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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications

Séance de printemps, Bâle, 8 mai 1955.

Cette séance a été consacrée à la commémoration du tricentenaire
de la naissance de Jakob Bernoulli.

Conférences de M. le professeur J.-E. Hofmann (Ichenhausen) :

Einige Beiträge Jakob Bernoullis zur Infmitesimalmathematik1
et de M. le professeur B.-L. van der Waerden (Zurich): Jakob
Bernoulli als Begründer der mathematischen Statistik.

Réunion de Porrentruy, 25 septembre 1955.

La Société mathématique suisse a tenu sa 44e assemblée annuelle
à Porrentruy, le 25 septembre 1955, sous la présidence de M. le
professeur J.-J. Burckhardt, président, en même temps que la 135e session
annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la société a constitué comme suit
son comité pour les années 1956 et 1957: MM. les professeurs E.
Stiefel (Zurich), président; G. Vincent (Lausanne), vice-président;
H. J ECKLiN (Zurich), secrétaire-caissier.

Le Comité national suisse de l'Union mathématique internationale
est formé, pour la même période, de MM. les professeurs Saxer et
de Rham et des trois membres du nouveau comité.

L'assemblée a désigné les membres de la Commission nationale de

l'enseignement mathématique: MM. E. Batschelet (Bâle), J.-P.
Extermann (Genève), F. Fiala (Neuchâtel), L. Pauli (Neuchâtel),
G. de Rham (Lausanne), Roth-Desmeules (Lucerne), F. Steiger
(Berne), E. Trost (Zurich). MM. de Rham et Trost en sont les
délégués auprès de la CIEM.

La partie scientifique a été consacrée aux communications
suivantes :

S. Piccard (Neuchâtel): 1. Les systèmes fixes d'éléments générateurs

d'un groupe; 2. Quelques problèmes de la théorie des groupes.

i Le texte de cette conférence sera publié dans cette revue.
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H. Meier-Wunderli (Zurich): Aus der Theorie der Abelschen

Gruppen.
M. Kervaire (Berne): Courbure intégrale généralisée et homo-

topie.
G. Vincent (Lausanne): Sur les représentations linéaires de

certains groupes finis.

S. Piccard (Neuchâtel): Sur des ensembles parfaits.

Les systèmes fixes d'éléments générateurs dun groupe1 par Sophie
Piccard, Neuchâtel.

Soit G un groupe d'ordre fini N qui admet des automorphismes
externes de deux espèces. Un automorphisme externe est dit de

première espèce s'il fait correspondre à tout élément a de G son transformé

bab~{ par un élément fixe b d'un groupe Gx plus vaste que G
et dont G est un sous-groupe distingué. Un automorphisme externe
est dit de seconde espèce s'il ne peut pas être réalisé de cette façon.
Soit CX1 [CX3] le groupe de tous les automorphismes internes [de tous
les automorphismes] du groupe G. L'ensemble Ct2 de tous les

automorphismes internes et externes de première espèce constitue également

un groupe dont (Xx est un sous-groupe distingué et qui est à son
tour un sous-groupe de CX3. Quel que soit l'élément a et quel que soit
l'automorphisme A de G, nous désignons par Aa l'élément de G
homologue de a dans A. Nous appelons base de G tout système
d'éléments indépendants générateurs de G. Tout automorphisme de G
transforme une base de G en une base de G (pas nécessairement
distincte de la première). Soit A un automorphisme, soit a±, am
une base quelconque de G et soit Aai b^ i 1, m. Les m couples
ordonnée a^ bi(i 1, m) définissent l'automorphisme A de façon
univoque. m est l'ordre de chacune des bases %, am et bm.
On peut répartir aussi bien les éléments que les bases d'ordre donné
de G en classes d'éléments respectivement de bases équivalents
relativement à chacun des trois groupes 61^. Nous dirons, pour abréger,
que deux éléments a et b de G sont ^-équivalents s'il existe un
automorphisme A du groupe CXi7 tel que Aa b, et nous dirons que deux
bases d'ordre m: al7 am et bx, bm de G sont ^-équivalentes s'il
existe un automorphisme A du groupe (Xh tel que Aa,j bj,
/ 1, m, quel que soit i 1, 2, 3. Deux éléments ou deux
bases 1-équivalents de G sont conjugués. Deux bases équivalentes
sont caractérisées par les mêmes relations fondamentales. Tout
automorphisme du groupe CX^ transforme en elle-même chaque classe
d'éléments ^équivalents de G. Nous disons qu'un élément a de G est un
élément fixe d'un automorphisme A si Aa a. Nous disons qu'une
base de G est une base fixe d'un automorphisme A si cette base est
transformée en elle-même par A. L'élément unité 1 de G est fixe dans
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tous les automorphismes de G et l'automorphisme identique A0
laisse fixe tous les éléments et toutes les hases de G. Une base fixe
ax, a2 du second ordre d'un automorphisme A détermine ce dernier
de façon univoque et, si A =£ A0, on a Aax a2, Aa2 — ax, A2 =• A0,
autrement dit l'automorphisme A est du second ordre, il permute
les deux éléments ax et a2 et la base a±1 a2 n'est fixe dans aucun autre
automorphisme non identique du groupe G. Supposons que G possède
des bases du second ordre et que son centre est d'ordre 1. Soit tq
l'ordre du groupe i 1, 2, 3.

