschrankt ist.

Der Deckradius einer beschrénkten Punktmenge ist der
Radius des kleinsten (abgeschlossenen) Kreisbereichs, der alle
Punkte der Menge enthélt. Entsprechend definieren wir: Der
Treffradius einer beschrdnkten Geradenmenge ist der Radius
eines kleinsten (abgeschlossenen) Kreisbereichs, der alle Geraden
der Menge trifft. o

Der Durchmesser einer beschriankten Punktmenge ist die
obere Grenze der Menge der Distanzen, die durch Punktepaare
der Menge gebildet werden. Entsprechend definieren wir: Der
Durchmesser einer beschréankten Geradenmenge ist der Durch-
messer der Schnittpunktmenge.

29. Lassen sich je drei Punkte einer beschrinkten Punktmenge
durch einen Kreisbereich vom Radius R iiberdecken, so ldisst
sich die ganze Menge durch einen solchen Kreisbereich
iiberdecken.

30. Lassen sich je drei Geraden einer beschrinkten Geradenmenge
durch einen Kreisbereich vom Radius r treffen, so gibt es



74 H. HADWIGER UND H. DEBRUNNER

einen solchen Kreisbereich, der alle Geraden der Menge
trifft.

Es handelt sich hier um Spezialfille von Aussage 21.

31. Fiir den Deckradius einer Punktmenge vom Durchmesser
D=1 gilt R<1/4/3.

Dies ist der ebene Spezialfall des Jungschen Satzes. Vgl. dazu
die ausfiihrliche Darstellung bei H. RapemacHER-O. ToEPLITZ
[45].

32. Fir den Treffradius r einer Geradenmenge vom Durchmesser
D=1 gilt r < 1/24/3.

Diese Aussage bildet ein duales Gegenstiick zum Jungschen
Satz. ’

33. Eine Punktmenge vom Durchmesser D = 1 lisst sich durch
etnen reguldiren Dreieckbereich der Seitenlinge s = /3
liberdecken.

34. Eine Punktmenge vom Durchmesser D = 1 ldsst sich durch
einen reguliren Sechseckbereich der Seitenlinge s = 1/+/3
iiberdecken.

Einen universellen Bereich, der die Eigenschaft aufweist,
dass jede Punktmenge vom Durchmesser D = 1 damit zugedeckt
werden kann, nennt man einen (normierten) Deckel. In diesem
Sinn ist der Kreisbereich vom Radius R = 1/4/3 ein Deckel
(Jungscher Deckel). Nach den Aussagen 33 und 34 ist der dem
Kreis mit Durchmesser D = 1 umschriebene regulire n-Eck-
bereich ein Deckel, falls n = 3 oder n = 6 ist. Aussage 33 ist
der ebene Sonderfall eines von D. GALE [15] fiir beliebige Dimen-
sionen aufgestellten Gegenstiicks zum Jungschen Satz. Aus-
sage 34 stammt von J. PAL [42].

35. Jede Punktmenge vom Durchmesser D = 1 lisst sich durch
dreir Punktmengen iiberdecken, deren Durchmesser nicht
grosser als 4/ 3/2 ausfallen.

Dies ist eine von D. GALE [15] angegebene Verschirfung des
von K. Borsuk [b] stammenden Satzes, wonach eine ebene
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Punktmenge stets in drei Teile von kleinerem Durchmesser
zerlegt werden kann. Eine von K. Borsux aufgestellte Ver-
mutung bezieht sich auf Punktmengen des k-dimensionalen
Raumes und sieht eine Zerlegung in %k 4+ 1 Teilmengen mit
kleineren Durchmessern vor; sie ist zur Zeit noch unbewiesen
fir £k > 3; fir K = 3 gab neuerdings H. G. EceLEsTon [10]
einen Beweis.

Der oben erwihnte Satz von K. Borsuk (ohne die Ver-
scharfung von D. GALE) ist — wenigstens fiir endliche Punkt-
mengen — auch eine Folgerung einer Aussage iiber die Anzahl
der Punktepaare, welche den Durchmesser realisieren. Es gilt:

36. In einer endlichen Punkitmenge vom Durchmesser D = 1 gibt
es hichstens n verschiedene Punktepaare der Distanz 1, wenn n
die Anzahl der Punkte der Menge bezeichnet.

Ein kurzer Beweis findet sich bei P. Erpds [13], ferner vgl.
man eine Aufgabe von H. Hoprr-E. PaANNwITZ [23].

Die engen Zusammenhdnge zwischen den verschiedenen
Satzgruppen soll schliesslich das folgende Korollar zu 34, als
Aussage vom Hellyschen Typ formuliert, vor Augen fiihren:

37. Haben je zwer Kreisscheiben einer Menge kongruenter Kreise
vom Radius R = 1 einen Punkt gemeinsam, so gibt es dret
Punkte vom gegenseitigen Abstand d = 1 derart, dass jede
Kreisscheibe der Menge mindestens etnen von thnen enthilt.

Ahnliche, teils noch unbewiesene Aussagen finden sich bei
L. Frses Toru [14], S. 97.

