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ARTICLES GÉNÉRAUX





A LA MÉMOIRE DE PIERRE SERGESGU

(1893-1954)

En déférent hommage à son admirable épouse qui Va soutenu
de son affection dans les bons et les mauvais jours de sa vie

PAR

Arnold Reymond, Lausanne

Comme le dit si justement R. Taton, « Après les décès

d'Aldo Mieli, de Pierre Brunet, de Maxime Laignel-Lavastine,
de Pierre Humbert, de Gino Loria et de Henri Berr, la mort de

Pierre Sergescu affecte tous ceux qui dans le monde entier
s'intéressent aux progrès de l'histoire des sciences. Elle peine
aussi les amis si nombreux de ce chercheur probe et infatigable,
de cet organisateur à la compétence éprouvée et au dévouement
sans bornes et de cet homme si droit et si généreux. »1

Sergescu est né à Turn-Severin, au bord du Danube, à
l'endroit où ce fleuve quitte la Hongrie et traverse les Portes de Fer.
C'est dans cette ville qu'il fait ses études secondaires, pour prendre
ensuite à l'Université de Bucarest simultanément sa licence en
mathématiques, sa licence en philosophie ainsi que le concours
de sortie du Conservatoire de musique.

Lors de la première guerre mondiale, la Roumanie, comme
on le sait, opte pour les Alliés au côté desquels Sergescu combat
courageusement. Pris par les Allemands au début de 1917, il
vit dans un camp de déportation et est libéré après l'armistice
général de 1918.

1 1 Nous nous sommes beaucoup inspiré, pour rendre cet hommage, des beaux
i articles de René Taton et de Pierre Costabel qui ont paru, le premier dans la Revue

,| d'Histoire des sciences et de leurs applications (janvier-mars 1955) et le second dans la
Revue générale des sciences pures et appliquées (janvier-mars 1955).
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Devenu agrégé de mathématiques, il obtient une bourse pour
Paris où il conquiert brillamment sa licence et prépare son
doctorat ès mathématiques. Rappelé en son pays, il y soutient
avec succès devant son maître Lalescu sa thèse de doctorat. Il
est alors nommé en 1924 professeur suppléant à l'Université de

Bucarest et à l'Ecole polytechnique; peu après il est appelé à

l'Université de Cluj. Il publie là plusieurs cours et mémoires
importants de mathématiques. Soutenu par deux mathématiciens

éminents (D. Pompeiu et Tzitzeica), il fonde la revue
internationale Mathematica qui compte actuellement vingt-trois
volumes et qui assure dans le monde scientifique une place
honorable à son fondateur et aux mathématiciens roumains et
étrangers qui y collaborèrent.

Dès cette époque, P. Sergescu fait de fréquents séjours en
France où il participe à de nombreux congrès et donne dans
diverses universités des séries de conférences très appréciées.
Mais sans négliger ses recherches mathématiques, il est de plus
en plus attiré vers l'histoire des sciences; il suit assidûment en
1922 le cours de Pierre Boutroux et vers 1930, Aldo Mieli, alors
secrétaire perpétuel de l'Académie internationale de l'histoire des

sciences, le pousse à publier des travaux sur l'histoire des

mathématiques. C'est ainsi qu'en 1933, dans la collection « Tableau du
xxe siècle », parait l'ouvrage de Sergescu consacré à cette période
et à la fin du xixe siècle. Vingt ans plus tard, en 1951, il publie
Un coup d'oeil sur les origines de la science exacte moderne.

Lorsque la deuxième guerre mondiale survient, il est encore
professeur à Cluj; il soutient avec ardeur la cause des Alliés,
secourant les réfugiés polonais et les prisonniers français évadés

et faisant en public de nombreuses allocutions pour l'Alliance
française. Chassé de Cluj par l'occupation hongroise, il professe

aux Universités de Bucarest et Timisoara et en 1945 il est nommé

professeur et recteur de l'Ecole polytechnique de Bucarest, tâche
délicate à remplir étant donné les circonstances politiques et
sociales que la Roumanie traverse.

« Mais en 1946, devant le durcissement du climat politique,
il sent que cette tâche est pour lui terminée et il se résigne à

répondre à l'appel de ses amis français qui l'invitent à venir
faire une série de conférences à Paris. Arrivé en France, où il
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reprend contact avec les mathématiciens et les historiens des

: sciences, il participe activement à la création de l'Union
internationale d'Histoire des sciences aux côtés de Pierre Brunet,
d'Arnold Reymond et de Cortesao. »1 Le Congrès international
de Lausanne (octobre 1947) consacre cette nouvelle organisation
dont le secrétariat général est confié à Pierre Sergescu. Peu après,
Aldo Mieli et Pierre Brunet étant décédés, il est nommé secrétaire

permanent de l'Académie internationale d'Histoire des

sciences et directeur de la revue des Archives internationales de

cette discipline.
Malgré ces lourdes charges, il continue ses travaux personnels,

ses émissions culturelles à la radiodiffusion française; il
organise au Palais de la découverte des conférences mensuelles

ou des expositions commémoratives des grands savants des

siècles passés (Léonard de Vinci, Pascal, par exemple).
Il prend part en outre aux Congrès de l'Association française

pour l'avancement des sciences et aux Congrès internationaux
d'Histoire des sciences. Répudié par le gouvernement roumain
devenu communiste, il souffre cruellement d'être apatride; il
fait tout ce qu'il peut pour soutenir ses compatriotes réfugiés
comme lui en France.

Tant d'épreuves morales et physiques finissent par avoir
raison de sa santé. Tombé malade en revenant du Congrès
international d'Histoire des sciences tenu à Jérusalem (septembre
1953), il est contraint, au début de 1954, de passer trois mois
à l'hôpital. Rentré chez lui, il se remet au travail, soigné par
sa femme avec un dévouement inlassable. Le 20 décembre 1954,
après avoir travaillé tard dans la nuit avec quelques amis, il
s'est endormi pour ne plus se réveiller.

** *

Ce départ est un deuil terrible pour l'Académie et l'Union
internationales d'Histoire des sciences, pour les Archives
internationales de cette discipline, pour les diverses institutions
auxquelles il se dévouait corps et âme. Cette mort crée également

1 R. Taton, article cité, p. 79.
1
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un vide très douloureux chez tous les amis que Sergescu avait en

France, en Suisse romande et ailleurs dans le monde civilisé,
car il excellait à susciter et à maintenir entre les savants d'où
qu'ils vinssent des liaisons durables.

Sitôt qu'il fut professeur à l'Université de Cluj qu'il avait
puissamment contribué à organiser, l'un de ses premiers actes
fut d'inviter ses anciens maîtres de Paris à venir y parler. Il
tint également à ce que la Suisse romande entrât en contact
avec elle. C'est ainsi qu'Edouard Claparède, Rolin Wavre, nous-
même, entre autres, y donnèrent des conférences. L'accueil qu'il
faisait à ses hôtes laissait un souvenir inoubliable.

Il avait, par exemple, organisé en 1936 une séance du Comité
d'histoire générale et du Comité d'histoire des sciences. Il nous
fit visiter toute la Roumanie, les peintures émouvantes des

vieilles églises, nous mettant en rapport avec les paysans et avec
les artisans (tissages et poteries). La variété des sites traversés
(montagnes et plaines) et des populations rencontrées nous ont
laissé des xisions ineffaçables.

Lorsque après la deuxième guerre il fut contraint de ne plus
rentrer dans son pays, il poursuivit inlassablement son activité
de rapprochement. Il confia souvent à un étranger le soin de

faire l'une des conférences d'histoire des sciences données au
Palais de la découverte et éditées par celui-ci.

** *

Activité scientifique.

Elle se divise tout naturellement en publications mathématiques

et publications historiques.
L'œuvre mathématique se situe surtout dans la période

antérieure à 1930, mais ne s'est pas réduite à un unique secteur
des mathématiques. P. Sergescu, en effet, s'il s'est intéressé

avant tout à la théorie des polynômes et aux équations
intégrales, a donné également dans de nombreux domaines des

mémoires originaux, particulièrement dans les Comptes rendus
de VAcadémie des sciences. Parmi ces mémoires, il faut citer
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entre autres dans le Bulletin mathématique de la société roumaine
les « Noyaux symétrisables (théorème de Laguerre) », Université
de Cluj, 1927; « Noyaux symétriques gauches, sur le mouvement
des particules électrisées », Congrès de l'Associations française

pour l'avancement des sciences, 1930; «Module des zéros des

dérivées des fonctions bornées », Comptes rendus de VAcadémie

des sciences, Paris, 1924; «Extension aux noyaux symétrisables
du théorème de Weyl » — « Quelques inégalités de MM. Landau
et Lindelöf concernant les fonctions monogènes » — «Théorème
d'Hermite », Mathesis, 1922.

Quant à Vhistoire des sciences, les sujets que Sergescu a traités
de préférence dans cette discipline sont: la pensée scientifique
médiévale, les mathématiciens du xvne siècle, la science à

l'époque de la Révolution française et enfin, le développement
moderne des mathématiques.

Sur la pensée médiévale, à propos de l'exposé concernant
« les étapes de la pensée scientifique » que je fis en 1935 au Centre
de synthèse, P. Sergescu me présenta la remarque suivante:
« Ne faudrait-il pas faire une place plus large au moyen âge
dont P. Duhem nous a tracé des tableaux impressionnants
Pour moi, cette période a une importance capitale dans l'évolution

de la pensée scientifique. Les circonstances ayant au début
du moyen âge détruit l'unité de la science grecque antique, il y
eut deux tronçons séparés qui se sont cherchés sans parvenir à.
se rejoindre. L'un est l'École nominaliste de l'Université de
Paris. Celle-ci a développé jusqu'à la perfection les méthodes
déductives de la pensée scientifique (Jean de Murus, Grégoire
de Rimini, Albert de Saxe, Jean Buridan). D'un autre côté se

trouve l'Ecole italienne regardant surtout les faits sans trop
développer les raisonnements. »1

Dans ses publications subséquentes, Sergescu revient à
diverses reprises sur la question qui jusqu'à la fin de sa vie l'a
préoccupé.

Dans l'étude « Pascal et la science de son temps » qui, au
Palais de la découverte, inaugure en 1950 la série des conférences
mensuelles consacrées à l'histoire des sciences, il souligne à

; 1 Voir Arnold Reymond, Philosophie spiritualïste, I, p. 318. Paris, Vrin, 1942.
i
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nouveau que l'on ne saurait assez montrer l'importance du

moyen âge dans le développement de la science actuelle.
Lors de la 18e Semaine de synthèse, octobre 1952, il est

chargé d'exposer ses vues sur l'infiniment petit du moyen âge

au xixe siècle.

Il rappelle que l'unité de la Science grecque fut tragiquement
brisée au début du moyen âge. Peut-être que l'apport légué par
celui-ci a été de fournir à Paris, dans l'Ecole nominaliste, les

moyens de raisonnement qui pouvaient mouler les faits que le

second tronçon de la science, la science archimédienne, avait par
les Arabes laissé subsister en partie dans la tradition italienne.
Saint Thomas d'Aquin, par exemple, distingue entre l'infini
créateur et l'infini créé.

En 1277, l'Eglise condamne les écrits physiques et
mathématiques d'Aristote. Pierre l'Espagnol, devenu le pape
Jean XXII, distingue l'infini en puissance (syncatégorique) et
l'infini en acte (catégorique). Mais peut-on passer du premier au
second, et comment Les discussions sur ce point préparent
l'avènement du calcul différentiel et intégral.

Le dernier travail que Sergescu ait publié, Reçue d'histoire
des sciences, octobre-décembre 1954, est consacré à « Paul
Tannery et la science médiévale ». Les recherches faites dans ce

domaine par l'éminent historien portent surtout sur les Byzantins
(par exemple, œuvre de Psellos concernant Diophante) et sur
l'Occident latin (rôle important de Nicolas Chuquet). « Sans

doute, dit Sergescu, le matériel recueilli à l'époque de Tannery
était-il trop mince pour permettre de brosser une synthèse de la
science du moyen âge, synthèse que devait présenter pour la
première fois P. Duhem. En revanche, l'analyse de Tannery
apporte des connaissances essentielles en vue de cette synthèse. »

** *

Enfin, maintes allusions et précisions relatives à la science

médiévale se trouvent dans les quelques ouvrages que Sergescu
a publiés. Dans ces ouvrages, les développements historiques
sont accompagnés de réflexions philosophiques sobres, mais
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1 judicieuses, que par sa double culture à la fois scientifique et
j littéraire Sergescu était remarquablement apte à présenter,
j Le premier volume intitulé Les sciences mathématiques a paru

1 en 1933, ainsi que je l'ai signalé plus haut.
Comme ce volume fait partie du tableau du xxe siècle, les

savants dont il parle sont pour la plupart des contemporains.
: Voici les titres des chapitres traités: I. L'héritage du xixe siècle

— II. Henri Poincaré (belle caractéristique de son œuvre: fonc-
;i tions fuchsiennes, analyse, géométrie, physique mathématique

et mécanique céleste). — III. Analyse mathématique et théorie
des fonctions. -— IV. Géométrie et astronomie. —V. Mécanique
et physique mathématique. — VI. Philosophie et histoire des

mathématiques. — Index bibliographique.
Dans chaque chapitre sont cités les savants (accompagnés

de leur photographie) qui ont le plus contribué à la création et
au progrès de la branche des mathématiques qui est envisagée
dans ce chapitre.

On ne peut qu'admirer la façon remarquable dont Sergescu
remplit le programme qu'il s'est assigné. Il excelle à trouver
l'expression ou l'image qui est la plus appropriée à faire
comprendre son texte.

Par exemple (page 35): «Considérons une fonction (un effet)
d'une variable (d'une cause). A chaque changement infiniment
petit de la cause, correspond un changement, en général infiniment

petit, de l'effet. »

De même, page 58: «Les équations différentielles ordinaires
(lre étape) servent à préciser la loi liant un effet à une cause;
les équations aux dérivées partielles (2e étape) étudient les lois
liant un effet à plusieurs causes; mais parfois l'ensemble des

causes, agissant sur un phénomène physique complexe, fait
intervenir l'infini et le problème se complique et conduit aux
équations fonctionnelles. »

En 1937, Sergescu collabore avec G. Bouligand et bien
d'autres savants à un livre collectif intitulé: L'Evolution des

\ sciences physiques et mathématiques.
; Enfin, la collection « Esprit et nature » (Sedes, Paris, 1951) fait
; paraître une étude substantielle qui a pour titre Coup d'oeil sur

les origines de la science exacte moderne. « Le présent ouvrage, dit
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Sergescu dans sa préface, se compose de deux parties extrêmement

différentes. La première représente une série de quatorze
causeries faites dans le cadre des émissions culturelles de la
Radiodiffusion française. La deuxième partie est une
bibliographie raisonnée des compléments nécessaires pour une
connaissance plus approfondie des auteurs cités. »

Voici les titres des chapitres qui composent la première
partie: I. Introduction. — II. L'héritage du monde antique et
arabe. — III. Le problème de 1'infmi. — IV. Le problème du
mouvement. —V. Le problème du système du monde. —VI. Les

nouveaux outils intellectuels.
Ces six causeries résument et précisent la science grecque

ancienne de la pensée médiévale.
Viennent ensuite: VII. Abandon des théories d'Aristote.

Galilée. —VIII. Hésitations au début du xvne siècle. — IX. Deux
attitudes modernes: Descartes et Pascal. — X. La théorie
moderne de l'infini. Newton et Leibniz. — XI. Mécanique et
astronomie modernes. Newton. — XII. Le xvine siècle.
Naissance de la géodésie. — XIII. Le xvine siècle. Systématisation
de la science moderne. — XIV. La chimie moderne. Lavoisier. —
XV. Conclusions. — Index des noms. — Index des matières. —
Notes bibliographiques.

L'index donne par ordre alphabétique les noms des auteurs
et une brève analyse de leurs principaux ouvrages. Outre cet
index des noms, se trouve un index explicatif de quelques termes
techniques. Les notes bibliographiques indiquent les ouvrages
surtout historiques que l'on peut consulter.

En conclusion, la science exacte moderne s'est précisée et
systématisée par une étude constamment renouvelée des trois
questions suivantes: le problème de l'infini, celui du mouvement
et enfin le mystère relatif au système du monde.

