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LA GÉOMÉTRIE DES SOUS-VARIÉTÉS D'UN
ESPACE EUCLIDIEN A PLUSIEURS DIMENSIONS 1

PAR

Shiing-Shen Chern (Chicago).

La géométrie des sous-variétés d'un espace euclidien de

dimension quelconque contient naturellement comme cas
particuliers l'étude des courbes et des surfaces de l'espace euclidien
ordinaire. Cependant, malgré l'histoire très ancienne du sujet,
nos renseignements dans le cas général sont assez maigres. Dans
cette conférence je me propose de parler de quelques progrès
qui ont été accomplis récemment.

I

1. — Soient En~rX l'espace euclidien à n + N dimensions
et M une variété difîérentiable à n dimensions régulièrement
plongée dans En Cela signifie que tout point de M a un
voisinage dans lequel la variété peut être définie en exprimant N
coordonnées de En ' x comme des fonctions des n autres
coordonnées ayant des dérivées partielles continues d'un ordre assez

i Conférence faite à la séance de la Société mathématique suisse, tenue à Berne
le 7 juin 1953.
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élevé. Pour simplifier nous supposerons que M est compacte,
bien que beaucoup de nos discussions soient valables sans cette

hypothèse. Dans une formulation générale nous nous intéressons
à des relations entre les courbures de la métrique riemannienne
induite de il/, les courbures relatives de M dans E" N et les

propriétés topologiques de M elle-même et de sa position dans

En~*.
La première idée féconde, remontant au moins à Gauss,

consiste à étudier une application qui généralise l'application
normale d'une surface dans l'espace euclidien ordinaire. Soit en

effet G(n,N) (resp. G(n,N)) la variété grassmannienne des

variétés linéaires (resp. variétés linéaires orientées) à n dimensions

passant par un point fixe O de En v. Cette variété est de

dimension ?iN> Pour n 1 ou N — 1, G(n, N) est homéomorphe
à l'espace project if réel et G(n, N) à la sphère. Pour chaque
point x e M: on mène par l'espace linéaire T (x) à n dimensions
parallèle au plan tangent à M en x. Cette construction conduit
à l'application tangentiale T: M G(n, N). D'une manière
analogue on définit l'application tangentielle 7 : M —> G (/?, iV),
si M est orientée. Ces applications jouent un rôle fondamental
dans l'étude de la géométrie de M dans En^x.

Tout d'abord Papplication T induit des homomorphismes sur
les groupes d'homologie. Plus précisément, soit J un groupe de
coefficients et, X étant un espace topologique, désignons par
Hr (X, J) (resp. //' (X, J)) le groupe d'homologie (resp. de

cohomologie) de dimension r de X avec le groupe de coefficients J.
L'application T induit les homomorphismes suivants:

T* : IIr {M, J) Hr{G(n, N), J)
(1

T* : IIr G G, N) 9 J) —> TF {M, J)

De plus, si J est un anneau, la somme directe des groupes de
cohomologie de différentes dimensions peut être munie d'une
structure d'anneau et ITiomomorphisme 71* est un homomor-
phisme d'anneaux. Des considérations analogues sont valables
pour l'application t.

De quelle manière ces homomorphismes dépendent-ils de la
variété M Pour étudier cette question disons que deux varié-
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tés Mq et Mx sont régulièrement homotopes s'il existe une
famille Mt (0 < t < 1) de variétés plongées, dépendant conti-
nuement de t et du point x e M, qui contient les variétés données

pour t 0 et t — 1. Il est clair que pour deux variétés régulièrement

homotopes les homomorphism.es (1) sont les mêmes.
D'autre part, M. Whitney a démontré que si N > n + 1,

deux variétés de dimension n dans En+N sont toujours
régulièrement homotopes h Dans ce cas les homomorphismes (1)
dépendent de M comme variété difïérentiable abstraite et ne
dépendent pas de sa position dans En+N. En particulier,
T1* s'appellera l'homomorphisme caractéristique de M et un
élément de l'image de T7* une classe caractéristique.