II. TeiL

Die vorstehend formulierten Aussagen sollen hier unter
Benutzung der oben zitierten Quellen durch kurze Beweise
belegt werden. Dabei erzwingen Raumgriinde, dass oft nur der
Gedankengang knapp angedeutet werden kann. Die Argumenta-
tion stiitzt sich vorwiegend auf elementare Sachverhalte, hie und

da ergénzt durch einfache punktmengengeometrische Uber-
legungen.
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1. Légen die Punkte Py, ..., P, nicht auf einer Geraden und
gilt fiir sie doch die Voraussetzung des Satzes, so ergibt sich ein
Widerspruch wie folgt: Durch eine projektive Abbildung werde
genau einer der Punkte, etwa P,, in einen Fernpunkt transfor-
miert. Das System der Punkte und ihrer Verbindungsgeraden
geht dabei iiber in eine Schar von Parallelen (durch P,), von
denen jede im Endlichen zwei der Punkte enthilt, und in eine
endliche Mengen von Transversalen, von denen jede mindestens
drei der Punkte enthélt. G sei die Transversale, die mit den
Parallelen den kleinsten Winkel einschliesst und Py, P;, Py in
dieser Anordnung die drei auf G liegenden Mengenpunkte. Die
zur Parallelenschar gehorige Verbindungsgerade von P; und P;
enthélt noch einen Punkt P, der Menge. Nun bildet aber
entweder die Verbindungsgerade durch P; und P, oder jene
durch P, und P, mit den Parallelen einen kleinern Winkel
als G, im Widerspruch zur Konstruktion.

2 1st zu 1 dual.

3 erscheint als Korollar zu 1, wenn man durch Inversion an
einem Kreis mit einem Mengenpunkt als Zentrum alle Kreise
durch diesen Punkt in Geraden iibergehen ldsst, die die Vor-
aussetzungen von 1 erfiillen.

4. Der kleinste Deckkreis (d.h. der kleinste abgeschlossene
Kreisbereich, der alle Punkte der Menge bedeckt) enthalt auf
seiner Peripherie Mengenpunkte, die keinen Halbkreisbogen frei
lassen, u.a. einen Punkt P. Weitere Mengenpunkte, z.B. ein
Punkt Q, konnen nicht im Innern liegen, da Spiegelung an der
Symmetrieachse von P und Q zeigt, dass dann auch ausserhalb
des Deckkreises Mengenpunkte wiren. — Ist die Zahl der
Mengenpunkte endlich und > 2, so sei ¢ der kleinste Winkel
zwischen je zwei verschiedenen Symmetrieachsen der Menge.
Spiegelung an diesen beiden Achsen kommt einer Drehung um
20 gleich, also ist die Menge drehsymmetrisch beziiglich des
Winkels 2¢. Die n-Ecke mit dem Zentriwinkel ¢ = 27/n erweisen
sich jetzt als die einzigen Mengen mit diesen Dreh- und Spiegel-
symmetrieeigenschaften, so dass jede endliche Menge mit den
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in 4 genannten Eigenschaften die Eckpunktmenge eines regu-
laren Vielecks ist.

5. Gibt es dem Gitter eingelagerte regulire n-Ecke (n fest),
dann auch solche mit kleinster Seitenlinge, weil hiefiir nur die
Werte /2442 (p, ¢ ganz) in Frage kommen. Diese Existenz
vorausgesetzt, seien P;, Py, ..., P, die Ecken eines kleinsten
reguléiren Gitter-n-ecks in ihrer natiirlichen Reihenfolge. Trégt
man von diesen Gitterpunkten aus bzgl. die Gittervektoren
P, P,, P, P,, ..., P, P, ab, so fiihren ihre Endpunkte wieder auf
Gitterpunkte. Fiir n =5 und n > 7 bilden diese ein kleineres
regulidres Gitter-n-eck, im Widerspruch zur Minimalbedingung.
— Fiir n = 3 sieht man die Unmdoglichkeit eines dem Gitter
eingelagerten reguliren n-Ecks wie folgt ein: Die Fliache s? 4/3 /4
wire wegen der Ganzzahligkeit von s? eine irrationale Zahl,
anderseits ergibt sich, etwa nach Determinantenformeln berech-

net, ein rationaler Wert. Gleiches gilt von reguldren Sechsecken
mit der Flache 3s% 4/3/2.

6. Die Flache s? sin « eines Gitterrhombus ist, nach Deter-
minantenformeln berechnet, ganzzahlig. Nach 8 ist daher
o« = 7/6 oder « = w/2. Die erste Moglichkeit entfallt, da bei
einer Drehung um =/2 um eine Ecke der Rhombus wieder in
einen Gitterrhombus iiberginge (jeder Gitterpunkt geht dabei
in einen Gitterpunkt tiber!); dabei wire ein regulires Gitter-
dreieck zu erkennen, im Widerspruch zu 5.

7. Einfache Folgerung von 8.

8. Man beachte, dass die Argumentation des Beweises von 5
fir n = 5 und n > 7 auch in jedem Rechteckgitter moglich ist.
Aus dieser schirfern Aussage, dass sich in einem Rechteckgitter
von den reguldaren Vielecken nur Dreiecke, Vierecke und
Sechsecke einlagern lassen, ergibt sich 8. In der Tat: Sei
o = (m/n)2r und der Bruch m/n nicht kiirzbar. Ist cos « rational,
dann ist nach goniometrischen Formeln cos va = a,, sin vo =
b, sin o mit rationalen a,, b, (v =1, 2, ..., n). N sei der gemein-
same Nenner der 2n Werte a,, b,. Erzeugt ein Rechteck der
Lénge 1/N und der Breite (sin «)/N ein Rechteckgitter, so
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fallen daher von der Einheitskreislinie um einen Gitterpunkt
alle Punkte mit den Phasen va (v =1, ..., n) auf Gitterpunkte.
Anderseits bilden diese Punkte wegen o = (m/n)2w ein regu-
lares n-Eck. Wie eingangs erwihnt, folgt daraus, dass n einen
der Werte 1, 2, 3, 4, 6 besitzt. Zusammen mit der Nebenbedin-
gung 0 < a << /2 ergibt sich « = =/3.

