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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications

Séance de printemps, Bdle, 8 mai 1955.

Cette séance a été consacrée a la commémoration du tricentenaire
de la naissance de Jakob Bernoulli.

Conférences de M. le professeur J.-E. Hormann (Ichenhausen):
Einige Beitrdge Jakob Bernoullis zur Infinitesimalmathematik !
et de M. le professeur B.-L. van der WaErDEN (Zurich): Jakob
Bernoulli als Begriinder der mathematischen Statistik.

Réunton de Porrentruy, 25 septembre 1955.

La Société mathématique suisse a tenu sa 44¢ assemblée annuelle
& Porrentruy, le 25 septembre 1955, sous la présidence de M. le pro-
fesseur J.-J. Burckhardt, président, en méme temps que la 135€ session
annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la société a constitué comme suit
son comité pour les années 1956 et 1957: MM. les professeurs E.
STIEFEL (Zurich), président; G. VincENT (Lausanne), vice-président;
H. JeEckLIN (Zurich), secrétaire-caissier.

Le Comité national suisse de I’Union mathématique internationale
est formé, pour la méme période, de MM. les professeurs SAXER et
DE RuAM et des trois membres du nouveau comité.

L’assemblée a désigné les membres de la Commission nationale de
Penseignement mathématique: MM. E. BarscuerLer (Béle), J.-P.
ExterManN (Genéve), F. Fiara (Neuchatel), L. Pavrr (Neuchatel),
G. pE Ruam (Lausanne), Roru-DEsMEULES (Lucerne), F. STEIGER
(Berne), E. Trost (Zurich). MM. pE Ruam et TrosT en sont les
délégués aupres de la CIEM.

La partie scientifigue a été consacrée aux communications sui-
vantes:

S. Piccarp (Neuchdtel): 1. Les systémes fixes d’éléments généra-
teurs d’un groupe; 2. Quelques problémes de la théorie des groupes.

1 Le texte de cette conférence sera publié dans cette revue.
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H. MEIEI;\-“I UNDERLI (Zurich): Aus der Theorie der Abelschen
Gruppen. ’

M. KervaIrRE (Berne): Courbure intégrale généralisée et homo-
topie.

G. Vincent (Lausanne): Sur les représentations linéaires de cer-
tains groupes finis.

S. Piccarp (Neuchdtel): Sur des ensembles parfaits.

Les systémes fizes d’éléments générateurs d’'un groupe, par Sophie
Prccarp, Neuchatel.

Soit G un groupe d’ordre fini N qui admet des automorphismes
externes de deux espéces. Un automorphisme externe est dit de
premiere espéce §’il fait correspondre & tout élément a de G son trans-
formé bab~! par un élément fixe b d’'un groupe G; plus vaste que G
et dont G est un sous-groupe distingué. Un automorphisme externe
est dit de seconde espéce s’il ne peut pas étre réalisé de cette fagon.
Soit &, [,] le groupe de tous les automorphismes internes [de tous
les automorphismes] du groupe G. L’ensemble (X, de tous les auto-
morphismes internes et externes de premiére espéce constitue égale-
ment un groupe dont (A, est un sous-groupe distingué et qui est & son
tour un sous-groupe de ;. Quel que soit I’élément a et quel que soit
l’automorphisme A de G, nous désignons par Aa l'élément de G
homologue de a dans A. Nous appelons base de G tout systéeme d’élé-
ments indépendants générateurs de G. Tout automorphisme de G
transforme une base de G en une base de G (pas nécessairement
distincte de la premiére). Soit A un automorphisme, soit ay, ..., apy
une base quelconque de G et soit Aa; = b;, i = 1, ..., m. Les m couples
ordonnée a;, b; (1 = 1, ..., m) définissent 'automorphisme A de facon
univoque. m est 'ordre de chacune des bases ay, ..., ap et by, ..., by
On peut répartir aussi bien les éléments que les bases d’ordre donné
de G en classes d’éléments respectivement de bases équivalents rela-
tivement & chacun des trois groupes ({;. Nous dirons, pour abréger,
que deux éléments a et b de G sont i-équivalents s’il existe un auto-
morphisme A du groupe (1;, tel que Aa = b, et nous dirons que deux