Soit «x, a2 une base de G. Nous disons que cette base est de
première espèce par rapport aux automorphismes du groupe 6Li si la
base envisagée n'est fixe dans aucun des automorphismes 7^ A0 de
(9Li et nous disons que la base ax, a2 est de seconde espèce par rapport
aux automorphismes du groupe CXj s'il existe un automorphisme
A A0 du groupe CX^ qui laisse cette base fixe, quel que soit i — 1, 2, 3.
Pour toute base de première (seconde) espèce par rapport aux
automorphismes du groupe CX^ il existe cq (cq/2) bases de G qui lui sont
^-équivalentes, quel que soit i — 1, 2, 3.

Tout automorphisme effectue une substitution des éléments de G.
L'étude de ces substitutions permet de déterminer les bases de G
et l'examen des substitutions des éléments de G qui correspondent
aux automorphismes du second ordre permet de déterminer toutes
les bases de seconde espèce.

Envisageons, à titre d'exemple, l'alterné 2I6 de degré 6. Il possède,
comme on sait, 360 automorphismes internes, 360 automorphismes
externes de première espèce et 720 automorphismes externes de
seconde espèce. Le groupe CXx (cX2) est simplement isomorphe à 2f6 (S6)
et chaque automorphisme interne ou externe de première espèce est
représenté par une substitution paire des éléments de 2l6. Par contre,
les automorphismes externes de seconde espèce sont représentés par
des substitutions impaires des éléments de 216. 144 de ces substitutions
sont d'ordre 10, 360 d'ordre 8, 180 d'ordre 4 et 36 du second ordre.
Les deux éléments de toute base fixe dans un automorphisme externe
de seconde espèce de 216 figurent dans une transposition de la substitution

du second ordre qui représente un automorphisme externe
déterminé de seconde espèce du groupe 2l6. Chaque automorphisme
externe de seconde espèce de 2f6 qui est du second ordre laisse fixe
10 éléments du groupe, notamment quatre cycles du 5e ordre, cinq
doubles transpositions et 1 et il laisse fixes 140 bases du second ordre
de 216. Le nombre total des bases de 2l6 laissées fixes par l'un
quelconque des automorphismes externes de seconde espèce de 2l6 est de
5040. Le nombre total des bases de 3I6 laissées fixes par un quelconque
des automorphismes internes 7^ A0 de 2f6 est de 2160. 720 bases de
âl6 au total sont laissées fixes par les différents automorphismes
externes de première espèce et le nombre total des bases du second
ordre de 2l6 qui sont de seconde espèce par rapport aux automor-
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phismes du groupe Ct3 est de 7920 alors que 30 240 bases du second

ordre de St6 sont de première espèce et ne sont laissées fixes par aucun
automorphisme ^ A0 de CX3.

Quelques problèmes de la théorie des groupes, par Sophie Piccard,
Neuchâtel.

Soit G un groupe d'ordre fini N défini par un système d'éléments
générateurs

ar...,am (1)

liés par les relations caractéristiques

fi(ar am) lfi ** 1, k (2)

Appelons multiplication la loi de composition du groupe G et appelons

base d'ordre m de G le système d'éléments générateurs (1). Il
n'est généralement pas aisé d'étudier la structure d'un groupe G ainsi
défini. Il existe cependant des cas où un simple examen des relations
(2) fournit de nombreux renseignements sur la structure de G et
permet de déceler la présence de certains sous-groupes distingués, de
déterminer le nombre minimum d'éléments générateurs de G,
d'indiquer une borne supérieure au nombre total des bases minima et
une borne inférieure au nombre total de sous-groupes distingués
de G, etc. Nous nous sommes attachés aux cas suivants.