9. Ist eine Punktmenge mit lauter ganzzahligen Punkt-
distanzen gegeben, in der es drei nicht auf einer Geraden liegende
Punkte A, B, C gibt, und bezeichnet k die grossere der Distanzen
d (AB), d (BC), so gibt es hochstens 4 (k + 1)2, also endlich viele
Punkte P so, dass d (PA) — d (PB) und d (PB) — d (PC) ganz-
zahlig ausfallen. Es ist ndmlich [d (PA) — d (PB) I < d (AB)
und kann somit nur einen der Werte 0, 1, ..., & annehmen, so
dass P auf einer von & + 1 Hyperbeln liegt. Ebenso liegt P auf
einer von k£ -+ 1 Hyperbeln, die durch B und C bestimmt werden.
All diese (verschiedenen) Hyperbeln schneiden sich in héchstens
4 (k 4 1)? Punkten.

10. Die Aussage ,,dann’ ist trivial. Die Aussage ,,nur dann’’
ist klar fiir endliche Punktmengen, da deren konvexe Hiille ein
konvexes Polygon ist, dessen KEcken zur Menge gehoren; wird
dieses von einer KEcke aus trianguliert, so liegt jeder Punkt in
einem der Teildreiecke, also in der konvexen Hiille von drei
Punkten der Menge. Es bleibt fiir unendliche Punktmengen M
zu zeigen, dass die Menge N aller Punkte, die schon in der
konvexen Hiille endlich vieler Punkte aus M enthalten sind,

mindestens so umfassend ist wie die konvexe Hiille M von M.
In der Tat: N enthélt, wie man sich sofort zurechtlegt, mit zwei
Punkten auch jeden Punkt der Verbindungsstrecke, ferner
enthdlt N jeden Punkt von M. Da M als kleinste Menge mit
diesen Eigenschaften definiert wurde, ist der Beweis abge-
schlossen.

11. Nicht trivial ist einzig die Aussage ,,nur dann’. Ein
innerer Punkt P der konvexen Hiille M von M ist auch innerer

Punkt eines Dreiecks mit Ecken in M. Da jede dieser Ecken
nach 10 in der konvexen Hiille von drei Punkten aus M liegt,
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ist das ganze Dreieck in der konvexen Hiille von endlich vielen
Punkten aus M enthalten. Wird dieses konvexe Vieleck mit
Ecken aus M von einer Ecke aus trianguliert, so ist P in der
Vereinigung zweier aneinandergrenzender Dreiecke als innerer
Punkt enthalten, also in der konvexen Hiille von vier Punkten
aus M.

12. Die Aussage ,,nur dann’’ ist trivial. Es bleibt zu zeigen,
dass zu zwei nicht separierbaren Mengen M und N zwel eben-
solche Teilmengen M’ und N’ mit gesamthaft hochstens vier
Punkten angegeben werden konnen. Nun sind M und N genau

dann nicht separierbar, wenn ihre konvexen Hiillen M und N
Punkte gemeinsam haben. Zu einem solchen gemeinsamen
Punkt gibt es nach 10 zwei je dreipunktige Mengen M"” und N/,

deren konvexe Hiillen M und N’ diesen Punkt gemeinsam
haben. Nun ist entweder eine dieser konvexen Hiillen in der

andern enthalten, etwa M in N'’, oder die Dreiecke M’ und N"’
besitzen sich schneidende Randstrecken. Im ersten Falle bestehe
M’ aus einem der Punkte von M”, N’ = N"’; im zweiten Falle
bestehe M’ und N’ je aus den beiden Endpunkten des sich
schneidenden Streckenpaares. In beiden Fillen sind M" und N’
nicht separierbar, weil M’ und N’ Punkte gemeinsam haben.

13. Man wihle vier Punkte der gegebenen Menge M. Bildet
ihre konvexe Hiille nicht ein (nichtentartetes) Viereck, so ist ein
Punkt N in der konvexen Hiille der iibrigen drei Punkte, umso-
mehr in der konvexen Hiille von M — N enthalten, und die
beiden fremden Mengen N und M — N sind nicht separierbar.
Bildet hingegen die konvexe Hiille ein Viereck, so bestehe N aus
den Endpunkten einer Diagonale. N und M — N bilden wieder
fremde, nichtseparierbare Teilmengen von M.

14. Fir endlich viele Eibereiche folgt der Hellysche Satz
durch vollsténdige Induktion aus folgendem Hilfssatz: Es sei
k> 4. Haben je k —1 von k Eibereichen Punkte gemeinsam, so
haben alle k Eibereiche Punkte gemeinsam. Beweis: C,, ..., C, seien
die £ Eibereiche und P; bezeichne einen Punkt, der in allen ausser
eventuell in C; enthalten ist. Nach 13 lassen sich die Punkte P,
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(=1, ..., k)in zwei fremde Gruppen M’ :{P P-m}und M* ===

il’ 1
{le x daby Pjn} aufteilem, so dass deren konvexe Hiillen M’ und

M’ einen Punkt P gemeinsam haben. Nun gehort aber

jeder Punkt von M’ und damit wegen der Konvexitat der C;
G

auch M zu allen Eibereichen ausser eventuell © . .., i
?

I

ebenso M’ zu allen ausser eventuell Cil’ s Cjn‘ Der Punkt P

gehort zu M’ und M'”’, somit zu allen Eibereichen ohne Aus-
nahme.