bases d’ordre m: ay, ..., @y et by, ..., by, de G sont i-équivalentes s’il
existe un automorphisme A du groupe Cl;, tel que Ag; = b,
J=1,...,m, quel que soit t =1, 2, 3. Deux éléments ou deux

bases 1-6quivalents de G sont conjugués. Deux bases équivalentes
sont caractérisées par les mémes relations fondamentales. Tout auto-
morphisme du groupe C1; transforme en elle-méme chaque classe d’élé-
ments t-équivalents de G. Nous disons qu’un élément a de G est un
élément fixe d’un automorphisme A si Aa = q. Nous disons qu’une
base de G est une base fixe d’'un automorphisme A si cette base est
transformée en elle-méme par A. L’élément unité 1 de G est fixe dans
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tous les automorphismes de G et 'automorphisme identique A°
laisse fixe tous les éléments et toutes les bases de G. Une base fixe
a;, ay du second ordre d’un automorphisme A détermine ce dernier
de facon univoque et, si A 7= Aj, on a Aa; = a,, Aa, = a;, A2 = A,
autrement dit I'automorphisme A est du second ordre, il permute
les deux éléments q, et a, et la base a,, a, n’est fixe dans aucun autre
automorphisme non identique du groupe G. Supposons que G possede
des bases du second ordre et que son centre est d’ordre 1. Soit ¢;
Pordre du groupe &, i = 1, 2, 3.

Soit a;, a, une base de G. Nous disons que cette base est de pre-
miere espece par rapport aux automorphismes du groupe CX; si la
base envisagée n’est fixe dans aucun des automorphismes % A, de
CL; et nous disons que la base a;, a, est de seconde espéce par rapport
aux automorphismes du groupe &X; §’il existe un automorphisme
A £ A, du groupe A; qui laisse cette base fixe, quel que soit i = 1, 2, 3.
Pour toute base de premiére (seconde) espece par rapport aux auto-
morphismes du groupe A; il existe ¢; (¢;/2) bases de G qui lui sont
i-équivalentes, quel que soit ¢t = 1, 2, 3.

Tout automorphisme effectue une substitution des éléments de G.
L’étude de ces substitutions permet de déterminer les bases de G
et I'’examen des substitutions des éléments de G qui correspondent
aux automorphismes du second ordre permet de déterminer toutes
les bases de seconde espéce.

Envisageons, a titre d’exemple, I’alterné A de degré 6. Il possede,
comme on sait, 360 automorphismes internes, 360 automorphismes
externes de premiere espece et 720 automorphismes externes de
seconde espece. Le groupe CL, (CL,) est simplement isomorphe a U (S)
et chaque automorphisme interne ou externe de premiére espece est
représenté par une substitution paire des éléments de 4. Par contre,
les automorphismes externes de seconde espece sont représentés par
des substitutions impaires des éléments de Aq. 144 de ces substitutions
sont d’ordre 10, 360 d’ordre 8, 180 d’ordre 4 et 36 du second ordre.
Les deux éléments de toute base fixe dans un automorphisme externe
de seconde espece de g figurent dans une transposition de la substi-
tution du second ordre qui représente un automorphisme externe
déterminé de seconde espece du groupe U4 Chaque automorphisme
externe de seconde espéce de g qui est du second ordre laisse fixe
10 éléments du groupe, notamment quatre cycles du 5¢ ordre, cinq
doubles transpositions et 1 et il laisse fixes 140 bases du second ordre
de AU, Le nombre total des bases de g laissées fixes par I'un quel-
conque des automorphismes externes de seconde espece de g est de
5040. Le nombre total des bases de U laissées fixes par un quelconque
des automorphismes internes %= A, de U est de 2160. 720 bases de
As au total sont laissées fixes par les différents automorphismes
externes de premieére espece et le nombre total des bases du second
ordre de U, qui sont de seconde espéce par rapport aux automor-
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phismes du groupe €L, est de 7920 alors que 30 240 bases du second
ordre de 9, sont de premiére espéce et ne sont laissées fixes par aucun
automorphisme = A, de (L.