A mesure que par l'expérimentation et la théorie une discipline

scientifique a étendu son domaine, des branches nouvelles
ont pris naissance et se sont développées sur cette discipline;
d'autres, au contraire, s'en sont détachées. Par exemple, la
logique et la psychologie faisaient partie de la philosophie; elles

s'en sont séparées au xixe siècle et sont devenues des sciences

autonomes.
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Comme nous l'avons dit à propos de ses précédents ouvrages,
Sergescu excelle à illustrer son texte par des comparaisons
ingénieuses ou par des résumés de quelques lignes, très clairs
et suggestifs. Par exemple, page 22: «La notion & infiniment
grand n'existe pas dans la science d'Aristote. Mais, en même

temps, on y refuse l'existence des atomes, ce qui permet de

concevoir la divisibilité à l'infini de la matière et, par conséquent,
la notion d^infiniment petit. Or les deux infinis, le grand et le

petit, sont des grandeurs réciproques. Il aurait fallu les accepter
ou les rejeter tous les deux à la fois. Aristote n'a pas saisi la
correspondance. » On pourrait citer bien d'autres passages
semblables.

En conclusion on ne peut qu'admirer la variété, l'ingéniosité
et l'exactitude des contributions que Sergescu est parvenu à

fournir au milieu des soucis politiques et administratifs dont sa
vie a été parsemée.
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PAR

André Lichnerowicz, Paris

J'ai fait quelques conférences dans ma vie1. Mais dans

presque toutes, j'avais le secours inestimable du tableau noir
et du bâton de craie. Il s'agissait de mathématiques ou de
physique, de sciences exactes et je n'avais à exorciser que de braves
équations qui demeuraient fidèlement sur le tableau ou se

transformaient conformément aux règles du ballet mathématique,

mais ne nous posaient guère de problèmes de conscience.

C'est, croyez-moi, une étrange aventure pour un mathématicien

d'être contraint de perdre la sécurité de son langage
familier et d'être amené à se colleter avec certains des problèmes
les plus graves que pose l'aventure présente de la société des

humains. S'il y apporte quelque lourdeur et quelque maladresse,
je suis sûr que vous voudrez bien les lui pardonner. Mais cette
contrainte, que je subis avec un mélange de joie et de désespoir,
est le signe d'une contrainte infiniment plus grave qui pèse sur
la communauté des savants tout entière.

** *

Mais qu'est-ce donc que ce savant dont je voudrais analyser
la condition Est-il celui qui sait, qui connaît ou possède une
certaine vérité La question même méconnaît toute la démarche
de la science moderne. Celle-ci nous a appris que les vérités
possédées sont des vérités mortes, dont les cadavres sont livrés

i Conférence faite à l'Université de Genève. Une conférence sur le même thème a
été donnée, sous les auspices de la Maison des Sciences, à Paris.
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I aux enfants sous forme de manuels de l'enseignement secondaire,
1 ou des vérités approximatives et en état de dépassement. Le
H domaine du savant n'est certes pas celui de la possession.

Pour l'homme du xvine siècle, la notion de savant était claire
pi et décrivait une certaine attitude d'esprit sur laquelle nous
fs reviendrons. Mais en l'an de grâce 1955, notre vocabulaire est

ĵl devenu confus et traduit la confusion de nos esprits; nous
P employons presque indifféremment les mots savant et technicien

| et le qualificatif de chercheur a surgi et a connu depuis quelque
ij trente ans une fortune inespérée. Je connais même, dans telle

y rue de Paris, un institut de beauté qui s'intitule modestement
« Institut de recherches esthétiques», titre qui m'a plongé dans

h; une légitime perplexité.
I j II y a quelque chose de sain dans cet accent mis sur la
y recherche, car l'esprit scientifique n'est pas esprit de possession

mais esprit de recherche, d'approfondissement. Mais il est aussi
>

i générateur de confusions et ces confusions ne sont point inno-
j"

; centes. Qu'est-ce qui distingue donc un savant et un technicien,
i l Lorentz et un grand ingénieur chef du laboratoire de recherches
^ d'une firme électronique importante — je prends volontairement
m des exemples à grande échelle Tous deux ont été des chercheurs ;

H nous avons redécouvert — et cela est vrai — que les procédés
N techniques de la recherche dite pure et ceux de la recherche dite

I appliquée sont indistinguables. Cependant nous sentons une
: j différence fondamentale entre les attitudes d'esprit de ces deux

hommes. En gros, si vous me permettez de parler presque
i brutalement, l'un peut trouver le couronnement de sa carrière

; j à devenir dans sa firme directeur général, sans trahir véritable-
1 ment sa vocation, l'autre pas. L'un appartient à une corporation

; j hautement estimable et d'une grande utilité pour notre société,
y l'autre est membre d'une des rares communautés spirituelles

i qui existent en ce monde, la communauté des savants,

y C'est peut-être cette distinction qui a été perdue de vue avec
: la notion de chercheur et c'est elle que je suis contraint de
i réaffirmer avec quelque raideur. Quelle est donc l'attitude

•
j d'esprit du savant Nous pouvons en bonne méthode l'examiner
j soit à travers les comportements du savant contemporain, soit

à travers l'histoire de l'élaboration, au cours des siècles, de cette
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attitude humaine. Désirant parler de ce que je connais le moins
mal, je me limiterai aux sciences exactes et aux quelques
implications de ces sciences dans le domaine des sciences humaines.

** *

Un savant est un homme qui participe activement à l'aventure

scientifique, qui est un militant de l'aventure scientifique.
Mais cette aventure est, par nature, une aventure collective et,

pour y participer, le savant a dû faire certains vœux et pratiquer
une certaine ascèse. Ascétisme intellectuel mais aussi ascétisme
moral indissolublement mêlés. Si l'accent est généralement mis
sur le premier, le second non moins important est maintenant
souvent remis en question pour des raisons que nous étudierons.

Ce n'est pas le lieu ici de décrire le savant au travail et
d'analyser les disciplines qu'il s'est imposées et qui doivent
simultanément favoriser l'éclosion d'un certain type d'imagination

et assurer le contrôle et la rigueur: cette nécessité de l'ouverture

d'esprit, d'un esprit prêt à accueillir tout ce qui survient
avec une volonté délibérée d'attention et cet impitoyable esprit
critique destiné, en écartant toute spéculation confuse, à tresser
les matériaux scientifiques en un réseau contraignant et communicable

à quiconque prend la peine de l'étudier. Cette absence
de respect, dans le domaine scientifique, pour toute pensée
extérieure qui serait limitative et en même temps cette volonté
de clarté totale qui sacrifie sans regret tout ce qui est encore
trouble ou trop complexe.

Mais ces disciplines impliquent et imposent des choix
moraux. Comment garder à son esprit sa pleine disponibilité si

l'on vise avant toute chose l'application et l'application
techniquement payante Comment lui assurer sa maîtrise de soi, s'il
s'incline dans son domaine, devant des pouvoirs ou devant des

pensées religieuses ou philosophiques extérieures La volonté
d'autonomie, le désintéressement à l'égard des applications
doivent être, en des sens que je préciserai, des éléments
fondamentaux de l'attitude d'esprit du savant.

Il est enfin pour le savant des pièges plus subtils auxquels
nous succombons tous, peu ou prou. Le savant a voué sa vie à
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la recherche, mais il est bien rare qu'au cours des années l'étincelle

jaillisse continûment. Dans un carnet scientifique de

Pasteur, on trouve en note marginale : « En somme rien depuis
deux ans », et cette simple note traduit l'angoisse, normale chez

tout savant, de savoir si l'étincelle s'est définitivement arrêtée

ou si la grâce de créer de la science lui sera encore accordée.
C'est pourquoi être chercheur, au vrai sens du terme, n'est pas
un métier, ou alors c'est le pire des métiers. A côté de sa recherche,
le savant exerce généralement un vrai métier, un métier rassurant:

il est professeur dans quelque université ou administre un
laboratoire. Mais il arrive que ce métier dévore chez lui le
chercheur ou qu'inversement le savant cherche, dans son métier,
un alibi.

Quoi qu'il en soit, après des années de travail, il a apporté
à l'œuvre commune une contribution dont nul mieux que lui ne
sait combien elle est limitée, imbriquée dans tout l'effort d'une
génération et ne valant que par le travail séculaire des hommes
de science. Cette contribution, modeste ou notable, a d'ailleurs
au fur et à mesure cessé de l'intéresser: « ce n'était pas difficile
puisque cela a été fait », et il n'en tire, au fond de lui-même nulle
gloire: l'aventure qui se joue dépasse largement le stade des

petits bilans personnels.
Il a vécu, quelques années ou une vie, l'esprit de la conquête

scientifique, il a participé à l'œuvre de la communauté des
savants et c'est là son véritable honneur.

** *

Cette attitude d'esprit, dont nous voyons le surgissement
dans notre temps, s'est lentement élaborée au cours des siècles
et c'est peut-être la science qui a enseigné à la société des humains
ce qu'est la probité intellectuelle.

La science grecque a commencé à nous enseigner la rigueur
du discours, une rigueur que nous avons peu à peu resserrée
jusqu'aux limites de l'axiomatique contemporaine, jusqu'à
pouvoir raisonner sans paralogisme sur les ensembles infinis et
bâtir avec eux nos mathématiques. Mais il a fallu de longs et

L'Enseignement matliém., t. I, fasc. 1-3. 3
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pénibles efforts à la science moderne pour apprendre à dominer
certains aspects de ce que nous nommons le réel, en l'interrogeant

à l'aide d'expériences privilégiées et en l'enserrant au

moyen de nouveaux instruments de mathématilication. La
théorie physique contemporaine, tentative de déduction
mathématique totale d'une large classe de phénomènes, mais dont seul
le contrôle expérimental le plus strict assure qu'elle n'est pas
une théorie vaine, la théorie de quelque monde imaginaire,
apparaît comme symbolisant la réussite même de l'ambition
scientifique.

Mais avec la notion de données expérimentales, avec
l'importance et l'abondance des expériences privilégiées, il était
apparu quelque chose de nouveau dans la démarche scientifique.
Alors qu'en principe le mathématicien peut toujours vérifier la
démonstration d'un autre mathématicien et qu'en fait, il se

livre souvent à cet exercice, le physicien utilise des données

expérimentales, c'est-à-dire les résultats de beaucoup d'expériences

qu'il n'a ni le temps, ni les moyens matériels de refaire.
Il se fie aux travaux des autres, il est condamné à avoir confiance
dans les membres de sa communauté pour pouvoir pousser outre,
à penser qu'ils ont dit la vérité et toute la vérité. La probité
des comptes rendus d'expériences impose toutes les probités et
d'abord interdit le secret qui est aussi une atteinte à l'économie
de moyens de la science.

C'est avec la science expérimentale qu'apparaît complètement

ce que nous nommons la communauté des savants, une
communauté encore bien peu nombreuse — la France, grand
pays scientifique du xvine siècle, ne contenait que quelques
dizaines de savants — mais dès son apparition son idéal se révèle
très haut.

La pensée scientifique se veut totalement autonome, mais au

grand jour, et elle fuit l'ésotérisme dans lequel elle s'était
parfois réfugiée dans le passé. Tout le travail accompli doit être
rendu public, afin de permettre à chacun, en toute liberté,
d'entrer dans la communauté ou d'utiliser en dehors d'elle les

résultats acquis. Les défis et secrets des siècles précédents sont
regardés comme enfantins et blâmables. A travers les différents

pays, universités et académies assurent, avec la bienveillance
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de tous, la liberté de la recherche et celle de la diffusion des

résultats. Les guerres n'arrêtent point ces échanges et, dès le

xYiie siècle, on voit Huyghens venir siéger à l'Académie des

sciences de Paris, en plein conflit de la France avec les Hollan-
I dais, sans que Français ni Hollandais ou Espagnols y trouvent
j quoi que ce soit à redire.
'I II est vrai que les applications, bénéfiques ou maléfiques, de

I cette science qui naît sont encore à peu près exclusivement du
j domaine des espérances. Mais déjà la conscience scientifique les

!:j pressent et, avec un optimisme candide, juge qu'elles seront
M généralement bonnes. Il lui faudra bien longtemps pour sortir

j decette vue optimiste et elle ne parviendra pas à se sentir
j quelque responsabilité dans le processus de prolétarisation consé-

1 cutif, en Angleterre et en France, à la première révolution
industrielle.

Cependant, devant ce blé en herbe des applications, la
: réaction de la conscience scientifique est formelle: le savant doit
] rester désintéressé, désintéressé dans ses buts de recherche et

I désintéressé dans sa personne. C'est à d'autres que lui d'assumer

j la grande tâche des applications et des avantages matériels
j durement conquis pour tous, de mettre patiemment au point de
j difficiles et secrets procédés de fabrication. Le savant ne doit
j rien avoir à faire avec le secret, mais son désintéressement ne
j signifie pas qu'il doive être totalement inattentif aux consé-

I quences de ses travaux pour la société des humains,
j On ignore d'ailleurs à quoi peut servir cette attention recom-
] mandée, mais comme les conséquences ne peuvent être que
| bonnes à longue échéance, tout est pour le mieux.

Tel est, tracé à grands traits, ce qu'on pourrait nommer
| l'idéal classique de la science.

vi *
- \ * *

'\A

i C'est cet idéal plein d'une sagesse tout antique que nous
H sommes amenés douloureusement à remettre en question.
i Qu'est-il arrivé La science a rencontré sur sa route les pouvoirs.

Des transformations si profondes de la société des humains
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qu'elle a suscitées ou permises, la conscience scientifique a été
l'une des plus notables victimes.

Depuis un siècle, notre univers quotidien s'est profondément
transformé, a fait explosion, dans tous les sens du terme, cela,
nous le savons tous. Cet univers scientifique et technique qui
est le nôtre nous apparaît de plus en plus comme un univers
fabriqué, un univers artificiel qui nous sert à la fois de couveuse
et d'instrument, un univers qui peut se détraquer et que nous
nous sentons même capables de casser dans un moment de délire
collectif. Le front d'onde de l'expansion humaine se meut
maintenant si vite et est générateur de telles distorsions qu'il ne
semble plus permis de laisser à la lente éducation de nouvelles
générations le soin de conditionner la société des humains à ce
monde sans cesse refaçonné. Nous rencontrons là sans doute
l'une des raisons pour lesquelles cet univers pourtant humain
nous apparaît comme artificiel, comme dangereusement autre.
Nous sommes tous et sans cesse surpris par l'événement.

Cet univers est autre par sa substance, par ses structures et
il oblige chacun de nous, au cours de sa vie, à la recherche pénible
d'un nouvel état d'équilibre, souvent remis en question, à la
recherche de nouveaux réflexes économiques comme de nouveaux
schèmes de pensée pour appréhender ce réel mouvant.

Du monde encore pesant et maladroit de la première
révolution industrielle, monde fait de fonte et d'acier et auquel la
machine à vapeur, avec son régulateur grossier, conférait quelque
autonomie, nous sommes en train de faire un monde léger et
savamment réglé, fait d'aciers spéciaux, d'aluminium ou de

magnésium, de verre et de matières plastiques, riche d'énormes

quantités d'énergie — nous sommes en train de revendiquer
l'énergie solaire comme l'énergie atomique — et aux comportements

subtilement contrôlés par l'électronique.
Dans ce monde les sources de richesses ont été profondément

modifiées et les distorsions sont plus graves que jamais. Certains
peuples vivent, à peu près sans matières premières, du revenu
de leur science et de leur technique incarnées dans des industries
de haute précision; d'autres, que les circonstances historiques
ont placés en dehors du grand courant de l'expansion scientifique,

s'efforcent à produire des matières premières brutes pour
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subsister; ce sont les peuples dits sous-développés qui sont avant

tout, comme l'a montré M. André Mayer, des peuples sous-

alimentés, avec cette circonstance aggravante qu'ayant souvent

bénéficié, pour une part, des progrès mondiaux de la médecine,
ils présentent une expansion démographique démesurée par
rapport à leurs ressources propres restées presque stationnaires.