Wire in einem unendlichen Eibereichsystem kein Punkt
allen Bereichen gemeinsam, so konnte man zu jedem Punkt des
Bereichs C; des Systems einen weitern Bereich C; des Systems
angeben, der diesen Punkt und damit auch eine ganze Kreis-
umgebung nicht trifft; C; und diese Umgebung seien einander
zugeordnet. Nach dem Theorem von Heine-Borel geniigen
endlich viele dieser Kreisumgebungen, um C; zu iiberdecken.
Die 1hnen zugeordneten endlich vielen Eibereiche C; und Cy
haben nach Konstruktion keinen Punkt gemeinsam, im Wider-
spruch zum obigen Ergebnis, dass endlich viele Eibereiche des
Systems einen Punkt gemeinsam haben, sobald die Voraus-
setzungen von 14 erfiillt sind.

15 ergibt sich aus 14, wenn man einsieht, dass drei Rechtecke
R;, Ry, R; immer dann Punkte gemeinsam haben, wenn dies
schon fiir je zwel zutrifft. In der Tat: Bezeichnet P, (z;, v;) in
einem kartesischen Koordinatensystem, dessen Achsen parallel
zu den Rechtecken liegen, einen Punkt, der in allen drei
Rechtecken ausser eventuell in R; (i = 1, 2, 3) enthalten 1st,
also in R; und Ry, so bemerkt man, dass mit P; und P; nicht
nur die ganze Verbindungsstrecke in R, enthalten ist, sondern
das ganze achsenparallele Rechteck tiber ihr, also alle P (z, y),
fir die x im Intervall (z;, z;) und y in (y;,y;) liegt. Wéhlt man
die Numerierung so, dass z; < 2y < 23 und y; <y; <y, glt,
so erfillt P (z,, y;) diese Bedingungen fiir jedes der drei
Rechtecke, so dass er allen angehort.

16 ist Korollar zu 15, weil Rechtecke zu Strecken entarten
konnen.
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17 kann auf 14 zuriickgefithrt werden. Eine Menge von
Kreisbogen, jeder kleiner als ein Halbkreis, hat nédmlich dann
und nur dann einen Punkt gemeinsam, wenn dasselbe von den
zugehorigen Kreissegmenten gilt, und dafiir geniigt nach 14,
dass je drei einen Punkt gemeinsam haben.

18 folgt aus 16. In der Tat lassen Bogen, jeder kleiner als ein
Drittelskreis und paarweise nicht punktfremd, einen Peripherie-
punkt unbedeckt, z.B. den zu einer Bogenmitte antipodischen.
Der Kreis kann somit hier aufgeschnitten und auf eine Gerade
abgewickelt werden, so dass jeder Bogen in eine Strecke iibergeht.

19. Es sei G («) die gerichtete Gerade durch das Kreis-
zentrum, die mit einer festen Richtung den Winkel o einschliesst.
Werden die gegebenen Bogen, die paarweise Punkte gemeinsam
haben, auf G («) orthogonal projiziert, so haben die Bildstrecken
dieselbe Eigenschaft. Somit ist der Durchschnitt all dieser
Strecken ein Punkt oder eine Strecke, jedenfalls aber nicht leer
(16). Fir mindestens einen Winkel «, enthdlt D («) das Kreis-
zentrum. In der Tat: D («) und D (« 4+ =) liegen in ihren
gerichteten Geraden spiegelsymmetrisch beziiglich Z; da nun
jede Orthogonalprojektion eines Bogens und also auch D («)
stetig mit o &dndert, muss D («) bei einer Drehung der Geraden
um 7 fiir eine Lage o, das Zentrum bedecken. G (o, + 7/2), die
projizierende Gerade durch Z, ist dann eine Durchmessergerade,
die alle Bogen trifft.

Die Varianten 20-28 ergeben sich aus den grundlegenden
Aussagen 14, 16,17, 19 durch mannigfache Abbildungsmethoden.

20-22. Die Lage eines gegebenen Eibereiches A ldsst sich bei
Verschiebungen durch die Lage eines starr mit ihm verbundenen
Punktes P charakterisieren. Ohne Miihe bestitigt man, dass P
emen Eibereich B* durchlauft, wenn der bewegliche Eibereich A
alle Lagen einnimmt, bei denen er in einem Eibereich B enthalten
1st. Gleiches gilt von allen Lagen, bei denen A einen Eibereich B
trifft, bzw. umschliesst. Jeder Eibereich bildet sich auf diese
Weise in einen Eibereich B* ab, und bei diesen Abbildungen
gehen die Aussagen 20-22 in 14 iiber.

[’ Enseignement mathém., t. I, fasc. 1-3. 6
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23." Werden Eibereiche mit paarweise gemeinsamen Punkten
durch Zentralprojektion auf eine Kreislinie abgebildet, so gehen
sie in Bogen tiber, die 19 erfiillen. Die projizierende Gerade
durch die in allen Bildbogen enthaltenen antipodischen Punkte
trifft alle Eibereiche des Systems.

24. Orthogonalprojektion der Eibereiche erzeugt auf einer
Geraden eine Streckenmenge, die 16 erfiillt. Die projizierende
Gerade durch den in allen Strecken der Menge enthaltenen Punkt
trifft alle Eibereiche der Menge.