Quelques problémes de la théorie des groupes, par Sophie PIccARD,
Neuchatel.

Soit G un groupe d’ordre fini N défini par un systéme d’éléments
générateurs
a, ..., Qy (1)

fi(al""’am)=1’i:1"‘,"k‘ (2)

Appelons multiplication la loi de composition du groupe G et appe-
lons base d’ordre m de G le systéme d’éléments générateurs (1). Il
n’est généralement pas aisé d’étudier la structure d’un groupe G ainsi
défini. Il existe cependant des cas ou un simple examen des relations
(2) fournit de nombreux renseignements sur la structure de G et
permet de déceler la présence de certains sous-groupes distingués, de
déterminer le nombre minimum d’éléments générateurs de G, d’in-
diquer une borne supérieure au nombre total des bases minima et
une borne inférieure au nombre total de sous-groupes distingués
de G, etc. Nous nous sommes attachés aux cas suivants.
Soit n un entier quelconque > 2 et soit

all,alz,...,alt(1<t<m,1<l1<l2<...<Zt<m) (3)

t éléments quelconques de la base (1). Nous disons que G jouit de la
propriété P (mod n) par rapport a I’ensemble de ces éléments si f; est
de degré = 0 (mod n) par rapport a I’ensemble des éléments (3) quel
que soit ¢ = 1, ..., k, et nous disons que G jouit de la propriété P
(mod n) par rapport & chacun des éléments (3) si f; est de degré = 0
(mod nr) par rapport a y, Jj=1,.,t1=1, ..,k

S1 G jouit de la propriété P (mod n) par rapport a chacun des
éléments (3), il jouit évidemment aussi de la propriété P (mod n) par
rapport & ’ensemble de ces éléments. La réciproque n’est pas vraie.
Sit << m, le groupe G peut jouir de la propriété P (mod n) par rapport
& chacun des éléments (3) de la base (1) et étre dépourvu de la méme
propriété par rapport a une seconde base de G. Par contre, si le
groupe G jouit de la propriété P (mod n) par rapport a chacun des
éléments de sa base (1), cette base est minimum et le groupe G jouit

de la propriété P (mod n) par rapport & tout élément de chacune de
ses bases minima.
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Si le groupe G jouit de 'une ou I'autre des propriétés P (mod n)
par rapport aux éléments (3) de 'une quelconque de ses bases (1),
G n’est pas simple et il posséde au moins un sous-groupe distingué
d’ordre N/n, I’ordre de chacun des éléments (3) ainsi que ’ordre de G
sont des multiples de n et on peut répartir les éléments de G en
n classes Ao, ..., Ay_; composées chacune de N/n éléments de G et
comprenant, avec tout élément a de G, la classe entiére des éléments
de G conjugués a a. Les classes A, avec la loi de composition
Ay Ay = Ay, o0 w=u-+ ¢ (mod n) forment un groupe abélien
d’ordre n dont l’élément zéro A, est un sous-groupe distingué
de G.

Si le groupe G jouit de la propriété P (mod n) par rapport a chacun
des éléments (3), on peut répartir les éléments de G en nt classes
M: ...4, ou les indices i, ..., {; sont des nombres de I’ensemble
{O, ey B — 1}. Chaque classe Mi ... iy comprend N/nt éléments de
G et elle contient avec tout élément @ de G la classe entiere des
éléments de G conjugués a a. Sit = m, les classes M ont un caractére
intrinseque et sont indépendantes de la base (1). Avec la loi de
composition My, ... uy Mo ... oy = Mw_ ... w;, OU wj = uj + ¢; (mod n),
] =1, ..., ¢t les classes M forment un groupe abélien I' dont 1’élément
zéro My,. .o est un sous-groupe distingué de G. Quel que soit le sous-
groupe y de I', la réunion des classes M qui constituent les éléments
de y est un sous-groupe distingué de G.