Ce monde qui est le nôtre, avec ses prestiges et ses maléfices

bien apparents, il ne nous est pas permis de le refuser. Chanter
les louanges d'un monde révolu et brandir sur le nôtre l'anathème
sont des activités pour mandarins irresponsables. Il ne nous est

pas permis de condamner à mort ces vieillards que nous avons
sauvés « artificiellement», ces enfants, toujours plus nombreux,
préservés des épidémies. Il nous faut trouver aux premiers un
but dans la vie et ne pas les abandonner dans le désert d'une
vieillesse inutile, il nous faut nourrir les uns et les autres, et nous
rêvons déjà du jour où, à grands coups d'énergie solaire, nous

pourrons fabriquer directement des aliments sans passer par les

techniques trop lentes de l'agriculture. Au premier rang des

préoccupations de tous les grands pays scientifiques figurent,
nous le savons, la photochimie, la photosynthèse. Déjà, jalons
sur la voie d'une solution, quelques « usines d'algues »

fonctionnent dans le monde. Des distorsions d'un univers scientifique,
nous nous efforçons de sortir par plus de science et une science

plus consciente d'elle-même.
Un autre aspect du problème doit être signalé: la science est

outil de prévision et toute une branche de la science contemporaine

s'efforce même, à l'aide des techniques de la statistique et
de la théorie des jeux, d'élaborer des instruments précis de

prévision des phénomènes économiques ou, plus généralement,
de phénomènes sociaux, essaye de préparer une technique des
décisions rationnelles en matière de conduite humaine. Une telle
science est, par nature, source de puissance et de richesse et
elle l'est déjà en fait dans ses quelques rares réalisations. Mais

| cette science qui se crée et balbutie encore ne peut ambitionner
que la décision basée sur la prévision à court terme, quelques
années peut-être. Au-delà, la recherche scientifique elle-même
qui se révèle comme le plus redoutable facteur d'instabilité de
notre monde, s'oppose à toute prévision valable: sur vingt ans,
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il nous est impossible de présumer avec succès les résultats de

notre travail.

** *

La science a donc rencontré les pouvoirs dans les conséquences
matérielles de ses résultats et même dans certains de ses buts de

recherche. Elle a brusquement éprouvé le poids de ses responsabilités

devant la société des humains. Enfin il lui a été révélé
qu'elle avait besoin des pouvoirs dans sa tâche, même la plus
classique, et que l'idéal du xvine siècle devait être remis en

question non pour des raisons de rapports de force, mais pour le

bien, pour la survie de la science elle-même.

L'appareillage expérimental primitif était tout artisanal et
le savant lui-même, aidé de quelque serrurier ou mécanicien,
suffisait à sa réalisation. Il était alors permis de minimiser le rôle
d'une industrie encore dans les limbes. Mais la recherche
scientifique repose désormais sur l'usine, utilise l'acquis de la science

non seulement directement, mais indirectement à travers son
incarnation dans des réalisations industrielles. Il y a choc en
retour sur le savant de ces applications laissées à d'autres. Un
grand laboratoire de recherches contemporain a les dimensions,
l'outillage, le personnel et jusqu'à certaines des méthodes d'une
véritable usine, héritière d'autres usines et, dans certains
domaines, en physique nucléaire par exemple, un seul appareil
est déjà une énorme machine groupant autour d'elle savants et
techniciens par dizaines et nécessitant pour sa pleine utilisation
des laboratoires annexes dont chacun eût fait la joie d'un
physicien il y a trente ans.

L'activité scientifique passe, dans de larges domaines, à

l'échelle industrielle la plus élevée et bien des savants, nos

contemporains, sont atterrés et ne parviennent pas à saisir
l'énormité des moyens nécessaires.

La science n'est plus cette activité de luxe pour gens sérieux

qu'elle fut au xvine siècle, elle intéresse et inquiète terriblement
les pouvoirs et est conduite à leur demander des moyens matériels

qui ne sont plus ceux qui conviennent à l'encouragement
des arts d'agrément, mais ceux qui correspondent, pour une
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!1 nation, à un investissement vital. Le scientifique et le financier
1 se trouvent tous deux contraints au dialogue, un dialogue plein
J d'ambiguïtés.

: ** *

Ce sont certaines de ces ambiguïtés du dialogue des pouvoirs
avec la communauté des savants que je voudrais analyser

i brièvement. Chacun y a, sans doute, une bonne conscience et
I quelques mauvaises pensées.

Il aurait fallu aux pouvoirs, aux intérêts privés comme à

l'Etat, une vue singulièrement élevée pour comprendre spon-
i tanément l'idéal scientifique. Tant que la science était, si j'ose

dire, un art d'agrément, passe encore. Mais il s'agit maintenant
de choses sérieuses, de gagner des batailles économiques ou des

batailles tout court, d'investir des sommes considérables,
détournées de la collectivité vers des recherches, il s'agit de

choses sans aucun doute infiniment trop sérieuses pour les laisser

aux mains des savants.
Les pouvoirs sentent confusément que, pour l'exercice de

leur mission, ils n'ont pas besoin de savants, mais en fait de

techniciens, ou, si vous préférez, de chercheurs au sens moderne
du terme. Il faut laïciser ces clercs. Les pouvoirs ont, par nature,
le choix des décisions et les responsabilités; aux techniciens

; employés d'assurer la réalisation des objectifs, l'accomplissement
du plan, sans se poser de problèmes graves. L'avance — scien-

: tifique ou technique, peu importe, — obtenue dans un domaine
| doit être conservée et le secret la couvrira. Aux savants propre-
j ment dits, à ceux qui persistent, sera permise une certaine

activité marginale; ils seront aussi utilisés à former des techniciens.

Telle est, partout dans le monde, la démarche naturelle
de pensée de dirigeants qui ne peuvent, à cause de leur expérience
propre, que méconnaître l'idéal scientifique.

Le secret, en matière scientifique, a fait sa réapparition et
; nous voyons en effet cet idéal méconnu dans les grandes choses
I comme dans les petites. Les grandes sont trop connues pour que
j'y revienne, mais les petites peuvent servir de signes. Tel
dirigeant d'entreprise privée comprend mal pourquoi un géologue
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de mes amis, lui ayant fourni un renseignement précieux, refuse
toute compensation personnelle, tel homme politique pourquoi
un autre savant refuse de diriger un trop grand organisme de

recherche de peur de devenir un directeur et de ne plus être un
chercheur. L'Unesco elle-même a récemment essayé de définir
et d'étudier un droit de propriété scientifique, un droit du savant,
et s'est gravement demandé s'il s'agissait d'un droit de création
ou d'un droit de découverte. La réponse que j'ai été amené à

donner à ses demandes était la suivante: « Il ne peut y avoir de

droit personnel de propriété scientifique, mais seulement peut-
être un droit collectif qui appartient à la communauté des

savants. Le savant est par définition celui qui ne revendique pas
de propriété personnelle sur les résultats de ses travaux, mais
les livre librement à tous. S'il désirait se réserver une part
d'avantages matériels, il n'avait qu'à prendre un brevet. Si vous
êtes amenés à reconnaître un droit collectif, ce choix ne peut être

qu'un droit moral à moins que vous ne considériez comme contrepartie

les moyens mis à la disposition de la recherche scientifique.

» La plupart des savants consultés ont répondu dans le
même sens, mais ce point de vue n'a pas paru satisfaisant aux
juristes. Il est cependant le seul conforme à la vocation du
savant.

Ce que je viens de dire des pouvoirs est, naturellement, un
peu caricatural, mais la caricature a du vrai. Il faut aussi noter

que les pouvoirs sont, par nature, techniquement incompétents;
en fait ils sont amenés, dans la plupart des cas, à suivre les

suggestions de leurs techniciens, de leurs experts ou se trouvent
pris dans des batailles de techniciens sans véritables possibilités
d'arbitrage. Mais dans beaucoup de ces techniciens, le microbe
du savant est présent.

** *

La communauté scientifique a donc dû, tout récemment,
affronter les problèmes nouveaux de ses rapports avec la société.

Elle y était fort peu préparée et montrait peu de goût pour cette
remise en question pour laquelle elle ne se sentait point armée.

Peu de savants semblaient disposés à réfléchir sur ces problèmes,
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des tâches strictement scientifiques leur paraissant plus

urgentes.
Mais personne n'était là pour se substituer à eux. Il est

curieux et attristant de constater combien l'aventure scientifique

intéresse peu la pensée philosophique de notre temps. Ni
Husserl, ni Jaspers, ni Sartre n'ont apporté de vues valables

sur la science. Le monde du labeur scientifique où nous baignons
leur demeure comme fermé, et aucun d'entre eux n'a entrepris
de dégager patiemment et honnêtement la philosophie implicite
qui est au cœur de la pensée scientifique. Mais, en vérité, c'était
aux savants d'abord à réfléchir sur leurs propres problèmes.
Nulle aide ne peut leur venir de l'extérieur.

Pendant longtemps, ils s'étaient bornés soit à manifester une
candide fierté de thaumaturges involontaires, soit à se réfugier,
s'ils étaient mécontents, dans quelque doctrine politique
préfabriquée, soit à expliquer leur parfait accord avec les

dirigeants: ils ne prétendaient assumer aucune responsabilité dans

cette histoire sombre et impure et ne désiraient pas se salir les

mains.
Auprès des financiers au contraire, ils tentaient de se justifier

par leur utilité directe et expliquaient longuement que si la
recherche libre, spontanée, diminuait ou disparaissait, la
recherche dirigée, appliquée, planifiée s'étiolerait très vite et

perdrait la plus grande part de son pouvoir de renouvellement,
ce qui est certainement vrai.

Les pouvoirs claironnaient: un savant ne doit pas « faire de

politique » et beaucoup de savants s'enorgueillissaient en effet
de « ne pas faire de politique » et prétendaient vaguement
négocier leur abstention contre des moyens matériels de recherche
mis à leur disposition, alors que d'autres, en quête d'évasion, se

précipitaient tête baissée, souvent avec générosité, dans une
action politique et se retrouvaient pris dans les rêts de quelque
faction qui les utilisait comme mages.

Beaucoup de savants se sont cependant trouvés las de ces

positions également inconfortables, également ascientifiques, las
soit de jouer au bateleur de foires, soit d'arborer une bonne
conscience qui émanait du ponce-pilatisme le moins noble. Ni
le rôle d'homme prophétique ni celui d'académicien inofïensif
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ne sied au savant. Quant à l'objection de conscience individuelle,
elle n'est qu'une attitude enfantine et qui dissimule encore uu
ponce-pilatisme.

Prise dans le tourbillon de l'offensive des pouvoirs, la
communauté scientifique a failli perdre, de la manière la moins
honorable, son autonomie et a dû, pour survivre, faire face et
réfléchir. Ce n'est certes pas un hasard si, dans le monde, les

réunions de savants portant sur ces problèmes se multiplient,
si les journaux scientifiques leur font écho. A la suite de longues
discussions certaines grandes sociétés scientifiques nationales ou
internationales ont interdit à leurs membres de participer à toute
réunion scientifique dans quelques universités dont les dirigeants
avaient méconnu les libertés des savants, et cette excommunication

publique s'est révélée un mode de pression remarquablement
efficace.

Dans l'héritage de l'idéal classique de la science, il est une

part inaltérable sans laquelle il n'y a plus de communauté
scientifique vivante, mais un syndicat de manœuvres qualifiés
qui irait vite se sclérosant et, à travers vents et marées, notre
communauté réaffirme cette part faite de loyauté dans la
discussion, de liberté de la recherche et de la communication, de

désintéressement à l'égerd des avantages matériels. Mais cet
héritage s'est alourdi: des devoirs nouveaux envers la société
des humains sont apparus.

Cette communauté scientifique est en train de prendre
conscience d'elle-même en tant que communauté sociale qui
défend, non les intérêts matériels de ses membres, mais une
volonté morale commune, qui doit préserver l'intégrité de la
conscience scientifique. Elle sait qu'elle doit veiller désormais
d'une manière active aux conséquences humaines de l'œuvre
scientifique et s'efforcer de réfléchir sur ces conséquences et de

les prévoir avec toutes les ressources de l'imagination critique
de ses membres.

Elle doit non plus seulement enseigner la science, mais

informer la société des implications sociales de ses résultats,
communiquer ses espoirs et ses craintes, dégager pour tous

l'esprit de son travail. L'information scientifique est peut-être
devenue le premier des devoirs nouveaux du savant, mais une
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information faite avec la même probité intellectuelle que la
science elle-même et qui ne contribue pas à parer du prestige
de la science des préférences philosophiques personnelles, une
information qui élabore les éléments d'une culture scientifique

| authentique.

i La communauté des savants doit ainsi travailler, dans un
| monde de plus en plus technifîé, à permettre les options claires,
| à conserver à chacun une possibilité véritable de contrôle, de

| choix, un choix qui ne soit pas une capitulation devant la
| publicité, la propagande ou l'autorité qui s'affirme compétente.
I Elle sait qu'elle doit augmenter son influence dans le monde,
| détacher des ambassadeurs auprès des puissants et leur faire

j sentir sa force, non par appétit de pouvoir, mais par souci
rj d'assumer, en fait, et non formellement, la part de responsabilités
: qui est la sienne.

j Ce sont de bien lourdes tâches que celles que désormais la
j communauté des savants doit accomplir en même temps que son

\\ œuvre proprement scientifique. Je pense qu'elle s'en montrera
|j digne.



LES MATHÉMATIQUES APPLIQUÉES
DANS L'ANTIQUITÉ
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B. L. van der Waerden, Zurich

1. Le tunnel de Samos.

Nous ne savons malheureusement que très peu de choses

sur les origines de la mathématique grecque. On raconte que
Thalès l'a introduite de l'Egypte et que Pythagore l'a élevée

au rang d'une science pure; mais nous ignorons quelle part de

vérité cette tradition tardive contient. Le plus ancien fragment
mathématique conservé est celui de la quadrature des lunules
d'Hypocrate de Chios 1, qui a vécu plus d'un siècle après Thalès
et Pythagore. Ce fragment témoigne que les mathématiques
étaient déjà fort développées et qu'elles étaient en possession de

définitions, de constructions et de démonstrations exactes. Il
ne nous renseigne pas sur les origines. On pourrait toutefois
espérer d'obtenir quelques renseignements sur l'état des

mathématiques en observant l'architecture de l'époque. Le majestueux
temple d'Ephèse était célèbre et regardé comme une des sept
merveilles du monde. La construction d'un tel édifice n'exigeait-
elle pas un calcul mathématique

Une pareille conclusion serait cependant imprudente. On

peut, sans mathématique, ériger de grands et solides bâtiments.

1 Voir F. Rudio, Der Bericht des Simplicius über die Quadraturen des Antiphon und
des Hippokrates, Leipzig, 1907.
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La preuve en est donnée par les constructions romaines. Dans

son ouvrage De Architecturalitruve, architecte romain du temps

d'Auguste, nous décrit la construction d'un portique; les

mathématiques n'y jouent pas de rôle.

Il existe pourtant une construction qui nous donne quelques

vues sur les mathématiques appliquées de l'antiquité. C'est

l'aqueduc construit au travers du mont Kastro sur l'ordre du

tyran Polycrate de Samos vers 530 av. J.-C. Hérodote le décrit
comme suit au livre 3, chapitre 60, de ses Histoires.

« Je me suis étendu davantage sur le cas des Samiens, parce
que c'est chez eux qu'ont été exécutés trois ouvrages les plus
grands qu'il y ait chez tous les Grecs: dans une colline dont la
hauteur atteint 150 orgyes, un tunnel qui commence au pied
et a une ouverture sur chaque versant; la longueur en est de

7 stades, la hauteur et la largeur chacune de 8 pieds; d'un bout
à l'autre du tunnel est creusé un autre canal profond de 20 coudées

et large de 3 pieds, à travers lequel l'eau amenée par des

tuyaux, est conduite jusqu'en ville, venant d'une grande
fontaine; l'architecte de ce tunnel a été le Mégarien Eupalinos, fils
de Naustrophos. »

Au cours des fouilles qu'ils effectuèrent en 1882 dans l'île
de Samos, les archéologues allemands trouvèrent ce tunnel, tel
qu'Hérodote l'avait décrit, d'un kilomètre de long et de 2 mètres
de haut et de large. Un canal profond de 2 mètres à l'une de ses

extrémités et de 8 mètres à l'autre, y était creusé. Il est fort
probable que ce canal fut fait après coup, parce que la pente
d'abord prévue s'était révélée insuffisante 1.

Mais, ce qui nous importe surtout est le fait que le tunnel
fut percé à ses deux extrémités. Les deux galeries se rencontrent
au milieu avec une erreur de moins de 10 mètres latéralement
et de 3 mètres en hauteur.