25. Gibt es unter den parallelen Rechtecken der Menge zwei,
die nur eine einzige positiv orientierte Treffgerade gemeinsam
haben, so ist die Aussage evident, da diese Gerade jedes weitere
Rechteck der Menge treffen muss. Andernfalls diirfen wir voraus-
setzen, dass je drel Rechtecke der Menge eine positiv orientierte
Treffgerade besitzen, die zu keiner Rechteckseite parallel ist.
Dasselbe gilt dann von je endlich vielen Rechtecken der Menge.
In der Tat: Man lege parallel zu den Rechtecken orientiert zwei
Parallelen und charakterisiere ihre Punkte durch eine Langen-
koordinate in ihnen. Jede Transversale ldsst sich dann in einen
Punkt einer Hilfsebene abbilden, indem man die linearen Koordi-
naten ihrer Schnittpunkte mit den Parallelen als kartesische
Koordinaten der Hilfsebene deutet. Die Menge aller ansteigenden
Geraden, welche ein Rechteck der Menge treffen, geht dabel in
eine konvexe, abgeschlossene, abernicht beschrankte Punktmenge
iiber. Je drei dieser Mengen haben nach unsern Voraussetzungen
im Endlichen Punkte gemeinsam. Greift man endlich viele dieser
konvexen Mengen heraus, so sind ihre Durchschnitte mit einem
ausreichend grossen Kreis Eibereiche, die nach 14 einen Punkt
gemeinsam haben. Die diesem Punkt entsprechende Gerade trifft
die herausgegriffenen endlich vielen Rechtecke. — Um den
Beweis auch fiir unendliche Rechteckmengen zu fiihren (ohne
eine stirkere Variante von 14 zu benutzen) brauchen wir vom
bisher Bewiesenen nur, dass je vier Rechtecke der Menge eine
gemeinsame Treffgerade aufweisen. Lisst man nun jeder Gera-
den, die mit den gelegten zwei Parallelen den Winkel ¢ ein-
schliesst, auf einer Kreisperipherie den Punkt mit Phase o
entsprechen, so bildet sich die Menge aller ansteigenden Geraden,
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welche zwel herausgegriffene Rechtecke der Menge treffen, in
einen Bogen kleiner als ein Drittelskreis ab. Diese Abbildung,
fiir alle Rechteckpaare der Menge ausgefiihrt, liefert eine Bogen-
menge mit paarweise gemeinsamen Punkten, weil je vier
Rechtecke eine gemeinsame Treffgerade aufweisen. Der allen
Bogen gemeinsame Punkt (18) entspricht einer Geraden, zu der
je zwei Rechtecke der Menge eine parallele Treffgerade gemein-
sam haben:; mit andern Worten: durch Projektionsstrahlen
parallel zu dieser Geraden bildet sich die Rechteckmenge auf
einer Transversalen als Streckenmenge ab, die nach 16 einen
Punkt gemeinsam hat. Der Projektionsstrahl durch ihn trifft alle
Rechtecke der Menge.

26. P sei ein Peripheriepunkt eines Kreises. Zu Jeder
Geraden G der Ebene lege man eine Parallele durch P; ihr
zweiter Durchstosspunkt mit dem Kreis sei das Bild der Geraden
G. Bei dieser Abbildung geht die Menge der Geraden, welche
zwel feste Eibereiche treffen, in einen Bogen iiber. Fiihrt man
dies fiir alle Bereichpaare einer Menge von Eibereichen, die zu
je vier eine Treffgerade gemeinsam haben, durch, so erhilt man
eine Bogenmenge mit paarweise gemeinsamen Punkte. Dem
antipodischen Punktepaar, das alle Bogen trifft (19), entsprechen
zwel orthogonale Richtungen, so dass man findet: Haben je vier
Eibereiche einer Eibereichmenge eine gemeinsame Treffgerade, so
gibt es zwet orthogonale Richtungen derart, dass je zwet Eiberetche
der Menge eine gemeinsame T'reffgerade mit einer dieser Richtungen
aufweisen. — Sind nun die Eibereiche dieser Menge zueinander
homothetisch, so treffen die vier Geraden der erwidhnten Richtun-
gen, die ein einem Bereich der Menge umbeschriebenes Rechteck
bilden, alle nichtkleinern Bereiche der Menge. Gibt es also in
der Menge einen kleinsten Eibereich, so treffen die ihm derart
umbeschriebenen Geraden alle Bereiche der Menge. Gibt es in
der Menge keinen kleinsten Eibereich, so fiihren einige zusitz-
liche Uberlegungen iiber das Konvergenzverhalten nach Grosse
und Lage der Bereiche zum gewiinschten Resultat. Sind die
Eibereiche nicht nur homothetisch, sondern zudem kongruent,
s0 lasst sich weiter einsehen, dass stets schon drei von diesen vier
Treffgeraden alle Bereiche treffen.
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27. Eine Gerade in der Separationsrichtung werde als
x-Achse ausgezeichnet. Jede andere Gerade der Ebene bildet
mit der 2-Achse einen Winkel 0 < ¢ < 7w gemessen im positiven
Drehsinn. Der Menge aller Geraden, welche zwei Eibereiche des
Systems, etwa A und B treffen, entspricht auf einer ¢-Achse ein
Winkelintervall zwischen 0 und =, das wir mit (AB) bzw.
analog bezeichnen. Wir behaupten, dass je zwei dieser Winkel-
intervalle Punkte gemeinsam haben. Dies vorausgesetzt, schliesst
man mit 16, dass ein Winkel ¢, existiert, so dass je zwei Eibe-
reiche des Systems durch eine Gerade der Richtung ¢, getroffen
werden konnen. Mit andern Worten: die Parallelprojektionen
der Eibereiche in dieser Richtung auf die x-Achse bilden eine
Streckenmenge mit paarweise gemeinsamen Punkten. Die
projizierende Gerade durch den allen Strecken gemeinsamen
Punkt (16) trifft dann alle Eibereiche des Systems. — Es bleibt
nachzutragen, dass je zwei Winkelintervalle Punkte gemeinsam
haben. Fiir die Intervalle (AB), (BC) (bzw. analog) wird dies
durch die Voraussetzung gemeinsamer Treffgeraden zu A, B, C
gesichert. Hatten aber zwei Intervalle, etwa (AB), (CD) keinen
Punkt gemeinsam, so zeigt sich ein Widerspruch wie folgt: Jedes
der Intervalle (AC), (AD), (BC), (BD) hat sowohl mit (AB) wie
mit - (CD) Punkte gemeinsam, so dass fir einen Winkel o’
,,zwischen” (AB) und (CD) folgende Sachlage eintritt: Durch
Geraden der Richtung ¢’ sind die Eibereiche A und B, ebenfalls C
und D separierbar (daraus folgt die Separierbarkeit eines
weitern Paares durch jede dieser beiden Separationsgeraden !),
nicht aber A und C, A und D, B und C, B und D. Dies ist offen-
sichtlich ein Widerspruch.