Si le groupe G jouit de la propriété P (mod n) par rapport & I’en-
semble [par rapport a chacun] des éléments (3) de sa base (1), il jouit
évidemment de la propriété P (mod d) par rapport & ’ensemble [par
rapport a chacun] des éléments (3), quel que soit le diviseur d > 1
de n et par conséquent G possede au moins un sous-groupe distingué
d’ordre N/d quel que soit le diviseur d > 1 de n. Si G jouit de la
propriété P (mod ») par rapport a chacun des éléments (3), il possede
au moins un sous-groupe distingué d’ordre N/dt, quel que soit le
diviseur d > 1 de n.

Si G jouit de la propriété P (mod n) par rapport & chacun des
éléments de sa base (1), cette base est minimum et le nombre total ut
de bases minima de G satisfait I'inégalité

u < (Np™mp™ —1) (p™ —p) ... (p™—p"™)/m !

ou p est le plus petit diviseur premier de n.

Si le groupe G jouit de la propriété P (mod n) par rapport a chacun
des éléments de sa base (1), quel que soit le nombre premier p diviseur
de n, le groupe G posséde au moins (pm — 1) (p™ — p) ... (p™ — pi~1y/
(pt — 1) (pt — p) ... (p* — pt') sous-groupes distingués distincts
d’ordre N/pmt ¢ =1, ....,m — 1. :
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Tout groupe abélien jouit de la propriété P (mod «;) par rapport
a chaque élément de n’importe laquelle de ses bases minima, o dési-
gnant le plus petit des invariants du groupe considéré.

Il existe aussi des groupes non abéliens qui jouissent de la pro-
priété P (mod n) par rapport & tout élément de chacune de leur bases
minima. Ainsi, par exemple, le groupe non abélien Gy, d’ordre yog,
engendré par les deux substitutions

S, = (12) (34) (567) (111213141516) , S, = (13) (24) (56) (89 10)

jouit par rapport & chacune des substitutions S; et S, de la propriété P
(mod 6), puisque S, et S, sont liées par les relations fondamentales

P =1, SP=1, SI8SSI=1, 8,888 =1.

Aus der Theorie der Abelschen Gruppen, von H. MEIER-WUNDERLI,
Ziirich.

Die bekannten Beweise des Satzes von Hajés benutzen den
Gruppenring. Es wurde ein Beweis vorgetragen, der ohne den Grup-
penring auskommt. Eine ausfithrliche Darstellung wird andernorts
erscheinen.

Courbure intégrale généralisée et homotoptie, par M. KERVAIRE, Berne.

Le probleme suivant est étudié:

Soit My une variété plongée dans un espace euclidien Ry, avec
un champ F, de repéres normaux & Mp; ce champ induit une applica-
tion continue ¢ de My dans la variété de Stiefel V., , des suites de
n vecteurs (orthonormés et ayant pour origine un point fixe A) dans
Ry1n: I'application ¢ fait correspondre & chaque point P de la variété
My, les vecteurs équipollents & ceux du champ F, au point P et ayant
pour origine le point fixe A. Que peut-on dire de la classe ¢ de cette
application et en particulier la classe ¢ est-elle indépendante du plon-
gement de My et du champ Fyp, ?