Ce résultat est grandiose. Le roi de Judée Hiskia (environ
700 av. J.-C., donc 170 ans avant Eupalinos) avait aussi fait
percer un aqueduc à travers un rocher non loin de Jérusalem.
La distance des deux extrémités n'était que de 325 mètres, mais
le tunnel fut percé en zigzag et sa longueur devint presque deux

1 E. Fabricius, Mitteilungen clés deutschen archäol. Inst. Athen, 9 (1884), S. 165.
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fois plus longue 1. La direction avait été contrôlée et corrigée
à l'aide de trous percés du haut du rocher.

Le tunnel d'Eupalinos est rectiligne. Il a donc dû avoir le

moyen de déterminer très exactement la direction des deux
galeries. Quelle méthode a-t-il pu employer

K f M L

Une méthode appropriée est donnée par Héron d'Alexandrie.
Héron enseignait vers l'an 60 après J.-C. les mathématiques
appliquées et la mécanique à Alexandrie 2. Il décrit dans son
livre Dioptra un instrument appelé dioptre, formé d'une colonne
verticale portant un disque circulaire horizontal centré sur elle.
Le disque peut tourner autour de son centre; deux plaques,
percées de trous placés exactement à la même hauteur, sont
montées sur lui. Cet instrument permet de mesurer les différences
de hauteur: on déplace des jalons verticaux d'un endroit à un

1 Conder The Siloam Tunnel, Palestine Exploration Fund Quarterly Statement,
1882. Voir de même: 2 Chron., 32.30.

2 Pour les dates voir 0. Neugebauer, Kgl. Danske Vid. Selsk. Hist-fil. Meddel,
26, Nr. 2 (1938).
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autre et on vise ces jalons à l'aide du dioptre, comme on le fait
encore aujourd'hui. On peut aussi mesurer à l'aide du dioptre
des angles dans le plan horizontal et en particulier reporter des

angles droits.
Après avoir expliqué l'emploi du dioptre, Héron pose le

problème suivant: «Percer dans une colline ABC un tunnel
rectiligne dont les extrémités B et D sont données. » Pour le

résoudre, il porte dans le plan à partir du point B un segment
rectiligne arbitraire BE, il construit ensuite à l'aide du dioptre
un second segment EZ perpendiculaire à BE et il continue ainsi,
toujours à l'angle droit, jusqu'au segment KL. Il place ensuite
le dioptre sur la droite KL au point M tel que l'extrémité D
du tunnel soit vue à angle droit. Les segments a, b1 c, d, e, /, g

peuvent être mesurés dans le plan. Pour trouver la direction du
tunnel, Héron prolonge en pensée EB à l'intérieur de la colline
et mène la perpendiculaire DN à DM. Soient DN x et BN
les côtés de l'angle droit du triangle rectangle BDN. Il est alors
évident que

x — b — d — /
y c + e — a—g

Le rapport des côtés de l'angle droit est donc connu. Soit,
par exemple, ce rapport égal à 1:5, dit Héron. On construit
alors sur BE et DM deux triangles rectangles ayant le même
rapport des côtés de l'angle droit et on sait comment il faut
percer. « Si on creuse le tunnel de cette manière, les ouvriers se

rencontreront », dit Héron.
Il est possible qu'Eupalinos ait appliqué cette méthode. Pour

la trouver, il fallait une idée géniale mais pour reconnaître son
exactitude on n'a pas besoin d'avoir de grandes connaissances
en géométrie: le bon sens suffit.

2. Perspective.

Lorsque vers 450 les tragédies d'Eschyle furent jouées à
Athènes, un certain Agatharchos construisit pour les représentations

des coulisses à effet perspectif. D'après Vitruve, il aurait
écrit un traité sur ce sujet. « A sa suite Démocrite et Anaxagore
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ont écrit sur la même chose, à savoir comment, ayant choisi un
certain point comme centre, il faut faire correspondre les lignes
dans le rapport naturel de la direction du regard et de l'extension
des rayons, afin que certaines images peintes sur les coulisses

simulent des bâtiments et que quelques parties dessinées sur les

avant-plans paraissent plus éloignées et d'autres plus
rapprochées. »

Tableau I

Des expressions comme « direction du regard » et « extension
des rayons » dont Vitruve se sert se retrouvent dans les écrits

grecs d'Euclide et de Ptolémée sur l'optique. Il y est question
de rayons visuels qui vont de l'œil aux objets. Le « certain point
qui est choisi comme centre » dont Vitruve parle est probablement

la position de l'œil. Le traité d'Agatharchos contenait sans

doute des règles pratiques sur la manière de réaliser la perspective
sur les coulisses. D'autre part, il faut croire que Démocrite et

Anaxagore, qui étaient des savants notoires, ne se sont pas
contentés de connaître ces règles pratiques, mais qu'ils en ont
donné une justification théorique basée sur les « rayons visuels »

partant de l'œil.
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1 II est étonnant que les Grecs aient regardés les rayons visuels

qui partent de l'œil comme une réalité physique au même titre

g que les rayons lumineux. Nous tâtons pour ainsi dire les objets
I avec nos rayons visuels. Nous apercevons une chose lorsqu'un
1 rayon visuel rencontre sur sa surface un rayon lumineux partant
;! de la source de la lumière. Voir à ce sujet A. Lejeune, Euclide
H et Ptolémée, deux stades de Voptique géométrique grecque, Louvain,
d 1948.

Fig. 2

Vitruve désigne du nom de skénographie la science de la
perspective; il témoigne par là une fois de plus que l'origine de

cette science est à chercher dans la peinture des décors de

théâtre.
On a trouvé à Pompéi des peintures murales exécutées

suivant les règles de la perspective. Les prolongements des droites
qui paraissent s'éloigner convergent vers un point (tableau I).
Ceux qui les ont peintes étaient des contemporains de Vitruve ;

leur manière de peindre perspective venait probablement de

celle des scènes théâtrales grecques.

3. La projection stéréographique.

La projection stéréographique est une représentation de la
surface d'une sphère dans le plan qui s'apparente à la perspec-

L'Enseignement mathém., I. I, fasc. 1-3. 4
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tive. C'est une projection centrale de la surface sphérique sur
le plan équatorial à partir du pôle Sud S (fig. 2). La propriété
principale de la projection stéréographique est: la projection
(Tun cercle est un cercle.

Cette proposition est aisée à démontrer en s'appuyant sur
le théorème 5 du premier livre d'Apollonius sur les coniques,
qui dit que certaines sections d'un cône circulaire oblique sont
aussi des cercles. Pour formuler le plus simplement la condition
de ce théorème, prenons comme plan du tableau (fîg. 3) le plan

Fig. 3

de symétrie de la figure, c'est-à-dire le plan passant par les

pôles Nord et Sud et le centre du cercle. Le plan du cercle
donné coupe le plan du tableau suivant le diamètre AB. De même,
le plan équatorial coupe le plan du tableau suivant CD. Ces

deux plans sont perpendiculaires au plan du tableau. Le cercle
de diamètre AB est projeté à partir de S suivant un cône
circulaire oblique. Le théorème d'Apollonius dit alors: la section
de ce cône par le plan CD est encore un cercle si les angles ABS
et CDS sont égaux.

Dans notre cas, le cercle AB étant situé sur la sphère, la
condition d'Apollonius est satisfaite. En effet, si on mène par
le point S une tangente ST parallèle à CD, l'angle CDS est égal
à l'angle DST qui est inscrit dans le même segment circulaire

que l'angle ABS. Donc CDS DST ABS.
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Il résulte donc du théorème d'Apollonius que la section du
cône par le plan équatorial est un cercle, c'est-à-dire que la

projection stéréographique d'un cercle est un cercle.

Le célèbre astronome Ptolémée traite de la méthode de la

projection stéréographique dans son Planisphaerium, mais son

prédécesseur Hipparque (130 av. J.-G.) en avait déjà parlé dans

un traité qui a disparu.

Tableau II

L'astrolabe est un instrument basé sur cette méthode de

projection. Il était très répandu et apprécié au moyen âge,
surtout dans le monde islamique. Le tableau II représente un astrolabe

persan de l'année 1223, qui se trouve maintenant au Musée
d'histoire des sciences à Oxford. L'anneau extérieur est divisé
en 360 degrés. Un disque circulaire mobile, centré sur l'anneau
extérieur et appelé araignée, porte des indications d'étoiles et un
cercle excentrique représentant l'écliptique. L'araignée est la
projection stéréographique de la sphère céleste. Sa rotation
imite la rotation journalière (apparente) du ciel étoilé. Derrière
1 araignée se trouve un disque sur lequel ces cercles sont gravés.
L'arc de cercle qui partage la partie supérieure du disque représente

l'horizon. Les cercles compris à l'intérieur de l'arc de
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l'horizon sont des cercles d'élévation parallèles à l'horizon
indiquant des élévations de 3°, 6°, etc., en projection stéréogra-
phique. Le disque reste immobile lorsque l'araignée tourne. Si

on la tourne à droite et si on suit la course d'un des indicateurs
d'étoiles on voit d'abord l'étoile apparaître à l'horizon, puis
culminer au méridien et enfin disparaître à l'horizon. Le disque
est interchangeable afin que l'on puisse se servir de l'astrolabe
pour d'autres latitudes.

L'astrolabe peut servir à déterminer le temps aussi bien
pendant la nuit que de jour. Un dioptre se trouve en effet sur
sa partie postérieure. Si on suspend verticalement l'instrument
et qu'on vise une étoile ou le soleil à l'aide du dioptre, on peut
déterminer leur élévation sur le cercle gradué. A cette élévation
correspond un cercle d'élévation sur la partie frontale de

l'instrument. Observe-t-on une étoile, on tourne l'araignée jusqu'à
ce que l'indicateur de l'étoile se trouve exactement sur le cercle
d'élévation. Observe-t-on le soleil, il faut d'abord connaître sa

position sur l'écliptique au jour en question. Marquant cette
position, on tourne le disque de manière qu'elle soit située sur
l'horizon (lever du soleil), puis on continue à le tourner à

droite jusqu'à ce qu'elle se trouve sur le cercle d'élévation. La
différence des deux lectures sur le limbe donne le temps écoulé

entre le lever du soleil et le moment de l'observation. On détermine

de la même manière le temps écoulé entre le coucher du
soleil et l'observation d'une étoile.

Le plus ancien astrolabe conservé jusqu'à nos jours est un
instrument arabe datant de l'an 984 1. Mais Ptolémée mentionne
déjà dans son Planisphaerium un appareil horoscopique avec une
araignée et la tradition rapporte d'Hipparque qu'il n'avait inséré

que 16 étoiles dans son astrolabe 2. On peut remonter encore plus
haut, car on trouve dans VArchitectura IX 8 de Vitruve
l'indication suivante: «C'est Eudoxe qui a inventé l'araignée, mais

d'après les dires de quelques-uns, ce serait Apollonius. » Cela est

plausible si l'on admet qu'Eudoxe a inventé un instrument à

forme sphérique muni d'une araignée et qu'Apollonius ait

1 Voir T. G. Guenther, The astrolabes of the world, Oxford, 1932. Le tableau II
provient de cette œuvre magnifique.

2 0. Neugebauer, The early history of the Astrolabe, Isis, 40 (1949), p. 240.
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construit l'astrolabe plan en utilisant la projection stéréogra-

phique. Apollonius était un grand mathématicien et il connaissait

le théorème sur les sections circulaires du cône oblique
rappelé ci-dessus. S'il en est ainsi, on comprend que quelques-uns
attribuent à Eudoxe et d'autres à Apollonius l'invention de

l'araignée. Mais cela n'est qu'une hypothèse.

1 A
•
•
• rhil

Fig. 4

4. Les horloges a eau.

Vitruve décrit une horloge à eau, basée elle aussi sur l'emploi
de la projection stéréographique. Au lieu d'avoir des aiguilles
tournantes comme en ont nos montres, cette horloge possède
un disque tournant, monté sur un axe horizontal. Cet axe est mu
par un cordon dont les extrémités sont attachées à un flotteur
et à un contrepoids (fig. 4). D'un récipient constamment rempli
d'eau jusqu'au bord débite un courant stationnaire dans un plus
grand vase. Le niveau de l'eau s'élève dans ce vase et avec lui
le flotteur; d'où un mouvement de rotation uniforme du disque.

Le ciel étoilé est reproduit stéréographiquement sur le disque.
Le cercle excentrique de la figure 5 représente l'écliptique. Sur
son limbe 365 ou 366 trous sont percés, un pour chaque jour de
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l'année. Une cheville figurant le soleil est enfoncée chaque jour
dans le trou correspondant. 183 trous suffisent si la cheville n'est
enfoncée que chaque deuxième jour dans le trou suivant1.

Le débit de l'eau est réglé de telle façon que le disque effectue
un tour par jour stellaire. La rotation du disque correspond alors
exactement au mouvement journalier de la sphère céleste et du
soleil.

Un réseau formé d'un arc d'horizon et de 11 lignes horaires
est placé devant le disque. La sixième ligne horaire est une
droite (le méridien), la douzième est la partie droite de l'arc
d'horizon, celle du coucher du soleil.

Les Grecs et les Romains divisaient le jour en 12 heures,
depuis le lever jusqu'au coucher du soleil (de même la nuit).
Les heures du jour étaient donc plus longues en été qu'en hiver.
Cela obligeait de tenir compte de la marche du soleil et des

saisons dans la construction des horloges. Leur construction eût
été bien plus simple si toutes les heures avaient été égales: une
aiguille unique et un seul cadran eussent suffit comme dans nos
horloges. Toute la complication de la mesure du temps dans

l'antiquité provient de l'inégalité des heures du jour et de la nuit.
On pouvait régler l'horloge à chaque lever ou coucher du

soleil: il suffisait pour cela de placer le disque de la manière

que la cheville figurant le soleil soit située exactement sur le
cercle d'horizon. Au besoin, l'horloge pouvait être réglée à midi,
en observant le passage du soleil par le méridien. L'horloge
permettait de connaître l'heure au cours de la journée, même si le
soleil était caché, ce qui n'est pas possible avec une horloge
solaire.

L'horloge à eau n'existait pas seulement sur le papier dans
le traité de Vitruve; elle existait aussi en réalité. On a trouvé
un fragment du disque en bronze d'une telle horloge au cours
des fouilles effectuées dans un camp militaire romain à Salzbourg
(Autriche). Albert Rehm a reconstruit le disque à partir de ce

fragment en se laissant guider par la description de Vitruve 2.

1 A. Rehm, Zur Salzburger Bronzescheibe, Jahreshefte österr. archäol. Inst. Wien,
6 (1903), p. 41.

2 La description de Vitruve manque de clarté. Albert Rehm a interprété le passage
de Vitruve en se basant sur sa reconstruction du disque en bronze de Salzbourg (voir
ci-dessous). La description que nous donnons ici repose sur celle de Rehm.
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Le tableau III montre cette reconstruction à côté du fragment
trouvé. Le diamètre du disque était de 2 mètres; l'horloge était

probablement placée sur une place publique comme le sont les

tours à horloge. Le cercle de l'écliptique était divisé en 12 parties
correspondant aux 12 signaux zodiacaux.

Le tableau IV montre le réseau servant à la lecture des heures,
tel que Rehm l'a construit d'après les données de Vitruve. Les
cercles concentriques représentent l'équateur et quelques
parallèles sur lesquels le soleil se meut aux différentes saisons.
Sur chaque parallèle l'arc d'horizon est divisé en 12 parties
égales. Les lignes horaires joignent les points de division.

JuvAvum

Tableau IV
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AUSGEWÄHLTE EINZELPROBLEME
DER KOMBINATORISCHEN GEOMETRIE

IN DER EBENE

VON

H. Hadwiger und H. Debrunner, Bern

Es gibt verschiedene mathematische Sachgebiete, wo elementare

Aufgaben unmittelbar in höhere und teilweise ungelöste
Fragestellungen übergehen, so dass dort einfachste Gegenstände
der Schulmathematik eng benachbart mit solchen sind, die
wissenschaftliches Interesse bieten und von Spezialisten
bearbeitet werden. Wesentlich ist dabei, dass die beiden fachlichen
Standorte nicht wie üblich durch weit ausgebaute höhere
Theorien und vielschichtige Begriffsskalen voneinander getrennt
sind.