Soit n un entier quelconque > 2 et soit

al%, au, eq (t < t < m, 1 < l± < l2 < < Z£ < m) (3)

t éléments quelconques de la base (1). Nous disons que G jouit de la
propriété P (mod n) par rapport à l'ensemble de ces éléments si fi est
de degré mu 0 (mod n) par rapport à l'ensemble des éléments (3) quel
que soit i 1, k, et nous disons que G jouit de la propriété P
(mod n) par rapport à chacun des éléments (3) si fi est de degré 0

(mod n) par rapport à j 1, t, i 1, k.
Si G jouit de la propriété P (mod n) par rapport à chacun des

éléments (3), il jouit évidemment aussi de la propriété P (mod n) par
rapport à l'ensemble de ces éléments. La réciproque n'est pas vraie.
Si t <m, le groupe G peut jouir de la propriété P (mod n) par rapport
à chacun des éléments (3) de la base (1) et être dépourvu de la même
propriété par rapport à une seconde base de G. Par contre, si le
groupe G jouit de la propriété P (mod n) par rapport à chacun des
éléments de sa base (1), cette base est minimum et le groupe G jouit
de la propriété P (mod n) par rapport à tout élément de chacune de
ses bases minima.
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Si le groupe G jouit de l'une ou l'autre des propriétés P (mod ri)
par rapport aux éléments (3) de l'une quelconque de ses bases (1),
G n'est pas simple et il possède au moins un sous-groupe distingué
d'ordre N /n, l'ordre de chacun des éléments (3) ainsi que l'ordre de G
sont des multiples de n et on peut répartir les éléments de G en
n classes A0, An-\ composées chacune de Njn éléments de G et
comprenant, avec tout élément a de G, la classe entière des éléments
de G conjugués à a. Les classes A, avec la loi de composition
A?/ Av Aw, où w s= u + p (mod n) forment un groupe abélien
d'ordre n dont l'élément zéro A0 est un sous-groupe distingué
de G.

Si le groupe G jouit de la propriété P (mod n) par rapport à chacun
des éléments (3), on peut répartir les éléments de G en ri classes

it, où les indices iv it sont des nombres de l'ensemble
{ 0, n — 1}. Chaque classe it comprend N/ri éléments de

G et elle contient avec tout élément a de G la classe entière des
éléments de G conjugués à a. Si t m, les classes M ont un caractère
intrinsèque et sont indépendantes de la base (1). Avec la loi de

composition ut Mcq vt Mw wt, où wj — uj + vj (mod ri),
j — 1, t, les classes M forment un groupe abélien Y dont l'élément
zéro M00->0 est un sous-groupe distingué de G. Quel que soit le sous-
groupe y de T, la réunion des classes M qui constituent les éléments
de y est un sous-groupe distingué de G.

Si le groupe G jouit de la propriété P (mod n) par rapport à
l'ensemble [par rapport à chacun] des éléments (3) de sa base (1), il jouit
évidemment de la propriété P (mod d) par rapport à l'ensemble [par
rapport à chacun] des éléments (3), quel que soit le diviseur d > 1

de n et par conséquent G possède au moins un sous-groupe distingué
d'ordre N/d quel que soit le diviseur d > 1 de n. Si G jouit de la
propriété P (mod n) par rapport à chacun des éléments (3), il possède
au moins un sous-groupe distingué d'ordre N/dt, quel que soit le
diviseur d > 1 de n.

Si G jouit de la propriété P (mod ri) par rapport à chacun des
éléments de sa base (1), cette base est minimum et le nombre total u
de bases minima de G satisfait l'inégalité

It < (-N/pm)m{pm — 1) (pm — p) (pm — pm-{)lm

où p est le plus petit diviseur premier de n.
Si le groupe G jouit de la propriété P (mod ri) par rapport à chacun

des éléments de sa base (1), quel que soit le nombre premier p diviseur
de n, le groupe G possède au moins (pm — 1) (pm — p) (pm — pi-1)/
(p1 — 1) (p1 — p) (pi —- pi_1) sous-groupes distingués distincts
d'ordre N/pm_i, i 1, m — 1.
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Tout groupe abélien jouit de la propriété P (mod a^) par rapport
à chaque élément de n'importe laquelle de ses bases minima, ax

désignant le plus petit des invariants du groupe considéré.