28. Durch die beim Beweis 26 benutzte Abbildung wird 28
auf die beim Beweis 18 erwihnte Sachlage zuriickgefiihrt, dass
Kreisbogen mit paarweise gemeinsamen Punkten, jeder kleiner
als ein Drittelskreis, einen Peripheriepunkt unbedeckt lassen.

29. Spezialfall von 21.

30. Die Geraden konnen durch ausreichend lange Strecken
ersetzt werden, wodurch ein Spezialfall von 21 entsteht.
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31. Bei Beriicksichtigung von 29 geniigt es, die Aussage fiir
eine dreipunktige Menge vom Durchmesser 1 zu beweisen. Bildet
diese ein stumpfwinkliges Dreieck, so ist dessen langste Seite
Deckkreisdurchmesser, so dass hier sogar R < 1, zutrifft.
Bestimmt die dreipunktige Menge ein spitzwinkliges Dreieck,
so wird der Deckkreis vom Umkreis gebildet, dessen Durch-
messer bekanntlich durch 2R = a/sin « bestimmt ist; a ist irgend
eine Dreieckseite, o der gegeniiberliegende Winkel. In jedem
Dreieck gibt es einen Winkel o > w/3, so dass zugleich
sin o > Y5 4/3 und ¢ <1 gilt. Also ist 2R = afsin o < 2/4/3.

32 braucht ebenfalls nur noch fiir drei Geraden mit Durch-
messer 1 bewiesen zu werden. Diese bilden ein Dreieck mit
Umfang U < 3, das dem kleinsten Treffkreis umbeschrieben ist.
Da das regulidre Dreieck mit Umfang 6r4/3 das umfangkleinste
Dreieck ist, das sich einem Kreis mit Radius r umbeschreiben
lasst, gilt 6ry/3 < U < 3, also r < 1/24/3.

33. Die Punktmenge darf als abgeschlossen vorausgesetzt
werden. Ist S ein reguldres Umdreieck (so dass jede Seite einen
Mengenpunkt enthilt) und S* ein solches in gespiegelter Lage,
so ist entweder S oder S* ein regulidres Dreieck der Seitenlinge
s < 4/ 3. Féllt man némlich von irgend einem Punkt, der in S
und S* enthalten ist, die Lote auf die Seiten von S bzw. S*, so
ist deren Summe nach einem planimetrischen Satz gleich der
Hohe von S bzw. S*. Die Summe je eines Lotes auf S und des
entsprechenden auf S* ist wegen der Durchmesserbedingung
< 1, so dass eines der Dreiecke eine Hohe < 3/2 aufweist. Seine
Seiten betragen hochstens /3.

34. Anschliessend an den Beweis 33 stellen wir fest, dass die
Seitenldnge des reguliaren Umdreiecks S eine stetige Funktion
der Basisrichtung ist und bei Drehung um = in die von S*
ibergeht. Daher sind S und S* fiir eine spezielle Richtung gleich
gross; 1thr Durchschnitt, in dem die Menge mit D = 1 enthalten
ist, bildet dann ein (eventuell entartetes) zentralsymmetrisches
Sechseck, bei dem parallele Seiten einen Abstand < 1 haben.
Es ist ganz im reguldren Sechseck mit demselben Symmetrie-
zentrum und denselben Seitenrichtungen enthalten, dessen
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parallele Seiten den Abstand 1 aufweisen. Dieses regulire
Sechseck besitzt die Seitenlinge 1/4/3 und enthilt die gegebene
Menge.

35 ergibt sich ausgehend von 34, wenn in dem der Menge
vom Durchmesser 1 umbeschriebenen reguldren Sechseck der
Seitenldnge 1/4/3 vom Zentrum aus drei Lote mit Zwischen-
winkeln 27/3 auf drei Seiten gefillt werden. Dadurch zerfillt
das Sechseck in drei kongruente Fiinfecke vom Durchmesser
4/3/2, die die gegebene Menge iiberdecken.

36. Es sei n > 4 und die Menge Py, ..., P, habe den Durch-
messer D = 1. Zu zwel Punkten P;, P, mit Abstand 1 zeichne
man stets die Verbindungsstrecke P, P,. Gehen dann von jedem
P, hochstens zwei Strecken aus, so ist die Streckenzahl < n, wie
behauptet. Existiert aber ein Punkt, etwa P;, von dem min-
destens 3 Strecken, etwa zu P;, P;, Py, auslaufen, so sei P; im
spitzen Winkelraum P; P, Py enthalten. Ist nun d (P, P.)) = 1,
so muss P; P, sowohl P, P; wie auch P, P, treffen, da andern-
falls D > 1 wére. Daraus folgt P, = Py, d.h. P; kann nur von P,
den Abstand 1 haben. Lasst man P; weg, so fillt eine einzige
Verbindungsstrecke dahin. Durch vollstindige Induktion folgt
daraus 36. — Da also unter n Punkten mit D = 1 stets einer
von hochstens zwei andern den Abstand 1 hat, so folgt durch
Induktion auch der Borsuksche Satz. Denn jener Punkt lasst
sich derjenigen der drei Teilmengen der restlichen n — 1 Punkte
zugesellen, die die beiden weitferntesten Punkte nicht enthélt;
dadurch bleiben alle Durchmesser << 1.