On remarque que les résultats de Stiefel sur les groupes d’homo-
logie (entiere) des variétés Vi, n: '

Z pour k pairoun =1
Hi(Vh+n’n)=Opour1_§,i<k,Hk(Vk+n,n)={ . .
Z, pour kimpairetn > 1,

(ou Z et Z, désignent les groupes des entiers et des restes mod 2 res-
pectivement) permettent de représenter la classe ¢ par un nombre
(entier ou reste mod 2) que nous désignerons également par c.
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Le probléme qui vient d’étre posé a été résolu par H. Hopf dans
le cas n = 1 (les vecteurs de F,, se réduisent alors a la seule normale
a My, dans Ryyy) et avec k pair (Math. Annalen, 95, 340-67, 1925).
Dans ce cas ¢ (appelée courbure intégrale) ne dépend que de My, et vaut
L% (M) ou y (M) désigne la caractéristique d’Euler de Mp.

Dans le cas général (n > 1, k quelconque), on montre que ¢, la
courbure intégrale généralisée, ne dépend que de M si et seulement
si un certain invariant d’homotopie v des applications Sp;, — S,
est identiquement nul (c’est-a-dire a la valeur 0 pour toute application
Sk4+n — Spn); en ce cas ¢ est déterminée par la semi-caractéristique de
My, égale & Ly (M) pour k pair et a

%(k;l) ‘
> (—1)'p; (M)
=0

.

pour k& impair (p; (My) = rang de H; (My; Z,)).

Lorsque % est pair, on a toujours y = 0 (quel que soit n); autre-
ment dit: Pour k pair, la courbure intégrale généralisée ne dépend que
de Mk C = ZX(Mk)

Pour & impair, v est un reste mod 2 en général non nul En dehors
des cas banals

Ttk (Sn) = 0 (par exemple pour n = 1 ou k =5, n > 7),

Ttk (Sp) ne contient que des éléments d’ordre impair (par exemple

k=17,n=2), pour lesquels y est évidemment toujours nul,

on peut dire
10 v n’est pas identiquement nul sur 7w,ix (S,) avec n >k + 1

lorsque Sy, est parallélisable; on n’a donc pas de généralisation du
théoreme de H. Hopf dans le sens ci-dessus pour

k=1(n>=2, k=380>=4, k=7n=8, ..., ? ,..

20 Si vy est identiquement nul sur x4y (Sn) avee N > k 4 1, il est
identiquement nul sur 7, (S,) pour tout n;

30 +yestidentiquement nul pour £k =3,1<n<3etk=7,1<n<T7.

Conjectures:

v est identiquement nul pour 1 < n < k;
v n’est pas identiquement nul pour n > k + 1 si et seulement s’il
existe un élément de 7o, 11 (Sp41) dont Vinvariant de Hopf est 1.

Sur lesreprésentations linéaires de certains groupes finis,par G. VINCENT,
Lausanne.

La détermination des formes de Clifford de I’espace sphérique se
ramene a la recherche des groupes finis admettant des représentations
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linéaires telles que la matrice associée & un élément différent de
I'identité n’admette pas la valeur propre +-1. Ces groupes se répar-
tissent en deux catégories. La premiére contient ceux dont tous les
sous-groupes de Sylow sont cycliques; de tels groupes sont résolubles
et une condition suffisante, de nature arithmétique, assure I'existence
de représentations du type désiré. La deuxieme renferme des groupes
a p-sous-groupes de Sylow cycliques pour p #% 2 et quaternioniques
@' =e¢ b2=a"" bab! = at) pour p = 2. Certains sont
résolubles (métabéliens de rang deux, trois ou quatre) les autres pas
(parfait ou & premier ou deuxiéme dérivé parfait). L’objet de cette
communication est de montrer qu'une condition suffisante obtenue
antérieurement pour une partie des groupes métabéliens de rang deux
s’étend, moyennant quelques changements mineurs, a tous les groupes
de cette classe.

Sur des ensembles parfaits, par Sophie Piccarp, Neuchatel.