Il existe aussi des groupes non abéliens qui jouissent de la
propriété P (mod n) par rapport à tout élément de chacune de leur bases

minima. Ainsi, par exemple, le groupe non abélien G108, d'ordre 108,

engendré par les deux substitutions

Sx (1 2) (3 4) (5 6 7) (11 12 13 14 15 16) S, (1 3) (2 4) (5 6) (8 9 10)

jouit par rapport à chacune des substitutions Sx et S2 de la propriété P

(mod 6), puisque Sj et S2 sont liées par les relations fondamentales

S* 1 SÎ 1, sfosjsî 1 S2Si 1

Aus der Theorie der Abelschen Gruppen, von H. Meier-Wunderli,
Zürich.

Die bekannten Beweise des Satzes von Hajos benutzen den

Gruppenring. Es wurde ein Beweis vorgetragen, der ohne den
Gruppenring auskommt. Eine ausführliche Darstellung wird andernorts
erscheinen.

Courbure intégrale généralisée et homotopie, par M. Kervaire, Berne.

Le problème suivant est étudié:
Soit Mk une variété plongée dans un espace euclidien Ravec

un champ Fn de repères normaux à ; ce champ induit une application

continue cp de M& dans la variété de Stiefel V^+n, n des suites de

n vecteurs (orthonormés et ayant pour origine un point fixe A) dans
Rk+n: l'application cp fait correspondre à chaque point P de la variété
Mk les vecteurs équipollents à ceux du champ Fn au point P et ayant
pour origine le point fixe A. Que peut-on dire de la classe c de cette
application et en particulier la classe c est-elle indépendante du
plongeaient de M& et du champ Fn

On remarque que les résultats de Stiefel sur les groupes d'homo-
logie (entière) des variétés Vk+n,n:

f Z pour h pair ou n 1

Hi(vft+n,n> 0pourl < ;</c, Hft(Vft+nn)=|
[Z2 pour k impair et n > 1,

(où Z et Z2 désignent les groupes des entiers et des restes mod 2

respectivement) permettent de représenter la classe c par un nombre
(entier ou reste mod 2) que nous désignerons également par c.
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Le problème qui vient d'être posé a été résolu par H. Hopf dans
le cas n 1 (les vecteurs de Fn se réduisent alors à la seule normale
à dans R^+i) et avec k pair {Math. Annaien, 95, 340-67, 1925).
Dans ce cas c (appelée courbure intégrale) ne dépend que de M& et vaut
\ x (Mfc) où y (Mfe) désigne la caractéristique d'Euler de M&.

Dans le cas général (n > 1, k quelconque), on montre que c, la
courbure intégrale généralisée, ne dépend que de M& si et seulement
si un certain invariant d'homotopie y des applications S^+n —> Sn
est identiquement nul (c'est-à-dire a la valeur 0 pour toute application
Sk+n —> Sn) ; en ce cas c est déterminée par la semi-caractéristique de
Mfc égale à J2- y (M&) pour k pair et à

è(Â-i)

i=0

pour k impair (pi (M&) rang de Hj (M/y, Z2)).
Lorsque k est pair, on a toujours y 0 (quel que soit n)] autrement

dit: Pour k pair, la courbure intégrale généralisée ne dépend que
de Mk: c =ix(Mk).

Pour k impair, y est un reste mod 2 en général non nul. En dehors
des cas banals

7zn+k (Sn) 0 (par exemple pour n — 1 ou k 5, n > 7),

7zn+k (Sn) ne contient que des éléments d'ordre impair (par exemple
k 7, n 2), pour lesquels y est évidemment toujours nul,

on peut dire

1° y n'est pas identiquement nul sur 7rn+& (Sn) avec n > k + 1

lorsque S& est parallélisable ; on n'a donc pas de généralisation du
théorème de H. Hopf dans le sens ci-dessus pour

k 1 (n > 2) k 3 (n > 4) k =7 (n _> 8)

2° Si y est identiquement nul sur îc^+fe (Sn) avec N > k + 1, il est

identiquement nul sur nn+k (Sn) pour tout n\
3° y est identiquement nul pour k 3,1 <n <3 et k 7,1 <n <1.
Conjectures:

y est identiquement nul pour 1 < n < k;
y n'est pas identiquement nul pour n > k + 1 si et seulement s'il

existe un élément de 7T2&+1 (S^+t) dont l'invariant de Hopf est 1.