37. Die Mittelpunkte der Kreise vom Radius R = 1 mit
paarweise gemeinsamen Punkten bilden eine Punktmenge vom
Durchmesser D < 2. Diese kann nach 34 durch ein reguléres
Sechseck der Seitenlinge 2/4/3 iiberdeckt werden. In diesem
Sechseck lassen sich drei Punkte vom gegenseitigen Abstand 1,
namlich drei Diagonalenmittelpunkte, angeben, so dass jeder
Sechseckpunkt, speziell jedes der Kreiszentren, von einem
dieser drei Punkte einen Abstand < 1 aufweist. Demnach ist
stets mindestens einer dieser Punkte in jedem der gegebenen
Kreise enthalten.

;I
i
i

o

PR, A

P




KOMBINATORISCHE GEOMETRIE IN DER EBENE 87

LITERATURVERZEICHNIS

[1] ALTwEeGce, M. Ein Satz iiber Mengen von Punkten mit ganzzahliger
Entfernung. Elemente der Math., 7, 56-58, 1952.

[2] AxniNG, N. H. and P. Erpés. Integral distances. Bull. Amer. Math.
Soc., 51, 598-600, 1945.

[3] BaLasuBRAMANIAN, N. A theorem on sets of points. Proc. Nat. Inst.
Sci. India, 19, 839, 1953.

[4] BErnuEIM, B. and Th. MoTzkin. A criterium for divisibility of n-gons
into k-gons. Comment. Math. Helpetict, 22, 93-102, 1949.

[5] Borsuxk, K. Drei Sitze tiber die n-dimensionale euklidische Sphére.
Fundamenta Math., 20, 177-190, 1933.

[6] pE Brunin, N. G. and P. Erpds. On a combinatorial problem. Inda-
gationes Math., 10, 421-423, 1948.

[7] CoxETER, H. S. M. A problem of collinear points. Amer. Math. Monthly,
55, 26-28, 1948.

[8] DevrAcHET, A. La géoméirie contemporaine. Paris 1950, 128 S.

[9] Dirac, G. A. Collinearity properties of sets of points. Quart. J. Math.
Ozford, Ser. (2), 2, 221-227, 1951.

[10] EcerestoNn, H. G. Covering a three-dimensional set with sets of
smaller diameter. J. London Math. Soc., 30, 11-24, 1955.

[11] Erpos, P. Problem No. 4065. Amer. Math. Monthly, 51, 169-171 1944.

[12] Integral distances. Bull. Amer. Math. Soc., 1, 996, 1945.

[13] —— On sets of distances of n points. Amer. Math. Monthly, 53, 248-
250, 1946.

[14] Feses TétH, L. Lagerungen in der Ebene, auf der Kugel und im Raum.
Berlin, Gottingen, Heidelberg 1953, 198 S.

[15] Gare, D. On inscribing n-dimensional sets in a regular n-simplex.
Proc. Amer. Math. Soc., 4, 222-225, 1953.

[16] Gupra, H. Non-concyclic sets of points. Proc. Nat. Inst. Sci. India,
19, 315-316, 1953.

[17] GustinN, W. On the interior of the convex hull of an euclidean set.
Bull. Amer. Math. Soc., 53, 299-301, 1947.

[18] Hapwicer, H. Uber die 1ationalen Hauptwinkel der Goniometrie.
Elemente der Math., 1, 98-100, 1946.

Eulers Charakteristik und kombinatorische Geometrie. J. reine
angew. Math. 194, 101-110, 1955.

[20] HANNER, O. and H. RapstrOm. A generalization of a theorem of
Fenchel. Proc. Amer. Math. Soc., 2, 589-593, 1951.

[21] Heivy, E. Uber Mengen konvexer Korper mit gemeinschaftlichen
Punkten. Jber. Deutsch. Math. Verein., 32, 175-176, 1923.

[22] Horr, H. Uber Zusammenhange zwischen Topologie und Metrik im
Rahmen der elementaren Geometrie. Math. Phys. Semesterber., 3
16-29, 1953.

[23] —— und E. Pannwitz. Aufgabe Nr. 167. Jahresber. Deutsch. Math.
Verein., 43, 114 kursiv, 1984; 45, 33 kursiv, 1936.

[24] Horn, A. Some generalizations of Helly’s theorem on convex sets.
Bull. Amer. Math. Soc., 55, 923-929, 1949,

[25] Horw, A. and F. A. VarentiNe. Some properties of L-sets in the
plane. Duke Math. J., 16, 131-140, 1949,

[19]

’



88 H. HADWIGER UND H. DEBRUNNER

[26] Junc, H. W. E. Uber die kleinste Kugel, die eine raumliche Figur
einschliesst. J. reine angew. Maih., 123, 241-257, 1901.

[27] KaArLIN, S. and L. S. SuarLEY. Some applications of a theorem on
convex functions. Ann. Math. Princeton, Ser. (2), 62, 148-153, 1950.

[28] KEerLry, L. M. Covering problems. Nat. Math. Mag., 19, 123-130, 1944.

[29] KircuBErGER, P. Uber Tschebyschefsche Annaherungsmethoden.
Math. Ann., 57, 509-540, 1903.