Ein Sachgebiet dieser Art ist die kombinatorische
Geometrie, die bei Beschränkung auf die Ebene einen besonders
einfachen Charakter aufweist. Ihre Fragestellungen knüpfen
unmittelbar an die Grundbegriffe der ebenen Elementargeometrie

an und beziehen sich dann auf die Vielfalt der
primitivsten Vorgänge und Verknüpfungen wie diejenigen des

Umfassens, Treffens und Zerlegens usw. und auf die hier in
Erwägung zu ziehenden kombinatorischen Möglichkeiten.

Das Gebiet ist mit der kombinatorischen Topologie verwandt;
jedoch tritt die eigentlich topologische Betrachtungsweise stark
zurück, und die Problematik bleibt der Elementargeometrie
verpflichtet. Wie dies von H. Hopf [22]1 ausführlicher geschil-

i Eckige Klammern verweisen auf das Literaturverzeichniss am Schluss der Arbeit.



KOMBINATORISCHE GEOMETRIE IN DER EBENE 57

dert worden ist, treten in der kombinatorischen Geometrie
metrische und topologische Gesichtspunkte in eine gewisse

Wechselbeziehung.

Die von uns vorgenommene Zusammenstellung zahlreicher

Einzelprobleme hält sich übrigens nicht vollkommen streng an
den methodischen Rahmen der kombinatorischen Geometrie;
diese bildet nur das engste Kernstück eines Fragenkreises, der
durch die Ganzheit und Einfachheit seiner Gegenstände und
durch den rein kombinatorischen Habitus der erforderlichen
Schlüsse einen besonderen Anreiz auszuüben vermag.

Wie man — um dieser Geschmacksrichtung zu folgen und
um sich damit einer Wandlung anzupassen, die methodisch und
sachlich vom gewohnten klassischen Machtbereich zu einem mehr
neuzeitlich orientierten Arbeitsgebiet mit neuartigen reizvollen
Möglichkeiten überführt — ausgerüstet mit nur elementaren
Begriffen fragen kann, das soll durch die hier zusammengetragenen

Beispiele dem Leser nahe gebracht werden.
An Vorkenntnissen ist ausser den allgemeinen Grundlagen

der Elementargeometrie und der Lehre von den reellen Zahlen
wenig erforderlich; eine gewisse Vertrautheit mit dem mengen-
mässigen Denken ist nützlich; wichtig ist der Begriff der ebenen

Punktmenge. Wo erforderlich, werden weniger geläufige Bezeichnungen

kurz erläutert.
In Teil I. werden ausgesuchte Lehrsätze, nach Aussagen-

gruppen geordnet, ohne Beweis, aber mit einlässlicherem
Kommentar und mit Literaturhinweisen zusammengestellt. Die
Beweise — vielfach nur kurz angedeutet — folgen in Teil II.
So findet mancher Leser auch Gelegenheit, sich im Aufsuchen und
Ausführen eigener Beweisideen zu üben. Besondere Interessenten
mögen durch die zahlreichen Zitate auch da und dort den Weg
zu aktueller Fachliteratur finden und auch die angedeuteten
ungelösten Probleme weiterverfolgen.

Wir hoffen mit diesen ausgewählten Einzelproblemen Anregung

zu intensiverer Beschäftigung mit den anziehenden Fragen
der kombinatorischen Geometrie zu bieten und den in diesem
Sachgebiet bestehenden unmittelbaren Kontakt zwischen
Schulmathematik und wissenschaftlicher Forschung zu lebendiger
Wirkung gelangen zu lassen.
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I. Teil.

Die Aussagen der ersten kleinen Gruppe beziehen sich auf
Inzidenzverhältnisse bei Punkten, Geraden und Kreisen und
gehören also der kombinatorischen Elementargeometrie an.

1. Liegt auf der Verbindungsgeraden je zweier Punkte einer end¬

liehen Punktmenge stets wenigstens ein dritter Punkt der

Menge, so liegen alle Punkte auf einer Geraden.

Fig. 1

Zu diesem 1893 yon J. J. Sylvester [55] vermuteten Theorem

findet sich ein kurzer Beweis von T. Gallai (Grünwald) bei
N. G. de Bruijn-P. Erdös [6], wo die Aussage auch als Korollar
eines rein kombinatorischen Satzes erscheint. Für weitere
Beweise, Verallgemeinerungen und Varianten vgl. P. Erdös [11],
H. S. M. Coxeter [7], G. A. Dirac [9] und Th. Motzkin [39].

2. Geht durch den Schnittpunkt je zweier Geraden einer endlichen

Geradenmenge stets wenigstens eine dritte Gerade, so gehen
alle Geraden durch einen Punkt.

Die Aussagen 1 und 2 sind nicht mehr richtig, wenn die

Punkt- und Geradenmengen nicht endlich sind. Dies zeigt bei-
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spielsweise für beide Aussage« simultan das reguläre abzählbar-

unendliche Punkt- und Geraden system in Fig. 1.

3. Liegt auf jeder Kreislinie durch je drei Punkte einer endlichen

Punktmenge stets wenigstens ein vierter Punkt der Menge, so

liegen alle Punkte auf einer Kreislinie.

In Voraussetzung und Behauptung eng mit Aussage 3

verwandt ist der folgende Satz über beschränkte (d.h. in einem
Kreis von endlichem Radius enthaltene) abgeschlossene

Punktmengen :

4. Hat eine beschränkte, abgeschlossene Punktmenge die Eigen¬

schaft, dass die Symmetrieachse je zweier Punkte auch
Symmetrieachse der ganzen Menge ist, so liegen ihre Punkte auf einer
Kreislinie.

Dass die Aussagen 3 und 4 für nicht endliche und nicht
beschränkte Punktmengen unrichtig werden, ist dann trivial,
wenn man kontinuierlich-unendliche Punktmengen in Betracht
zieht. In der Tat genügt es, die ganze Ebene als Punktmenge zu
betrachten. Dagegen gibt es auch abzählbar-unendliche
Punktmengen, für welche die Voraussetzungen von Aussage 3 und 4

erfüllt sind, ohne dass sie Teilmengen einer Kreislinie sind. In
der Tat: Man wähle eine aus vier Punkten bestehende Menge A0,
die nicht auf einer Kreislinie oder einer Geraden liegt. Nun
konstruiere man auf rekursive Weise eine aufsteigende
Folge endlicher Punktmengen An (n — 0, 1, indem man
An 9 (A^) (n 1, 2, setzt, wobei 9 (A) die Vereinigungsmenge

aller Punktmengen bezeichnet, die durch Spiegelung
von A an sämtlichen Symmetrieachsen von Punktepaaren aus A
hervorgehen. Wie man sich leicht überlegt, ist die Vereinigungsmenge

S U An eine abzählbar-unendliche Punktmenge mit
der gewünschten Symmetrieeigenschaft; auf jeder durch drei
Punkte von S gelegten Kreislinie liegt stets wenigstens ein vierter
Punkt von S, falls die drei Punkte nicht ein reguläres Dreieck
bilden, und bei geringfügiger Erweiterung der Konstruktion 9
auch in diesem letztern Falle.

** *
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Wir lassen eine weitere Gruppe von Aussagen folgen, in
welchen die Ganzzahligkeit oder auch die Rationalität von
Distanzen eine Rolle spielt.

Die Menge der Punkte, deren Koordinaten bezüglich eines

orthogonalen Koordinatensystems ganz sind, bilden das ebene

Einheitsgitter; ihre Punkte heissen Gitterpunkte.

5. Bilden n Gitterpunkte (n > 2) ein reguläres n - Eck, so ist
ft — 4, d.h. das Quadrat ist das einzige reguläre Viereck, das
im Einheitsgitter eingelagert werden kann.

Einen originellen Beweis hierfür gab W. Scherrer [52], für
den Fall n 3 vgl. auch G. Polya-G. Szegö [43], Bd. 2, S. 156,
Aufgabe 238.

Ein Quadrat lässt sich selbstverständlich auch auf
nichttriviale Weise im Gitter einlagern; dies illustriert Fig. 2. Über
die Eckenwinkel eingelagerter Rhomben gilt die Aussage:

6. Bilden vier Gitterpunkte einen nichtquadratischen Bhombus
mit dem Eckenwinkel a, so ist ol/tz irrational ; d.h. das Quadrat
ist der einzige im Einheitsgitter eingelagerte Bhombus, dessen

Eckenwinkel mit dem vollen Winkel kommensurabel sind.

Im engsten Zusammenhang hiermit steht eine Feststellung
über die Winkel in pythagoreischen Dreiecken, d.h. in
rechtwinkligen Dreiecken mit ganzzahligen Seitenlängen. Hier gilt:
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7. Ist ai ein Basiswinkel eines pythagoreischen Dreiecks, so ist a/n
irrational.

Die Aussagen 6 und 7 sind geometrische Korollarien des

folgenden goniometrischen Satzes (vgl. H. Hadwiger [18]):

8. Ist 0 < a < tc/2 und fällt cos a rational aus, so ist entweder

a tu/3 oder ol/tz ist irrational.

9. Hat eine unendliche Punktmenge die Eigenschaft, <iass ihre

Punktepaare ganzzahlige Distanzen aufweisen, so liegt sie ganz
auf einer Geraden.

Dieser Satz von P. Erdös [12] (vgl. auch A. Delachet [8],
S. 50 und E. Trost [57]) darf als besonders typisch für eine

gewisse Kategorie von Aussagen gelten, die uns dadurch besonders

ansprechen, dass aus einfachsten Voraussetzungen eine

starke und unerwartete Folgerung gezogen wird.
Besonders beachtenswert ist der Umstand, dass aus 9 nicht

der Schluss gezogen werden darf, es gebe eine Höchstzahl k0

derart, dass die Behauptung immer schon dann gilt, wenn die
Anzahl k der Punkte mit ausschliesslich ganzzahligen
Punktdistanzen grösser ist als k0. Es gibt nämlich zu jedem k derartige
Punktmengen, die nicht linear sind, sogar solche der Eigenschaft,
dass keine drei Punkte auf einer Geraden liegen. Solche

Punktmengen wurden wiederholt konstruiert, u.a. von M. Altwegg [1],
A. Müller [40] und F. Steiger [53].

Nach einer Idee von A. Müller lässt sich eine auf der
Einheitskreislinie dicht liegende, abzählbar-unendliche Punktmenge

angeben, welche die Eigenschaft aufweist, dass jedes
Punktepaar eine rationale Distanz besitzt. Es sei nämlich Pn
der Punkt mit den Polarkoordinaten p 1, cp 2^0, wo 0 durch
cos 0 4/5 bestimmt ist, so dass nach Aussage 8 0/^ irrational
wird. Die Punkte der Folge Pn (n 0, 1, sind paarweise
verschieden und die erzeugte abzählbar-unendliche Punktmenge
liegt auf der Einheitskreislinie. Sie liegt dort dicht und nach dem
Gleichverteilungstheorem von H. Weyl sogar gleichverteilt,

I doch ist dies hier ohne Bedeutung. Für eine Distanz eines
I Punktepaares ergibt sich d (Pn, Pm) 2 | sin (n — m) 0 |, und
J wegen sin 0 3/5 und cos 0 4/5 ist dies nach goniometri-
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sehen Formeln eine rationale Zahl. Betrachtet man jetzt k
Punkte dieser Menge, so lässt sich durch eine geeignete ähnliche
Vergrösserung erzielen, dass alle auftretenden Distanzen
ganzzahlig werden. Dabei liegen keine drei Punkte auf einer Geraden

** *

Die folgende Aussagengruppe befasst sich mit der
Hüllenbildung und Separation bei ebenen Punktmengen. Zunächst
einige Erklärungen : Eine Punktmenge heisst bekanntlich
konvex, wenn sie mit zwei Punkten stets auch die ganze
Verbindungsstrecke enthält. Unter der konvexen Hülle einer Punktmenge

versteht man die kleinste konvexe Punktmenge, welche
jene als Teil enthält. Mit andern Worten ist die konvexe Hülle
der Durchschnitt aller konvexen Punktmengen, welche die

gegebene als Teil enthalten.

10. Ein Punkt gehört dann und nur dann zur konvexen Hülle
einer Punktmenge, wenn er bereits der konvexen Hülle von
drei geeigneten Punkten der Menge angehört.

Aus dieser Aussage folgt, dass die konvexe Hülle identisch
ist mit der Vereinigungsmenge aller Dreiecksbereiche, deren
Ecken der gegebenen Menge zugehören.

11. Ein Punkt ist dann und nur dann innerer Punkt der konvexen
Hülle einer Punktmenge, wenn er bereits innerer Punkt der
konvexen Hülle von vier geeigneten Punkten der Menge ist.

Die Aussagen 10 und 11 sind ebene Sonderfälle nützlicher,
von E. Steinitz [54] und W. Gustin [17] stammender Sätze.

Vgl. auch 0. Hanner-H. Radström [20] und C. V. Rorinson
[49]-

Zwei Punktmengen wollen wir separierbar nennen, wenn es

eine Gerade gibt, welche keine der Mengen trifft und sie voneinander

trennt; beide Punktmengen liegen dann im Innern der
beiden Halbebenen, die durch die Gerade erzeugt werden. Über
die Separierbarkeit gilt das folgende Kriterium von P. Kircii-
berger[29] (vgl. auch H. Rademacher-I. J. Schoenberg [44]) :



KOMBINATORISCHE GEOMETRIE IN DER EBENE 63

12. Zwei Punktmengen sind dann und nur dann separierbar,

wenn je zwei ihrer Teilmengen, deren Vereinigung höchstens

vier Punkte enthält, separierbar sind.

1 13. Jede Punktmenge, die wenigstens vier Punkte enthält,
lg sicft iji nichtleere, punktfremde und nichtseparierbare

f Teilmengen zerlegen.

| Hiezu vgl. F. W. Levi [36] und R. Rado [46].

I
k * * *
y
çg

[i Wir wenden uns jetzt einem Fragenkreis zu, in dessen Mittelig

punkt das berühmte Hellysche Theorem steht. Die zahlreichen
K\ Varianten, Sätze vom Hellyschen Typ, die sich in der Regel auf

Eibereiche beziehen, bilden einen sehr typischen Teil der kom-
M binatorischen Konvexgeometrie.
ig Unter einem Eibereich verstehen wir hier eine beschränkte,
-i abgeschlossene und konvexe Punktmenge.

L| 14. Haben je drei Eibereiche einer (endlichen oder unendlichen)
i Menge von Eibereichen einen Punkt gemeinsam, so haben edle

i Eibereiche der Menge einen Punkt gemeinsam.

U Dies ist der ebene Sonderfall des bekannten Hellyschen
i j Satzes. Vgl. E. Hellt [21], J. Radon [48], D. König [35], u.a.m.
lg Wie man unmittelbar mit einfachsten Beispielen einsieht, kann
j;j die Anzahl drei nicht durch zwei ersetzt werden. Dies ist aber
: g bei starken Voraussetzungen über die Gestalt der Eibereiche
: j möglich. So gilt die folgende Variante:

ig] 15. Haben je zwei Rechtecke einer Menge parallel orientierter
g Rechtecke einen Punkt gemeinsam, so haben alle Rechtecke

gg der Menge einen Punkt gemeinsam.

g Dagegen gilt: Ein Eibereich, der nicht ein Parallelogramm
ist, lässt sich in drei Lagen verschieben, so dass je zwei der

-I translationsgleichen Eibereiche einen Punkt gemeinsam haben,
Ii nicht aber alle drei. Für Parallelogramme ist dies nicht möglich
m Die Gültigkeit einer Aussage der Art 15 mit leichter Modifikation



64 H. HADWIGER UND H. DEBRUNNER

ist demnach für Parallelogramme charakteristisch. Vgl. hierzu
auch B. Sz.-Nagy [41].

Ein Korollar von 15 ist der Hellysche Satz für die Gerade:

16. Haben in einer Geraden je zwei Strecken einer Streckenmenge
einen Punkt gemeinsam, so haben alle Strecken der Menge
einen Punkt gemeinsam.

Es ist naheliegend und für viele Anwendungen nützlich,
Sätze vom Hellyschen Typ auch für die Kreislinie aufzustellen;
an Stelle der Eibereiche treten hier abgeschlossene Kreisbogen,
die selbstverständlich alle demselben Trägerkreis angehören
sollen.