Sur les représentations linéaires de certains groupes finis,par G. Vincent,
Lausanne.

La détermination des formes de Clifford de l'espace sphérique se

ramène à la recherche des groupes finis admettant des représentations
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linéaires telles que la matrice associée à un élément différent de

l'identité n'admette pas la valeur propre +1. Ces groupes se
répartissent en deux catégories. La première contient ceux dont tous les

sous-groupes de Sylow sont cycliques; de tels groupes sont résolubles
et une condition suffisante, de nature arithmétique, assure l'existence
de représentations du type désiré. La deuxième renferme des groupes
à p-sous-groupes de Sylow cycliques pour p ^ 2 et quaternioniques
(a2n_1 e b2 a2n~2 babA aA) pour p 2. Certains sont
résolubles (métabéliens de rang deux, trois ou quatre) les autres pas
(parfait ou à premier ou deuxième dérivé parfait). L'objet de cette
communication est de montrer qu'une condition suffisante obtenue
antérieurement pour une partie des groupes métabéliens de rang deux
s'étend, moyennant quelques changements mineurs, à tous les groupes
de cette classe.

Sur des ensembles parfaits, par Sophie Piccard, Neuchâtel.

Soit n un entier quelconque ^ 3 qu'on prend pour base de
numération. Soit K =: {a0, al7 aun vrai sous-ensemble de l'ensemble
{0, 1, n — 1}, tel que 0 a0 < a± < < ak ^ n — 1, soit
A [a0, ûq, ak]n l'ensemble des nombres du segment S < 0,
ak/n — 1 > qui peuvent s'écrire dans le système de numération à
base n avec les seuls chiffres de l'ensemble K.

On obtient l'ensemble A à partir du segment S par la suppression
successive d'intervalles contigus de rangs 1, 2, définis comme suit.
Quel que soit l'entier m ^ 1, si < n — 1, les intervalles contigus
de rang m sont les (k + l)"1 k intervalles (ouverts) de la forme
(0, CCj 0C2 ••• CCfYi—i {&k) 7

ö) &2 ••• 1 &!,+1) OU OCj S K., ] — 1,
m — 1 et 0 ^ i ^k — 1. Et, si a^ n — 1, les intervalles contigus
de rang m sont tous les intervalles de la forme (0, ocx oc2 am_i ocm;
0, oq oc2 ocm_i ßm) où ocj e K, / 1, m — 1, ocm aq -f 1

(0 ^ i ^ k — 1, di+i — ai > 1), ßm aq+1. Appelons intervalle
contigu de rang 0 de A l'ensemble des nombres réels qui ne font pas
partie de S. Soit F la famille de tous les ensembles A. Deux ensembles
de la famille F: A — [a0, aq,..., afe]n et A' [a0', aq',..., a}/]n' peuvent
être confondus sans que l'on ait les égalités n n\ k k' et a$ a/,
/ 1, k comme l'avaient remarqué M. Henri Cartan et Mlle Hélène
Cartan qui avaient formulé deux critères permettant de résoudre le
problème de l'identité de deux ensembles de la famille F. On a la
proposition ^générale suivante: Soient A [a0r aq, ak]n et
A' [ao', aq', ak']n> deux ensembles de la famille F, soit K
{a0, aq, ak\ et soit K' |a0', aq', aq/}. Si A A', il existe
deux entiers positifs u et e, tels que nu n'v et que l'ensemble Kj
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des entiers de la forme nu~{ ax + nu~2 oc2 + + au, où oq s K,
j 1, w, se confond avec l'ensemble K/ des entiers de la forme
n,v~l ßx + n'v~~ ß2 + + ßu, où ßj s Kx', / — 1, e.

Montrons que si les deux ensembles A et A' ont les mêmes
intervalles contigus de rang 0,1 et 2, on a A — A', n n', k k' et
ai — ai, i — 1, k. En effet, comme A et A' ont les mêmes
intervalles contigus de rang 0, ils sont construits sur le même segment et
par suite on a

akjn — 1 dk,fn' — 1 (1)

Deux cas sont à distinguer. Ou bien ak<.n — 1 et ak>' < n' — 1. Les
intervalles contigus de rang 1 de A sont alors

ak ai+i
h —,—TT ; \ 0 — i ~ k — 1

n n(n-l) n '

et les intervalles contigus de rang 1 de A' sont

\ n n (n -1) n /

Puisque ces deux groupes d'intervalles sont identiques, on doit avoir

k E (2)

et
a< ^,1 - i - k. (3)
n n

De (2) et (1) il ressort que

ak
__

ak

n — 1 n — 1

et, d'après (3), on a

Donc n — n' et, d'après (3), ai a-, £==1,2, k.