Soit n un entier quelconque > 3 qu’on prend pour base de numsé-
ration. Soit K = {ao, Ay, -eey ah} un vrai sous-ensemble de ’ensemble
{0,1, .,n—1}, tel que 0 =0y < a; < .. < ap =< n— 1, soit
A = [ay, a3, ..., agl, 'ensemble des nombres du segment § = < 0,
ap/n — 1 > qui peuvent s’écrire dans le systéme de numération a
base n avec les seuls chiffres de I’ensemble K.

On obtient I’ensemble A & partir du segment § par la suppression
successive d’intervalles contigus de rangs 1, 2, ... définis comme suit.
Quel que soit I'entier m > 1, si ar << n — 1, les intervalles contigus
de rang m sont les (kK + 1)™! L intervalles (ouverts) de la forme
(0, oty oty oo oty @5 (ar); 0, 0g oty oo Oty @iyq) o0 e K, j =1, ...,
m—1et0 =1 =<Fk—1.Et, sia =n—1,les intervalles contigus
de rang m sont tous les intervalles de la forme (0, a; oty ... ounq otm;
0, 000 & v g Brm) 00 aje K, j=1,...,m—1, op=a; + 1
O==1=k—1, o,y —a; > 1), Bp = ai1. Appelons intervalle
contigu de rang 0 de A I’ensemble des nombres réels qui ne font pas
partie de 5. Soit F la famille de tous les ensembles A. Deux ensembles
de la famille F: A = [ay, ay, ..., ax]n et A’ = [ay, ay’, ..., ap' ] peuvent
étre confondus sans que I'on ait les égalités n = n', k = %’ et a; = af,
] =1, ..., kcomme 'avaient remarqué M. Henri Cartan et M1¢ Héléne
Cartan qui avaient formulé deux critéres permettant de résoudre le
probléme de Iidentité de deux ensembles de la famille F. On a la
proposition générale suivante: Soient A = [ay, ay, ..., ax], et
A" =Tay, a, ..., ax'],y deux ensembles de la famille F, soit K =
{ag, ay, ..., ar} et soit K’ = {ay, ay, ..., ak"}. Si A = A’, il existe
deux entiers positifs u et ¢, tels que n* = n'v et que I’ensemble K,
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des entiers de la forme n¥la; + n¥2a, 4 ... + a,, ou ek,
j =1, .., u, se confond avec ’ensemble K," des entiers de la forme
B+ n 2R+ F By ouBie K =1, .., 0.

Montrons que si les deux ensembles A et A’ ont les mémes inter-
valles contigus de rang 0,1 et 2, on a A= A", n =nr', k =k et
a; = a;', 1 =1, ..., k. En effet, comme A et A’ ont les mémes inter-
valles contigus de rang 0, ils sont construits sur le méme segment et
par suite on a

ak/n—l e a;{,/n’—l . (1)

Deux cas sont a distinguer. Ou bien ap <n — 1 et ap” < n’ — 1. Les
intervalles contigus de rang 1 de A sont alors

<ﬁ+ %k -ai“),()éiék—i,

n n(n-1)’ n

et les intervalles contigus de rang 1 de A’ sont

{a.: a,, a.
1 ;3 i+1 .
(--7+ ; ,>,Oézék’—~1~

n n'(n-1)’ n

Puisque ces deux groupes d’intervalles sont identiques, on doit avoir

k= ¥ (2)
et
a:  a
=2 1=i=zk. (3)
n
De (2) et (1) il ressort que
ap @)
n—1 n —1
et, d’apres (3), on a
@ @
n o on

Donc n = n’ et, d’aprés (3), ¢; = a;, i = 1, 2, ... k.
Supposons maintenant qu’on a I'une au moins des égalités ap = n —1,
ap’ = n' — 1. D’aprés (1), I'un au moins des rapports

’

(Zk ah,

n—1"n —1

étant, par hypothése, égal a 1, le second est aussi ='1. On a donec
ap = n—1 et a,, = n' — 1. Soient &y, Oy, ..., Oy les intervalles
contigus de rang 1 de A pris dans un ordre tel que 8,; est situé @ gauche
de 8, 817 < j. D’aprés nos prémisses, 3;;, O, ..., 01r constituent aussi
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I’ensemble des intervalles contigus de rang 1 de A’. Il existe donc
d’une part, r indices tl, vy b (01 < t2 < <th=k—1)e
d’autre part, r indices sy, ..., s, (0 == 5y < ... < s,. = k' — 1), tels que

4 ’ %
. 811.’ = ’ = ! 4 ; ? ? ati-l-i T ati =1, a8i+1 T

n ’ n n n

! = 5 =
~—asi>1,1 -1 =7r.