17. Hat eine Menge von Kreisbogen, die alle kleiner als Halb¬
kreise sind, die Eigenschaft, dass je drei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen Punkt
gemeinsam.

Die Bedingung über die Grösse der Bogen kann hier nicht
gemildert werden, indem die Aussage bereits für Halbkreise
falsch wird. In der Tat haben von den vier Halbkreisen, die durch
zwei verschiedene Paare antipodischer Punkte der Kreislinie
entstehen, je drei, aber nicht alle vier einen Punkt gemeinsam.
Auch kann die Anzahl drei nicht durch zwei ersetzt werden.
Von den drei Drittelskreisen, die die ganze Kreislinie überdecken,
haben je zwei, aber nicht alle drei einen Punkt gemeinsam.
Dagegen gilt:

18. Hat eine Menge von Kreisbogen, die alle kleiner als Drittels¬
kreise sind, die Eigenschaft, dass je zwei Bogen einen Punkt
gemeinsam haben, so haben alle Bogen der Menge einen
Punkt gemeinsam.

Lassen wir jede Voraussetzung über die Grösse der Bogen
fallen, so gilt noch:

19. Hat eine Menge von Kreisbogen die Eigenschaft, dass je zwei

Bogen einen Punkt gemeinsam haben, so gibt es ein antipodisches

Punktepaar so, dass jeder Bogen der Menge wenigstens
einen Punkt des Paars enthält.
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Es gibt mit andern Worten eine Durchmessergerade des

Kreises, die alle Kreisbogen trifft. Sätze dieser Art wurden

u.a. von C. V. Robinson [49] und A. Horn-F. A. Valentine [25]

aufgestellt. Hübsche Anwendungen, wie wir solche auch weiter
unten angeben werden, hat P. Vincensini [59] entdeckt.

20. Lasst sich ein Eibereich stets so verschieben, dass er im Durch¬

schnitt von je drei Bereichen einer Eibereichsmenge enthalten

ist, dann auch so, dass er im Durchschnitt aller Eibereiche der

Menge liegt.

21. Lässt sich ein Eibereich stets so verschieben, dass er je drei
Bereiche einer Eibereichmenge trifft, dann auch so, dass er
alle Bereiche der Menge trifft.

22. Lässt sich ein Eibereich stets so verschieben, dass er je drei
Bereiche einer Eibereichmenge enthält, dann auch so, dass

er alle Bereiche der Menge enthält.

Dies sind ebene Sonderfähe allgemeinerer, sich auf höhere
Dimensionen beziehender Varianten des Hellyschen Satzes, die

von P. Vincensini [58] und V. L. Klee jr. [32] formuliert
wurden. Wesentlich für die Gültigkeit dieser Aussagen ist die

Bedingung, dass die Eibereiche in der Ebene nur verschoben
und nicht etwa auch gedreht werden dürfen. Wird an Stelle der
Translationsgruppe die Bewegungsgruppe gesetzt, so sind alle
drei Aussagen falsch.

Wir belegen dies ausführlicher durch ein Beispiel zu Aussage

21. Man betrachte die Menge der n Kreise (n > 2) deren
Mittelpunkte durch die Polarkoordinaten p 1 und cp 2kizjn
(k 1, n) gegeben sind, und deren Radius r — cos2 (n/n)
bzw. r cos2 (n/n) + cos2 (n/2n) — 1 ist, falls n gerade bzw.
ungerade gewählt wurde. Wie man jetzt bestätigen kann, lässt
sich eine Strecke (uneigentlicher Eibereich) der Länge 2 stets
so legen, dass je n —1 Kreisscheiben der Kreismenge, nicht
aber so, dass alle n Kreisscheiben getroffen werden. Die Strecke
muss hiezu jedoch passend gedreht und verschoben werden.
Fig. 3 illustriert dies im Falle n 8.

L'Enseignement mathém., t. I, fasc. 1-3. 5
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23. Haben je zwei Eibereiche einer Eibereichmenge einen Punkt
gemeinsam, 50 sïcA durch jeden Punkt der Ebene eine
Gerade legen, welche alle Eibereiche der Menge trifft.

24. Haben je zwei Eibereiche einer Eibereichmenge einen Punkt
gemeinsam, 50 Zäss£ sicA Geraden der Ebene eine

parallele Gerade legen, welche alle Eibereiche der Menge trifft.

Fig. 3

Auch diese beiden Aussagen 23 und 24 sind ebene Sonderfälle

allgemeinerer Sätze von A. Horn [24] und V. L. Klee jr.
[30]; sie beantworten die Frage, was sich an Stelle der Behauptung

des Hellyschen Satzes noch aussagen lässt, wenn die Anzahl
drei durch zwei ersetzt wird.

Man kann sich fragen, ob sich im Hellyschen Satz Punkt
durch Gerade in dem Sinn ersetzen lässt, dass eine Aussage der

folgenden Form richtig ist: Werden je h Bereiche einer Eibereichmenge

von einer Geraden getroffen, so gibt es eine Gerade, welche
alle Bereiche der Menge trifft. Existiert eine solche Hellysche
Stichzahl

Die Antwort ist verneinend Bereits L. A. Santalô [50] hat
bemerkt, dass zu jedem natürlichen n> 2 eine Menge von n
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Eibereichen so konstruiert werden kann, dass je n — 1 Bereiche
der Menge eine gemeinsame Sekante, nicht aber alle n eine solche
aufweisen. Dasselbe belegt auch unser Beispiel, das wir an
Aussage 21 angeschlossen haben. Sätze der erwähnten Art,
lassen sich nur aufstellen, wenn über Gestalt und Lage der
Eibereiche zusätzliche Voraussetzungen getroffen werden. So

hat L. A. Santalô [50] bewiesen, dass alle Rechtecke einerMenge
parallel orientierter Rechtecke von einer Geraden getroffen

Fig. 4

werden, falls dies für je sechs Rechtecke der Menge zutrifft. Wir
fügen hier die folgende Aussage an:

25. Werden je drei Rechtecke einer Menge parallel orientierter
Rechtecke von einer ansteigenden Geraden getroffen, so gibt
es eine ansteigende Gerade, welche alle Rechtecke der Menge
trifft.

Wir nehmen hierbei an, dass die Rechtecke parallel zu einem
orthogonalen Koordinatensystem orientiert sind; eine Gerade
ist ansteigend, wenn ihr Steigungsmass nichtnegativ ist. Vgl.
hiezu Fig. 4.

Das oben dargelegte Beispiel (Fig. 3), das die Nichtexistenz
einer Hellyschen Stichzahl h im allgemeinsten Fall beweist,
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zeigt die auffallende Sachlage, dass sich die Eibereiche
(Kreisscheiben) gegenseitig teilweise überdecken. Hier ist es naheliegend
die Frage aufzuwerfen, ob sich eine Hellysche Stichzahl dann
angeben lässt, wenn vorausgesetzt wird, dass die Eibereiche
paarweise fremd sind, d.h. keine Punkte gemeinsam haben. Die
Antwort auf diese auch von V. L. Klee jr. [33] aufgeworfene
Frage ist wieder verneinend.

Wir konstruieren ein Beispiel — eine Kreissegmentrosette —
um diese Behauptung zu belegen. Es sei n > 1; Sj und Sf

(i 1, 2n) sollen insgesamt 4n Kreissegmente der 2n
konzentrischen Kreise Kj (i 1, 2n) mit Zentrum Z und den

Radien Rj (i — 1, 2n) bezeichnen, wobei sich Si und S*

bezüglich Z zentralsymmetrisch entsprechen sollen. Für die

Radien sei zunächst nur 0 < Rj < Ri+1 festgelegt. Die Segmente
der Kreise Kj sollen nachfolgend durch die Polarkoordinaten der
Punkte ihrer Kreisbogen charakterisiert werden:

Fig. 5

Sj: p Rj; (i-n-f 1) (7u/2n) < <p < (i+n-1) (7r/2n)

S-: p Rj; (i+n-fl) (7r/2n) < 9 < (i+3n-l) (rc/2n).
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Auch im Hinblick auf weitere Verwendungsmöglichkeiten wollen

wir einige Eigenschaften unserer Kreissegmentrosette festlegen:

A. Die Radien Rj können so gewählt werden, dass die 4n Seg¬

mente paarweise fremd sind; sie müssen nur ausreichend

stark anwachsen. Fig. 5 zeigt eine Rosette dieser Art für
n — 2.

R. Es gibt keine Gerade, welche alle 4n Segmente trifft. Be¬

trachten wir zunächst eine Gerade durch Z. Wegen der
472-zähligen Drehsymmetrie in der Koordinate 9 genügt es

anzunehmen, dass der Winkel der Geraden im Intervall
0 < 9 < tu/2n liegt. Die Segmente Sn und S* werden von
einer solchen Durchmessergeraden nicht getroffen. Eine zu
ihr parallele Gerade trifft aber entweder Sn oder S* nicht.

C. Es gibt keinen Punkt, der allen 4n Segmenten angehört. Dies
ist eine triviale Folgerung aus B.

D. Im Falle Rj — R (i 1, 2n) haben je 2n — 1 Segmentpaare

ein antipodisches Punktepaar gemeinsam. Es genügt,
alle Paare ausser Sn und S* zu betrachten. Die beiden Punkte
p R, 9 0 und p R, 9 7T gehören ihnen an.

E. Im Falle Rj R (i 1, 2n) gibt es kein antipodisches
Punktepaar, das allen Segmentpaaren angehört. Dies ist eine
triviale Folgerung von B.

F. Je 2n — 1 Segmente werden von einer durch Z laufenden
Geraden getroffen. Dies ist ein Korollar zu D ; hier ist aber
die Bedingung über die Gleichheit der Radien unerheblich,
so dass die vorliegende Behauptung auch dann gilt, wenn
die Segmente paarweise fremd sind.

G. Im Falle Rj R (i 1, 2n) gibt es zu jeder Auswahl
von je 2n — 1 Segmenten zwei Punkte so, dass jedes
Segment der Auswahl wenigstens einen der beiden Punkte
enthält. Dies ist ein Korollar zu D.

H. Es gibt nicht zwei Punkte so, dass jedes der 4n Segmente
wenigstens einen der beiden Punkte enthält. Dies ist ein
Korollar zu B.
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Mit den Eigenschaften A, B, und F ergibt sich nun in der
Tat die Verneinung der oben erörterten Frage. Die gleiche
Rosette ermöglicht es weiter, auch die Nichtexistenz weiterer
Sätze vom Hellyschen Typ, welche gelegentlich erwogen worden
sind, nachzuweisen.

So teilte im Anschluss an eine Arbeit von L. A. Santalö [51],
Th. Motzkin ein Gegenbeispiel zu folgendem Satz mit: Haben

je h Eibereichpaare einer Menge von Eibereichpaaren einen
Punkt gemeinsam, so haben alle Eibereichpaare der Menge einen
Punkt gemeinsam. Auch unsere Kreissegmentrosette widerlegt
dies; im Falle gleicher Radien zeigen dies nämlich die
Eigenschaften D und E.

V. L. Klee jr. [31] hat einmal die Frage aufgeworfen, ob

es eine Hellysche Stichzahl h so gibt dass der folgende Satz

richtig ist: Gibt es zu je h Eibereichen einer Eibereichmenge
zwei Punkte so, dass jeder Bereich der Auswahl wenigstens einen
der Punkte enthält, so trifft dasselbe für alle Bereiche der Menge
zu. — Wieder existiert kein derartiger Satz; unsere Rosette
beweist auch das, und zwar sind es im Falle gleicher Radien
die Eigenschaften G und H, die den Nachweis liefern.
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Nicht entschieden ist die Frage, ob es im Falle von Mengen

paarweise fremder und kongruenter (oder translationsgleicher)
Eibereiche eine Hellysche Stichzahl h so gibt, dass alle

Eibereiche von einer Geraden getroffen werden, falls dies für je h

Eibereiche zutrifft. Es ist naheliegend, die Frage zunächst für

Mengen paarweise fremder kongruenter Kreise zu untersuchen.

Obwohl die Existenz einer solchen Zahl h hier recht plausibel

gemacht werden kann, konnte keine Abklärung der Frage erzielt

werden. Jedenfalls müsste h > 5 sein, wie die einfache in Fig. 6

dargestellte Menge von fünf regelmässig angeordneten Kreisen

zeigt.
Dagegen gilt folgende Aussage über ähnliche, gleichliegende

Eibereiche :

26. Werden je vier Bereiche einer Menge homothetischer Eibereiche
von einer Geraden getroffen, so gibt es vier (paarweise parallele
bzw. orthogonale) Geraden derart, dass jeder Eibereich der

Menge von mindestens einer der Geraden getroffen wird.

Die vorliegende Gruppe der Aussagen vom Hellyschen Typ
wollen wir noch mit einer von P. Vincensini [59] entdeckten
Variante abschliessen. Ein System von Eibereichen wollen wir
total separierbar nennen, wenn es eine Richtung so gibt, dass

jede Gerade dieser Richtung höchstens einen Eibereich des

Fig. 7
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Systems trifft. Es lässt sich dann in der Ebene ein System von
paarweise fremden Parallelstreifen bilden, so dass jeder Streifen
genau einen Eibereich des Systems enthält. Vgl. hiezu Fig. 7.

Es gilt:

27. Werden je drei Eibereiehe eines total separierbaren Eibereich¬

systems von einer geeigneten Geraden getroffen, so gibt es eine

Gerade, die alle Bereiche des Systems trifft.

Die von P. Vincensini angegebene Stichzahl war h 4.

Anschliessend hat V. L. Klee jr. [34] bemerkt, dass sich der
Satz verschärfen lässt, indem man die Stichzahl auf h 3

reduzieren kann.
Ein Korollar zu 27 ist der Satz von L. A. Santalô [50] (vgl.

auch H. Rademacher-I. J. Schoenberg [44]), wonach alle
Strecken einer Menge paralleler Strecken eine gemeinsame
Transversale aufweisen, falls dies bereits für je drei Strecken der
Menge zutrifft.

Im Hinblick auf Aussage 27 interessiert die Frage, welche
weitern Eigenschaften eines Eibereichsystems es erlauben, auf
seine totale Separierbarkeit zu schliessen. In diesem Zusammenhang

erwähnen wir, dass dies zum Beispiel dann möglich ist,
wenn die Eibereiche in der Ebene hinreichend dünn verstreut
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sind; dies lässt sich durch die Grösse der Gesichtswinkel
beschreiben. Vgl. hiezu Fig. 8. Es gilt:

28. Sind die Eibereiche eines Systems so dünn verstreut, dass von

keinem Blickpunkt der Ebene aus mehr als ein Bereich des

Systems unter einem Gesichtswinkel von iz/3 oder grösser

erscheint, so ist das System total separierbar.

** *

Es folgt nun zum Schluss eine kleine Gruppe von Aussagen,
die lose mit dem bekannten Satz von H. W. E. Jung [26] über
die Grösse des Hüllkreises einer Punktmenge von gegebenem
Durchmesser zusammenhängen. Zunächst sollen einige
Erklärungen vorausgeschickt werden.

Eine Punktmenge nennt man bekanntlich beschränkt, wenn
sie durch einen Kreisbereich überdeckt werden kann. Im
Zusammenhang mit den unten folgenden Feststellungen wollen wir eine

Geradenmenge beschränkt nennen, wenn sie keine parallele
Geraden enthält und wenn die Menge der Schnittpunkte, die
durch ihre Geraden erzeugt werden, beschränkt ist.

Der Deckradius einer beschränkten Punktmenge ist der
Radius des kleinsten (abgeschlossenen) Kreisbereichs, der alle
Punkte der Menge enthält. Entsprechend definieren wir: Der
Treffradius einer beschränkten Geradenmenge ist der Radius
eines kleinsten (abgeschlossenen) Kreisbereichs, der alle Geraden
der Menge trifft.

Der Durchmesser einer beschränkten Punktmenge ist die
obere Grenze der Menge der Distanzen, die durch Punktepaare
der Menge gebildet werden. Entsprechend definieren wir: Der
Durchmesser einer beschränkten Geradenmenge ist der Durchmesser

der Schnittpunktmenge.

29. Lassen sich je drei Punkte einer beschränkten Punktmenge
durch einen Kreisbereich vom Radius R überdecken, so lässt
sich die ganze Menge durch einen solchen Kreisbereich
überdecken.