Supposons maintenant qu'on a l'une au moins des égalités au — n — 1,

af/ nf — 1. D'après (1), l'un au moins des rapports

n — 1 ' n' — 1

étant, par hypothèse, égal à 1, le second est aussi =1. On a donc

ak n — 1 et a'k, n' — 1. Soient 8n, §12, 8ir les intervalles
contigus de rang 1 de A pris dans un ordre tel que 8Xi est situé à gauche
de S13- si £ < /. D'après nos prémisses, §n, §12, Sir constituent aussi
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l'ensemble des intervalles contigus de rang 1 de A'. Il existe donc,
d'une part, r indices £1? tr (0 ^ tx < t2 < < tr — 1) et,
d'autre part, r indices sv sr (0 ^ st < < sr ^ k' — 1), tels que

+ K + W) _a a. _U \ n ' n \ n' ' nf f 1

— a' > 1 1 ^ ^ r

On doit donc avoir

et

\+ 1

_ \+ 1
(4)

s,+i (5)— —V-, 1 ^
n n

-Les intervalles contigus de rang 2 de A sont au nombre de (k + 1) r
et ce sont les intervalles

fa,*H+ 1 a, VAKi A + -hi— ; A + hr»* 1. 2. '•,7 0, 1, ^ -
n n< n nz

D'après nos hypothèses, les intervalles contigus de rang 2 de A'
doivent aussi être au nombre de (k + I) r. L

Or, ce nombre est, d'autre part, égal à (k' + 1) r. Il s'ensuit

k k'. (6)

Les intervalles contigus de rang 2 de A' sont

ai % + 1
ai V*\

sr + -si- '>à + -^-J <

£ *• 2' - ^ ' - °. *

et par hypothèse ces intervalles se confondent avec les intervalles
contigus de rang 2 de A. Comme a0 < ax < < ah et que a<J < öq

< < ah on doit avoir

S
(aA

+ aJi+ 1. VA _ (i + 1. A V1
2d \n n2 ' n+ n2)\re'' n' + n'2

i 1,2, r; j 0, 1, ft (7)

Soit i un entier fixe quelconque compris entre 1 et r. On a, d'après
(4) et (5),

V* - \ -1 v - % 1
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et, d'après (7), on a

a. at. 1 n. ^ -f~ 1

_i _ _ J_ s* (9)
n n2 n' n'2

et

*5 ah+^ ai i\ m- + -V - + -T- ' / °' 1. k '
n n2 n n2

Attribuons à / une valeur fixe quelconque comprise entre 0 et ß et
soustrayons membre à membre les deux égalités correspondantes (9)
et (10). Il vient

at a.1 — at — 1 a* ,M — ac — 1
h si+* si (Hj

Divisons (8) et (11) membre à membre. Il vient n — n\ Donc, d'après
(4) et (5), on a \ a'H et «t.+1 a'H+i

Et, d'après (9), (10) et (11), on a a- a-, / 0, 1, k, c. q. f. d.

KORRIGENDA ad Artikel Weinberger,
Anwendungen der Mathematik auf Nationalökonomie.

Auf S. 136, 18. Zeile von oben statt oc — x richtig x — a.

Auf Seite 139 ist im ersten Absätze der Satz: ,,Dass dieses p
einen Maximalwert darstellt usf." zu streichen. Es soll richtig
heissen : Ob dieses p einen Maximalwert oder einen Minimalwert
darstellt, lässt sich nur feststellen, wenn man die zweite Ableitung

Zf'(p) + Pf"(p) (4)

bildet, den bereits ermittelten Wert von p, nämlich — f \P)

darin einsetzt und prüft, ob die Funktion

nr(p)?-f"(p)f(p) mm (5)

positiv oder negativ ist. f (p) ist wesentlich negativ (vgl. Cournot,

S. 59, und den Kommentar dazu in der Cournot-Ausgabe
von Lutfalla, Paris, Marcel Rivière & Cie, 1938, S. 207 bis 208).
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