[30] KLEEe, V. L., jr. On certain intersection properties of convex sets.
Canadian J. Math., 3, 272-275, 1951.

[31] —— Brief an H. Hadwiger vom 20. Februar 1953.

[32] —— The critical set of a convex body. Amer. J. of Math., 75, 178-
188, 1953.

[33] —— Brief an P. Vincensini vom 27. September 1954.

[34] —— Common secants for plane convex sets. Proc. Amer. Math. Soc.,

5, 639-641, 1954.

[35] Konig, D. Uber konvexe Korper. Math. Z., 14, 208-210, 1922.

[36] Levi, F. W. On Helly’s theorem and the axioms of convexity. J.
Indian. Math. Soc., 15, 65-76, 1951.

[37] —— Eine Erganzung zum Hellyschen Satze. Archiv der Math., 4,
222-224, 1953.

[38] Mosker, L. On the different distances determined by n points. Amer.
Math. Monthly, 59, 85-91, 1952.

[39] MoTzkin, Th. The lines and planes connecting the points of a finite
set. Trans. Amer. Math. Soc., 70, 451-464, 1951,

[40] MGLLER, A. Auf einem Kreis liegende Punktmengen ganzzahliger
Entfernungen. Elemente der Math., 8, 37-38, 1953.

[41] Nacy, B. Sz.-. Ein Satz iiber Parallelverschiebungen konvexer Kérper.
Acta Scient. Math., 15, 169-177, 1954.

[42] PAL, J. Uber ein elementares Variationsproblem. Math.-fys. Medd.,
Danske Vid. Selsk., 3, 1920, 35 S.

[43] PorLya, G. und G. SzeGd. Aufgaben und Lehrsdtze aus der Analysis.
Berlin 1925, Bd. 1, 338 S.; Bd. 2, 408 S.

[44] RapeEmacHER, H. and I. J. ScuoenNBERG. Helly’s theorems on convex
domains and Tchebycheft’s approximation problem. Canadian J.
Math., 2, 245-256, 1950.

[45] und O. Toerritz. Von Zahlen und Figuren. Berlin 1930, 164 S.

[46] Rapo, R. Theorems on the intersection of convex sets of points.
J. London Math. Soc., 27, 320-328, 1952.

[47] —— A theorem on sequences of convex sets. Quart. J. Ozxford, Ser. (2),
3, 183-186, 1952.

[48] Rapon, J. Mengen konvexer Kérper, die einen gemeinsamen Punkt
enthalten. Math. Ann., 83, 113-115, 1921.

[49] Rominson, C. V. Spherical theorems of Helly’s type and congruence
indices of spherical caps. Amer. J. of Math., 64, 260-272, 1942,

[50] SanTaLd, L. A. Un teorema sobre conjuntos de paralelepipedos de
aristas paralelas. Publ. Inst. Mat. Unio. Nac. Litoral, 2, 49-60,
1940 3, 202-210, 1942.

[561] —— Sobre pares de figuras convexas. Gaz. Mat. Lisboa, 12, 7-10,
1951; 14, 6, 1953.

[52] ScuerrER, W. Die Einlagerung eines regularen Vielecks in ein Gitter.
Elemente der Math., 1, 97-98, 1946.




KOMBINATORISCHE GEOMETRIE IN DER EBENE 89

[53] Steicer, F. Zu einer Frage tiber Mengen von Punkten mit ganz-
zahliger Entfernung. Elemente der Math., 8, 66-67, 1953.

[54] SteiniTz, E. Bedingt konvergente Reihen und konvexe Systeme. J.
rewne angew. Math., 143, 128-175, 1913; 144, 1-40, 1914; 146, 1-52,
1916.

[55] SYLVESTER, J. J. Question No. 11851. Educational Times, 59, 98, 1893.

[56] TrevisaN, G. Una condizione di allineamento per gli insiemi infiniti
di punti del piano euclideo. Rend. Sem. Mat. Uniy. Padoya, 18,
258-261, 1949.

[57] Trost, E. Bemerkung zu einem Satz {iber Mengen von Punkten mit
ganzzahligen Entfernungen. Elemente der Math., 6, 59-60, 1951.

[58] VinceEnsini, P. Sur une extension d’un théoréme de M. J. Radon sur
les ensembles de corps convexes. Bull. Soc. Math. France, 67, 115-
119, 1939.

[59] —— L.es ensembles d’arcs d’un méme cercle dans leurs relations avec
les ensembles de corps connexes du plan euclidien. Awti IV. Congr.
Un. Mat. Ital., 2, 456-464, 1953.

Sur certains ensembles d’arcs de cercle ou de calottes sphériques.

Bull. Sci. Math., (2), 77, 120-128, 1953.

[60]

PROBLEMES CHOISIS
DE GEOMETRIE COMBINATOIRE DANS LE PLAN

H. Hapwicer et H. DeBruNNER, Berne

La traduction en francais paraitra dans un des prochains
fascicules.







	ARTICLES GÉNÉRAUX
	LA MÉMOIRE DE PIERRE SERGESCU (1893-1954)
	Activité scientifique.

	LA COMMUNAUTÉ DES SAVANTS
	LES MATHÉMATIQUES APPLIQUÉES DANS L'ANTIQUITÉ
	1. Le tunnel de Samos.
	2. Perspective.
	3. La projection stéréographique.
	4. Les horloges a eau

	AUSGEWÄHLTE EINZELPROBLEME DER KOMBINATORISCHEN GEOMETRIE IN DER EBENE
	I. Teil.
	II. Teil
	...

	PROBLÈMES CHOISIS DE GÉOMÉTRIE COMBINATOIRE DANS LE PLAN