30. Lassen sich je drei Geraden einer beschränkten Geradenmenge
durch einen Kreisbereich vom Radius r treffen, so gibt es
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einen solchen Kreisbereich, der alle Geraden der Menge
trifft.

Es handelt sich hier um Spezialfälle von Aussage 21.

31. Für den Deckradius einer Punktmenge vom Durchmesser
D 1 gilt R < 1/V1-

Dies ist der ebene Spezialfall des Jungschen Satzes. Vgl. dazu
die ausführliche Darstellung bei H. Rademacher-O. Toeplitz
[45].

32. Für den Treffradius r einer Geradenmenge vom Durchmesser
D 1 gilt r <

Diese Aussage bildet ein duales Gegenstück zum Jungschen
Satz.

33. Eine Punktmenge vom Durchmesser D 1 lässt sich durch
einen regulären Dreieckbereich der Seitenlänge $ <y/ 3

überdecken.

34. Eine Punktmenge vom Durchmesser D 1 lässt sich durch
einen regulären Sechseckbereich der Seitenlänge s I/a/Ü
überdecken.

Einen universellen Bereich, der die Eigenschaft aufweist,
dass jede Punktmenge vom Durchmesser D 1 damit zugedeckt
werden kann, nennt man einen (normierten) Deckel. In diesem
Sinn ist der Kreisbereich vom Radius R — 1 jy/ § ein Deckel
(Jungscher Deckel). Nach den Aussagen 33 und 34 ist der dem
Kreis mit Durchmesser D 1 umschriebene reguläre rc-Eck-
bereich ein Deckel, falls n 3 oder n 6 ist. Aussage 33 ist
der ebene Sonderfall eines von D. Gale [15] für beliebige Dimensionen

aufgestellten Gegenstücks zum Jungschen Satz. Aussage

34 stammt von J. Pal [42].

35. Jede Punktmenge vom Durchmesser D 1 lässt sich durch
drei Punktmengen überdecken, deren Durchmesser nicht
grösser als \/ 3/2 ausfallen.

Dies ist eine von D. Gale [15] angegebene Verschärfung des

von K. Borsuk [5] stammenden Satzes, wonach eine ebene
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Punktmenge stets in drei Teile von kleinerem Durchmesser

zerlegt werden kann. Eine von K. Borsuk aufgestellte
Vermutung bezieht sich auf Punktmengen des /c-dimensionalen

Raumes und sieht eine Zerlegung in k + 1 Teilmengen mit
kleineren Durchmessern vor; sie ist zur Zeit noch unbewiesen

für k > 3; für k 3 gab neuerdings H. G. Eggleston [10]
einen Beweis.

Der oben erwähnte Satz von K. Borsuk (ohne die

Verschärfung von D. Gale) ist — wenigstens für endliche

Punktmengen — auch eine Folgerung einer Aussage über die Anzahl
der Punktepaare, welche den Durchmesser realisieren. Es gilt:

36. In einer endliehen Punktmenge vom Durchmesser D 1 gibt
es höchstens n verschiedene Punktepaare der Distanz 1, wenn n
die Anzahl der Punkte der Menge bezeichnet.

Ein kurzer Beweis findet sich bei P. Erdös [13], ferner vgl.
man eine Aufgabe von H. Hopf-E. Pannwitz [23].

Die engen Zusammenhänge zwischen den verschiedenen
Satzgruppen soll schliesslich das folgende Korollar zu 34, als

Aussage vom Hellyschen Typ formuliert, vor Augen führen:

37. Haben je zwei Kreisscheiben einer Menge kongruenter Kreise
vom Radius R 1 einen Punkt gemeinsam, so gibt es drei
Punkte vom gegenseitigen Abstand d 1 derart, dass jede
Kreisscheibe der Menge mindestens einen von ihnen enthält.

Ähnliche, teils noch unbewiesene Aussagen finden sich bei
L. Fejes Tôth [14], S. 97.

II. Teil

Die vorstehend formulierten Aussagen sollen hier unter
Benutzung der oben zitierten Quellen durch kurze Beweise
belegt werden. Dabei erzwingen Raumgründe, dass oft nur der
Gedankengang knapp angedeutet werden kann. Die Argumentation

stützt sich vorwiegend auf elementare Sachverhalte, hie und
da ergänzt durch einfache punktmengengeometrische
Überlegungen.
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1. Lägen die Punkte Pl7 Pn nicht auf einer Geraden und
gilt für sie doch die Voraussetzung des Satzes, so ergibt sich ein
Widerspruch wie folgt: Durch eine projektive Abbildung werde

genau einer der Punkte, etwa Pl7 in einen Fernpunkt transformiert.

Das System der Punkte und ihrer Verbindungsgeraden
geht dabei über in eine Schar von Parallelen (durch Px), von
denen jede im Endlichen zwei der Punkte enthält, und in eine
endliche Mengen von Transversalen, von denen jede mindestens
drei der Punkte enthält. G sei die Transversale, die mit den
Parallelen den kleinsten Winkel einschliesst und Pi? Pj7 Pk in
dieser Anordnung die drei auf G liegenden Mengenpunkte. Die
zur Parallelenschar gehörige Verbindungsgerade von Px und Pj
enthält noch einen Punkt Pm der Menge. Nun bildet aber
entweder die Verbindungsgerade durch Pj und Pm oder jene
durch Pk und Pm mit den Parallelen einen kleinern Winkel
als G, im Widerspruch zur Konstruktion.

2 ist zu 1 dual.

3 erscheint als Korollar zu 1, wenn man durch Inversion an
einem Kreis mit einem Mengenpunkt als Zentrum alle Kreise
durch diesen Punkt in Geraden übergehen lässt, die die

Voraussetzungen von 1 erfüllen.

4. Der kleinste Deckkreis (d.h. der kleinste abgeschlossene
Kreisbereich, der alle Punkte der Menge bedeckt) enthält auf
seiner Peripherie Mengenpunkte, die keinen Halbkreisbogen frei
lassen, u.a. einen Punkt P. Weitere Mengenpunkte, z.B. ein

Punkt Q, können nicht im Innern liegen, da Spiegelung an der

Symmetrieachse von P und Q zeigt, dass dann auch ausserhalb
des Deckkreises Mengenpunkte wären. — Ist die Zahl der
Mengenpunkte endlich und > 2, so sei 9 der kleinste Winkel
zwischen je zwei verschiedenen Symmetrieachsen der Menge.
Spiegelung an diesen beiden Achsen kommt einer Drehung um
2cp gleich, also ist die Menge drehsymmetrisch bezüglich des

Winkels 2cp. Die ft-Ecke mit dem Zentriwinkel 9 2tc/^ erweisen
sich jetzt als die einzigen Mengen mit diesen Dreh- und
Spiegelsymmetrieeigenschaften, so dass jede endliche Menge mit den
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in 4 genannten Eigenschaften die Eckpunktmenge eines regulären

Vielecks ist.

5. Gibt es dem Gitter eingelagerte reguläre ft-Ecke (n fest),
dann auch solche mit kleinster Seitenlänge, weil hiefür nur die

Werte y'^a-p^2 (p, q ganz) in Frage kommen. Diese Existenz

vorausgesetzt, seien Px, P2, Pn die Ecken eines kleinsten
regulären Gitter-fi-ecks in ihrer natürlichen Reihenfolge. Trägt
man von diesen Gitterpunkten aus bzgl. die Gittervektoren
P2 p^ P3 p^ Pj P^ab, so führen ihre Endpunkte wieder auf

Gitterpunkte. Für n — 5 und n > 7 bilden diese ein kleineres

reguläres Gitter-ft-eck, im Widerspruch zur Minimalbedingung.
—- Für n — 3 sieht man die Unmöglichkeit eines dem Gitter
eingelagerten regulären ra-Ecks wie folgt ein: Die Fläche «s2 y/3/4
wäre wegen der Ganzzahligkeit von s2 eine irrationale Zahl,
anderseits ergibt sich, etwa nach Determinantenformeln berechnet,

ein rationaler Wert. Gleiches gilt von regulären Sechsecken

mit der Fläche 3s2 y/ 3/2.

6. Die Fläche s2 sin a eines Gitterrhombus ist, nach
Determinantenformeln berechnet, ganzzahlig. Nach 8 ist daher
a n/6 oder a n/2. Die erste Möglichkeit entfällt, da bei
einer Drehung um n/2 um eine Ecke der Rhombus wieder in
einen Gitterrhombus überginge (jeder Gitterpunkt geht dabei
in einen Gitterpunkt über!); dabei wäre ein reguläres
Gitterdreieck zu erkennen, im Widerspruch zu 5.

7. Einfache Folgerung von 8.

8. Man beachte, dass die Argumentation des Beweises von 5
für n — 5 und n > 7 auch in jedem Rechteckgitter möglich ist.
Aus dieser schärfern Aussage, dass sich in einem Rechteckgitter
von den regulären Vielecken nur Dreiecke, Vierecke und
Sechsecke einlagern lassen, ergibt sich 8. In der Tat: Sei
a (m/n)2n und der Bruch m/n nicht kürzbar. Ist cos oc rational,
dann ist nach goniometrischen Formeln cos va av, sin va
6V sin a mit rationalen av, bv (v 1, 2, n). N sei der gemeinsame

Nenner der 2n Werte av, bv. Erzeugt ein Rechteck der
Länge 1/N und der Breite (sin a)/N ein Rechteckgitter, so
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fallen daher von der Einheitskreislinie um einen Gitterpunkt
alle Punkte mit den Phasen va (v 1, n) auf Gitterpunkte.
Anderseits bilden diese Punkte wegen a (m/n)2n ein reguläres

ft-Eck. Wie eingangs erwähnt, folgt daraus, dass n einen
der Werte 1, 2, 3, 4, 6 besitzt. Zusammen mit der Nebenbedingung

0 < a < tu/2 ergibt sich a tu/3.

9. Ist eine Punktmenge mit lauter ganzzahligen
Punktdistanzen gegeben, in der es drei nicht auf einer Geraden liegende
Punkte A, B, C gibt, und bezeichnet k die grössere der Distanzen
d (AB), d (BC), so gibt es höchstens 4 (k -j- l)2, also endlich viele
Punkte P so, dass d (PA) — d (PB) und d (PB) — d (PC)
ganzzahlig ausfallen. Es ist nämlich | d (PA) — d (PB) | < d (AB)
und kann somit nur einen der Werte 0, 1, k annehmen, so

dass P auf einer von k + 1 Hyperbeln liegt. Ebenso liegt P auf
einer von k + 1 Hyperbeln, die durch B und C bestimmt werden.
All diese (verschiedenen) Hyperbeln schneiden sich in höchstens
4 (k -p l)2 Punkten.

10. Die Aussage „dann" ist trivial. Die Aussage „nur dann"
ist klar für endliche Punktmengen, da deren konvexe Hülle ein
konvexes Polygon ist, dessen Ecken zur Menge gehören ; wird
dieses von einer Ecke aus trianguliert, so liegt jeder Punkt in
einem der Teildreiecke, also in der konvexen Hülle von drei
Punkten der Menge. Es bleibt für unendliche Punktmengen M
zu zeigen, dass die Menge N aller Punkte, die schon in der
konvexen Hülle endlich vieler Punkte aus M enthalten sind,
mindestens so umfassend ist wie die konvexe Hülle M von M.
In der Tat: N enthält, wie man sich sofort zurechtlegt, mit zwei
Punkten auch jeden Punkt der Verbindungsstrecke, ferner

enthält N jeden Punkt von M. Da M als kleinste Menge mit
diesen Eigenschaften definiert wurde, ist der Beweis
abgeschlossen.

11. Nicht trivial ist einzig die Aussage „nur dann". Ein
innerer Punkt P der konvexen Hülle M von M ist auch innerer

Punkt eines Dreiecks mit Ecken in M. Da jede dieser Ecken
nach 10 in der konvexen Hülle von drei Punkten aus M liegt,
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ist das ganze Dreieck in der konvexen Hülle von endlich vielen

Punkten aus M enthalten. Wird dieses konvexe Vieleck mit
Ecken aus M von einer Ecke aus trianguliert, so ist P in der

Vereinigung zweier aneinandergrenzender Dreiecke als innerer
Punkt enthalten, also in der konvexen Hülle von vier Punkten
aus M.

12. Die Aussage „nur dann" ist trivial. Es bleibt zu zeigen,
dass zu zwei nicht separierbaren Mengen M und N zwei
ebensolche Teilmengen M' und N' mit gesamthaft höchstens vier
Punkten angegeben werden können. Nun sind M und N genau
dann nicht separierbar, wenn ihre konvexen Hüllen M und N
Punkte gemeinsam haben. Zu einem solchen gemeinsamen
Punkt gibt es nach 10 zwei je dreipunktige Mengen M" und N",
deren konvexe Hüllen M" und N" diesen Punkt gemeinsam
haben. Nun ist entweder eine dieser konvexen Hüllen in der

andern enthalten, etwa M" in N", oder die Dreiecke M" und N"
besitzen sich schneidende Randstrecken. Im ersten Falle bestehe
M' aus einem der Punkte von M", N' — N"; im zweiten Falle
bestehe M' und N' je aus den beiden Endpunkten des sich
schneidenden Streckenpaares. In beiden Fällen sind M' und N'
nicht separierbar, weil M' nnd N' Punkte gemeinsam haben.

13. Man wähle vier Punkte der gegebenen Menge M. Bildet
ihre konvexe Hülle nicht ein (nichtentartetes) Viereck, so ist ein
Punkt N in der konvexen Hülle der übrigen drei Punkte, umso-
mehr in der konvexen Hülle von M — N enthalten, und die
beiden fremden Mengen N und M — N sind nicht separierbar.
Bildet hingegen die konvexe Hülle ein Viereck, so bestehe N aus
den Endpunkten einer Diagonale. N und M — N bilden wieder
fremde, nichtseparierbare Teilmengen von M.

14. Für endlich viele Eibereiche folgt der Hellysche Satz
durch vollständige Induktion aus folgendem Hilfssatz: Es sei
k > 4. Haben je k — 1 von k Eibereichen Punkte gemeinsam, so
haben alle k Eibereiche Punkte gemeinsam. Beweis: Gt, Ck seien
die k Eibereiche und bezeichne einen Punkt, der in allen ausser
eventuell in Q enthalten ist. Nach 13 lassen sich die Punkte Pj
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(i 1,&)in zwei fremde Gruppen M' Pim jund M" —
rp PI- 1

1 n-
• r aufteilem, so dass deren konvexe Hüllen M' und

i Ji JnJ '

M" einen Punkt P gemeinsam haben. Nun gehört aber
jeder Punkt von M' und damit wegen der Konvexität der C{

c cauch M' zu allen Eibereichen ausser eventuell •

n n
ebenso M" zu allen ausser eventuell • • Der Punkt P

h jn
gehört zu M' und M", somit zu allen Eibereichen ohne
Ausnahme.

Wäre in einem unendlichen Eibereichsystem kein Punkt
allen Bereichen gemeinsam, so könnte man zu jedem Punkt des

Bereichs Cx des Systems einen weitern Bereich Q des Systems
angeben, der diesen Punkt und damit auch eine ganze
Kreisumgebung nicht trifft; Q und diese Umgebung seien einander
zugeordnet. Nach dem Theorem von Heine-Borel genügen
endlich viele dieser Kreisumgebungen, um Cx zu überdecken.
Die ihnen zugeordneten endlich vielen Eibereiche Q und Cx

haben nach Konstruktion keinen Punkt gemeinsam, im Widerspruch

zum obigen Ergebnis, dass endlich viele Eibereiche des

Systems einen Punkt gemeinsam haben, sobald die
Voraussetzungen von 14 erfüllt sind.

15 ergibt sich aus 14, wenn man einsieht, dass drei Rechtecke
Rl5 R2, R3 immer dann Punkte gemeinsam haben, wenn dies

schon für je zwei zutrifft. In der Tat: Bezeichnet Pineinem kartesischen Koordinatensystem, dessen Achsen parallel
zu den Rechtecken liegen, einen Punkt, der in allen drei
Rechtecken ausser eventuell in Rj (i 1, 2, 3) enthalten ist,
also in Rj und Rk, so bemerkt man, dass mit Pj und Pj nicht
nur die ganze Verbindungsstrecke in Rk enthalten ist, sondern
das ganze achsenparallele Rechteck über ihr, also alle P (x^ y),
für die x im Intervall (% Xj) und y in (y^y^) liegt. Wählt man
die Numerierung so, dass < x2 < x3 und yY < Vi < Vv. gilt,
so erfüllt P (x2, 2/j) diese Bedingungen für jedes der drei
Rechtecke, so dass er allen angehört.