On doit donec avoir

ati—l—l—asi-}-i (4)

n n’

et

a, a.
t1+1__ Sljl,iéi?/zr. (5)

n  n

-Les intervalles contigus de rang 2 de A sont au nombre de (k 4- 1) r
et ce sont les intervalles

a; ati + 1 a; ati+1 ) .
82ij= — =+ ; — + yt=1,2,..,r,7]=0,1, .., k.

n n2 n n?

D’apres nos hypotheses, les intervalles contigus de rang 2 de A’
doivent aussi étre au nombre de (£ -+ 1) r.

Or, ce nombre est, d’autre part, égal & (k" 4 1) r. _II s’ensuilt
k=F§. (6)

Les intervalles contigus de rang 2 de A’ sont

a?f asi+1 a]t asi+1 . k .
== + ;h/—{__”—7":1:2,--~’r;]20’1’-'-,k

n n? n n’z

et par hypothése ces intervalles se confondent avec les intervalles
contigus de rang 2 de A. Comme g, < a; < ... < ay et que a; < a;
< ... < a, on doit avoir

5. — % N a, + 1 % Ot B ajf as, + 1 ajf @s,+1
2 = \ 7, R, + ar ) = \7r . v e + —a |
i=1,2, ., rj=01,.. k. (7)

Soit ¢ un entier fixe quelconque compris entre 1 et 7. On a, d’apres

(4) et (5),
ati—l-i - ali —1 - a3i+1. - aSi — 1 ' (8)

n n’
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et, d’aprées (7), on a
a. at’i -+ 1 af a;_ -+ 1

NS - — J, 4t = (9)
n n n n
et
a; A1 a; ®s.+1
2 12 == ] + '1—2,] — 0, 1, seny k. (10)
n n n n

Attribuons a j une valeur fixe quelconque comprise entre 0 et % et
soustrayons membre & membre les deux égalités correspondantes (9)
et (10). II vient

ati+1 ~ ati —1 as,fri — aSi —1 (1,1)

n n’:

Divisons (8) et (11) membre & membre. Il vient n = n’. Done, d’aprés
(4) et (5), on a A, = Gg; et Ay = a5y -

Et, d’aprés (9), (10) et (11), ona ¢y =a;,j = 0,1,.., k, ¢ g | d.

KORRIGENDA ad Artikel WEINBERGER,
Anwendungen der Mathematik auf Nationalokonomie.

Auf S. 136, 18. Zeile von oben statt o« — x richtig » — o.

Auf Seite 139 ist im ersten Absatze der Satz: ,,Dass dieses p
einen Maximalwert darstellt usf.* zu streichen. Es soll richtig
heissen: Ob dieses p einen Maximalwert oder einen Minimalwert
darstellt, 14asst sich nur feststellen, wenn man die zweite Ableitung

21" (p) + pf” (p) (&)
bildet, den bereits ermittelten Wert von p, nidmlich ———%,—((%
darin einsetzt und priift, ob die Funktion

’ 2 f#

2[f (p) 1> — " (p) 1 (P) (5)

" (p)
positiv oder negativ ist. f' (p) ist wesentlich negativ (vgl. Cour-

NoT, S. 59, und den Kommentar dazu in der Cournot-Ausgabe
von Lurrarra, Paris, Marcel Riviere & Cie, 1938, S. 207 bis 208).
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