16 ist Korollar zu 15, weil Rechtecke zu Strecken entarten
können.
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17 kann auf 14 zurückgeführt werden. Eine Menge von
Kreisbögen, jeder kleiner als ein Halbkreis, hat nämlich dann
und nur dann einen Punkt gemeinsam, wenn dasselbe von den

zugehörigen Kreissegmenten gilt, und dafür genügt nach 14,

dass je drei einen Punkt gemeinsam haben.

18 folgt aus 16. In der Tat lassen Bogen, jeder kleiner als ein

Drittelskreis und paarweise nicht punktfremd, einen Peripheriepunkt

unbedeckt, z.B. den zu einer Bogenmitte antipodischen.
Der Kreis kann somit hier aufgeschnitten und auf eine Gerade

abgewickelt werden, so dass jeder Bogen in eine Strecke übergeht.

19. Es sei G (oc) die gerichtete Gerade durch das

Kreiszentrum, die mit einer festen Richtung den Winkel a einschliesst.
Werden die gegebenen Bogen, die paarweise Punkte gemeinsam
haben, auf G (a) orthogonal projiziert, so haben die Bildstrecken
dieselbe Eigenschaft. Somit ist der Durchschnitt all dieser
Strecken ein Punkt oder eine Strecke, jedenfalls aber nicht leer
(16). Für mindestens einen Winkel a0 enthält D (a) das
Kreiszentrum. In der Tat: D (a) und D (a + tz) liegen in ihren
gerichteten Geraden spiegelsymmetrisch bezüglich Z; da nun
jede Orthogonalprojektion eines Bogens und also auch D (a)
stetig mit a ändert, muss D (a) bei einer Drehung der Geraden
um 7r für eine Lage oc0 das Zentrum bedecken. G (oc0 + tc/2), die
projizierende Gerade durch Z, ist dann eine Durchmessergerade,
die alle Bogen trifft.

Die Varianten 20-28 ergeben sich aus den grundlegenden
Aussagen 14,16,17,19 durch mannigfache Abbildungsmethoden.

20-22. Die Lage eines gegebenen Eibereiches A lässt sich bei
Verschiebungen durch die Lage eines starr mit ihm verbundenen
Punktes P charakterisieren. Ohne Mühe bestätigt man, dass P
einen Eibereich B* durchläuft, wenn der bewegliche Eibereich A
alle Lagen einnimmt, bei denen er in einem Eibereich B enthalten
ist. Gleiches gilt von allen Lagen, bei denen A einen Eibereich B
trifft, bzw. umschliesst. Jeder Eibereich bildet sich auf diese
Weise in einen Eibereich B* ab, und bei diesen Abbildungen
gehen die Aussagen 20-22 in 14 über.

L'Enseignement mathém., t. I, fasc. 1-3. 6
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23. Werden Eibereiche mit paarweise gemeinsamen Punkten
durch Zentralprojektion auf eine Kreislinie abgebildet, so gehen
sie in Bogen über, die 19 erfüllen. Die projizierende Gerade
durch die in allen Bildbogen enthaltenen antipodischen Punkte
trifft alle Eibereiche des Systems.

24. Orthogonalprojektion der Eibereiche erzeugt auf einer
Geraden eine Streckenmenge, die 16 erfüllt. Die projizierende
Gerade durch den in allen Strecken der Menge enthaltenen Punkt
trifft alle Eibereiche der Menge.

25. Gibt es unter den parallelen Rechtecken der Menge zwei,
die nur eine einzige positiv orientierte Treffgerade gemeinsam
haben, so ist die Aussage evident, da diese Gerade jedes weitere
Rechteck der Menge treffen muss. Andernfalls dürfen wir voraussetzen,

dass je drei Rechtecke der Menge eine positiv orientierte
Treffgerade besitzen, die zu keiner Rechteckseite parallel ist.
Dasselbe gilt dann von je endlich vielen Rechtecken der Menge.
In der Tat: Man lege parallel zu den Rechtecken orientiert zwei
Parallelen und charakterisiere ihre Punkte durch eine
Längenkoordinate in ihnen. Jede Transversale lässt sich dann in einen
Punkt einer Hilfsebene abbilden, indem man die linearen Koordinaten

ihrer Schnittpunkte mit den Parallelen als kartesische
Koordinaten der Hilfsebene deutet. Die Menge aller ansteigenden
Geraden, welche ein Rechteck der Menge treffen, geht dabei in
eine konvexe, abgeschlossene, aber nicht beschränkte Punktmenge
über. Je drei dieser Mengen haben nach unsern Voraussetzungen
im Endlichen Punkte gemeinsam. Greift man endlich viele dieser
konvexen Mengen heraus, so sind ihre Durchschnitte mit einem
ausreichend grossen Kreis Eibereiche, die nach 14 einen Punkt
gemeinsam haben. Die diesem Punkt entsprechende Gerade trifft
die herausgegriffenen endlich vielen Rechtecke. — Um den
Beweis auch für unendliche Rechteckmengen zu führen (ohne
eine stärkere Variante von 14 zu benutzen) brauchen wir vom
bisher Bewiesenen nur, dass je vier Rechtecke der Menge eine

gemeinsame Treffgerade aufweisen. Lässt man nun jeder Geraden,

die mit den gelegten zwei Parallelen den Winkel 9 ein-

schliesst, auf einer Kreisperipherie den Punkt mit Phase 9
entsprechen, so bildet sich die Menge aller ansteigenden Geraden,



KOMBINATORISCHE GEOMETRIE IN DER EBENE 83

welche zwei herausgegriffene Rechtecke der Menge treffen, in
einen Bogen kleiner als ein Drittelskreis ab. Diese Abbildung,
für alle Rechteckpaare der Menge ausgeführt, liefert eine Bogen-

menge mit paarweise gemeinsamen Punkten, weil je vier
Rechtecke eine gemeinsame Treffgerade aufweisen. Der allen

Bogen gemeinsame Punkt (18) entspricht einer Geraden, zu der

je zwei Rechtecke der Menge eine parallele Treffgerade gemeinsam

haben; mit andern Worten: durch Projektionsstrahlen
parallel zu dieser Geraden bildet sich die Rechteckmenge auf
einer Transversalen als Streckenmenge ab, die nach 16 einen

Punkt gemeinsam hat. Der Projektionsstrahl durch ihn trifft alle

Rechtecke der Menge.

26. P sei ein Peripheriepunkt eines Kreises. Zu jeder
Geraden G der Ebene lege man eine Parallele durch P; ihr
zweiter Durchstosspunkt mit dem Kreis sei das Bild der Geraden
G. Bei dieser Abbildung geht die Menge der Geraden, welche
zwei feste Eibereiche treffen, in einen Bogen über. Führt man
dies für alle Bereichpaare einer Menge von Eibereichen, die zu
je vier eine Treffgerade gemeinsam haben, durch, so erhält man
eine Bogenmenge mit paarweise gemeinsamen Punkte. Dem
antipodischen Punktepaar, das alle Bogen trifft (19), entsprechen
zwei orthogonale Richtungen, so dass man findet: Haben je vier
Eibereiche einer Eibereichmenge eine gemeinsame Treffgerade, so

gibt es zwei orthogonale Richtungen derart, dass je zwei Eibereiche
der Menge eine gemeinsame Treffgerade mit einer dieser Richtungen
aufweisen. — Sind nun die Eibereiche dieser Menge zueinander
homothetisch, so treffen die vier Geraden der erwähnten Richtungen,

die ein einem Bereich der Menge umbeschriebenes Rechteck
bilden, alle nichtkleinern Bereiche der Menge. Gibt es also in
der Menge einen kleinsten Eibereich, so treffen die ihm derart
umbeschriebenen Geraden alle Bereiche der Menge. Gibt es in
der Menge keinen kleinsten Eibereich, so führen einige zusätzliche

Überlegungen über das Konvergenzverhalten nach Grösse
und Lage der Bereiche zum gewünschten Resultat. Sind die
Eibereiche nicht nur homothetisch, sondern zudem kongruent,
so lässt sich weiter einsehen, dass stets schon drei von diesen vier
Treffgeraden alle Bereiche treffen.
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27. Eine Gerade in der Separationsrichtung werde als
x-Achse ausgezeichnet. Jede andere Gerade der Ebene bildet
mit der x-Achse einen Winkel 0 < 9 < n gemessen im positiven
Drehsinn. Der Menge aller Geraden, welche zwei Eibereiche des

Systems, etwa A und B treffen, entspricht auf einer cp-Achse ein
Winkelintervall zwischen 0 und 7r, das wir mit (AB) bzw.
analog bezeichnen. Wir behaupten, dass je zwei dieser
Winkelintervalle Punkte gemeinsam haben. Dies vorausgesetzt, schliesst

man mit 16, dass ein Winkel <p0 existiert, so dass je zwei
Eibereiche des Systems durch eine Gerade der Richtung cp0 getroffen
werden können. Mit andern Worten: die Parallelprojektionen
der Eibereiche in dieser Richtung auf die ^-Achse bilden eine

Streckenmenge mit paarweise gemeinsamen Punkten. Die

projizierende Gerade durch den allen Strecken gemeinsamen
Punkt (16) trifft dann alle Eibereiche des Systems. — Es bleibt
nachzutragen, dass je zwei Winkelintervalle Punkte gemeinsam
haben. Für die Intervalle (AB), (BC) (bzw. analog) wird dies
durch die Voraussetzung gemeinsamer Treffgeraden zu A, B, C

gesichert. Hätten aber zwei Intervalle, etwa (AB), (CD) keinen
Punkt gemeinsam, so zeigt sich ein Widerspruch wie folgt: Jedes

der Intervalle (AC), (AD), (BC), (BD) hat sowohl mit (AB) wie
mit (CD) Punkte gemeinsam, so dass für einen Winkel 9'
,,zwischen" (AB) und (CD) folgende Sachlage eintritt: Durch
Geraden der Richtung 9' sind die Eibereiche A und B, ebenfalls C

und D separierbar (daraus folgt die Separierbarkeit eines

weitern Paares durch jede dieser beiden Separationsgeraden
nicht aber A und C, A und D, B und C, B und D. Dies ist
offensichtlich ein Widerspruch.

28. Durch die beim Beweis 26 benutzte Abbildung wird 28

auf die beim Beweis 18 erwähnte Sachlage zurückgeführt, dass

Kreisbogen mit paarweise gemeinsamen Punkten, jeder kleiner
als ein Drittelskreis, einen Peripheriepunkt unbedeckt lassen.

29. Spezialfall von 21.

30. Die Geraden können durch ausreichend lange Strecken
ersetzt werden, wodurch ein Spezialfall von 21 entsteht.



KOMBINATORISCHE GEOMETRIE IN DER EBENE 85

31. Bei Berücksichtigung von 29 genügt es, die Aussage für
eine dreipunktige Menge vom Durchmesser 1 zu beweisen. Bildet
diese ein stumpfwinkliges Dreieck, so ist dessen längste Seite

Deckkreisdurchmesser, so dass hier sogar R < % zutrifft.
Bestimmt die dreipunktige Menge ein spitzwinkliges Dreieck,
so wird der Deckkreis vom Umkreis gebildet, dessen Durchmesser

bekanntlich durch 2R --= a/sin a bestimmt ist ; a ist irgend
eine Dreieckseite, a der gegenüberliegende Winkel. In jedem
Dreieck gibt es einen Winkel a > tt/3, so dass zugleich
sin öl > y2 y 3 und a < 1 gilt. Also ist 2R ajsin a < 2/v'3-

32 braucht ebenfalls nur noch für drei Geraden mit Durchmesser

1 bewiesen zu werden. Diese bilden ein Dreieck mit
Umfang U < 3, das dem kleinsten Treffkreis umbeschrieben ist.
Da das reguläre Dreieck mit Umfang 6r\/ 3 das umfangkleinste
Dreieck ist, das sich einem Kreis mit Radius r umbeschreiben
lässt, gilt Gr-y/ 3 < U < 3, also r < 1/2-1/3.

33. Die Punktmenge darf als abgeschlossen vorausgesetzt
werden. Ist S ein reguläres Umdreieck (so dass jede Seite einen

Mengenpunkt enthält) und S* ein solches in gespiegelter Lage,
so ist entweder S oder S* ein reguläres Dreieck der Seitenlänge
5 < 1/3- Fällt man nämlich von irgend einem Punkt, der in S

und S* enthalten ist, die Lote auf die Seiten von S bzw. S*, so

ist deren Summe nach einem planimetrischen Satz gleich der
Höhe von S bzw. S*. Die Summe je eines Lotes auf S und des

entsprechenden auf S* ist wegen der Durchmesserbedingung
< 1, so dass eines der Dreiecke eine Höhe < 3/2 aufweist. Seine
Seiten betragen höchstens ^3.

34. Anschliessend an den Beweis 33 stellen wir fest, dass die
Seitenlänge des regulären Umdreiecks S eine stetige Funktion
der Basisrichtung ist und bei Drehung um n in die von S*
übergeht. Daher sind S und S* für eine spezielle Richtung gleich
gross ; ihr Durchschnitt, in dem die Menge mit D 1 enthalten
ist, bildet dann ein (eventuell entartetes) zentralsymmetrisches
Sechseck, bei dem parallele Seiten einen. Abstand < 1 haben.
Es ist ganz im regulären Sechseck mit demselben Symmetriezentrum

und denselben Seitenrichtungen enthalten, dessen
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parallele Seiten den Abstand 1 aufweisen. Dieses reguläre
Sechseck besitzt die Seitenlänge l/\/3 und enthält die gegebene
Menge.

35 ergibt sich ausgehend von 34, wenn in dem der Menge
vom Durchmesser 1 umbeschriebenen regulären Sechseck der
Seitenlänge 1/V3 vom Zentrum aus drei Lote mit Zwischenwinkeln

27t/3 auf drei Seiten gefällt werden. Dadurch zerfällt
das Sechseck in drei kongruente Fünfecke vom Durchmesser

V 3/2, die die gegebene Menge überdecken.

36. Es sei n > 4 und die Menge Px, Pn habe den Durchmesser

D 1. Zu zwei Punkten Pj, Pk mit Abstand 1 zeichne

man stets die Verbindungsstrecke Pj Pk. Gehen dann von jedem
Pj höchstens zwei Strecken aus, so ist die Streckenzahl < ra, wie
behauptet. Existiert aber ein Punkt, etwa Px, von dem
mindestens 3 Strecken, etwa zu Pj, Pj, Pk, auslaufen, so sei Pj im
spitzen Winkelraum Pj P4 Pk enthalten. Ist nun d (Pj, Pm) 1,

so muss Pj Pm sowohl Px Pj wie auch P1 Pk treffen, da andernfalls

D > 1 wäre. Daraus folgt Pm Px, d.h. Pj kann nur von P1

den Abstand 1 haben. Lässt man Pj weg, so fällt eine einzige
Verbindungsstrecke dahin. Durch vollständige Induktion folgt
daraus 36. — Da also unter n Punkten mit D — 1 stets einer
von höchstens zwei andern den Abstand 1 hat, so folgt durch
Induktion auch der Borsuksche Satz. Denn jener Punkt lässt
sich derjenigen der drei Teilmengen der restlichen n — 1 Punkte
zugesellen, die die beiden weitferntesten Punkte nicht enthält;
dadurch bleiben alle Durchmesser <1.

37. Die Mittelpunkte der Kreise vom Radius R 1 mit
paarweise gemeinsamen Punkten bilden eine Punktmenge vom
Durchmesser D < 2. Diese kann nach 34 durch ein reguläres
Sechseck der Seitenlänge 2/^/3 überdeckt werden. In diesem
Sechseck lassen sich drei Punkte vom gegenseitigen Abstand 1,

nämlich drei Diagonalenmittelpunkte, angeben, so dass jeder
Sechseckpunkt, speziell jedes der Kreiszentren, von einem
dieser drei Punkte einen Abstand < 1 aufweist. Demnach ist
stets mindestens einer dieser Punkte in jedem der gegebenen
Kreise enthalten.
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