Il y a d'autres cas où les homomorphismes (1) ne dépendent
que de M. Par exemple, si M est une hypersurface orientée
(iV — 1), la variété G(n, 1) est homéomorphe à une sphère de

dimension n et les homomorphismes (1) sont essentiellement
déterminés par le degré de l'application T. Si, de plus, n est pair,
on peut démontrer que ce degré est égal à y(M)/21 où y{M)
est la caractéristique d'Euler-Poincaré de M.

Dans le cas général il sera utile d'imposer des conditions
moins restrictives sur d/, en admettant les cas où M peut se

rencontrer elle-même de telle sorte qu'en chaque point où M
se coupe elle-même il n'y a que deux branches de M et que les

plans tangents à celles-ci soient transversaux l'un à l'autre.
Ce sont les variétés immergées au sens de M. Whitney. L'application

tangentielle et la notion d'homotopie régulière s'étendent
à ces variétés. Il est encore vrai que les homomorphismes (1)
sont les mêmes pour deux variétés immergées régulièrement
homotopes.

On en sait plus dans le cas n — N 1, c'est-à-dire le cas des

courbes fermées du plan avec un nombre fini de points doubles.
M. Whitney a démontré [19] qu'il est possible d'orienter une
telle courbe et de donner un signe à chaque point double tel que,
si v+ (resp. v~) désigne le nombre de points doubles positifs

i Ce théorème a été démontré dans [20] pour iV > n + 2; mais la méthode de

démonstration et le théorème que M peut être plongée topologiquement dans Kln
entraînent qu'il est encore vrai pour N > n + 1.

Les nombres entre crochets [] se réfèrent à la Bibliographie à la fin de cet article.
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(resp. négatifs), le degré de l'application tangentiale T est égal
à 1 + v

; — vr~. Ce théorème contient comme cas particulier le

théorème bien connu (« Umlaufssatz ») qui affirme que le degré

de T est égal à 1 pour une courbe fermée simple, convenablement
orientée. De plus, M. Whitney a aussi démontré que, si les

degrés des applications tangentielles de deux courbes fermées
de ce genre sont les mêmes, les courbes sont régulièrement
homotopes. En d'autres termes, les classes des courbes fermées

régulièrement homotopes sont en correspondance biunivoque
avec les entiers. J'ignore si un théorème analogue est valable

pour le cas n — A7 > t.

2. — Pour faire une étude plus approfondie des homomor-
phismes (t), le problème préliminaire est la connaissance des

groupes d'homologie et de cohomologie des variétés G{n1 N)
et G (/g A"). Ce problème a été traité par M. Ehresmann [5],
[8], [14], en utilisant les décompositions de ces variétés par les

variétés de Schubert. Nous nous intéressons surtout aux cas
où J est soit le corps Z2 des entiers modulo deux soit le corps R
des nombres réels. Faisons aussi l'hypothèse n + 1 < N. Alors
les éléments de dimension < n de l'anneau de cohomologie
Il (G(;z, A7), Z2) sont engendrés (au sens de la structure d'anneau)
par des classes de cohomologie w'1 de dimension f, 1 < i < n.
Les classes caractéristiques Wl T*wl dans M sont appelées
les classes de Stiefel-Whitney. Dans les applications il sera
commode d'introduire, avec l'indéterminée /, le polynome de

Stiefel-Whitney:
n

w(i) - y n-'V, n'» i (2)
i 0

Avec l'anneau de coefficients R les éléments de dimen-
sion < n de l'anneau de cohomologie de G(n, A'7) sont engendrés
par des classes p'l,i de dimension 44, 4 < 4k < n. Leurs images
par T1*, les classes de cohomologie P4/i T*p"h dans M, sont
ap])elées les classes de Pontrjagin. De même, nous introduisons
le polynome de Pontrjagin:

P (*) (— 1)& P4/U4/\ po «t j
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Bien entendu, les classes de Stiefel-Whitney et de Pontrjagin
sont des invariants de M comme une variété différentiable
abstraite. La description de l'anneau de cohomologie de G (n, N)
dans le cas n > N est beaucoup plus compliquée.

D'après les théorèmes célèbres de M. de Rham, il correspond,
à chaque classe de cohomologie de dimension r à coefficients
réels, une forme différentielle extérieure fermée de degré r,
définie modulo les dérivées des formes de degré r —1. Pour
notre variété G(n, iV), qui est transformée transitivement par le

groupe de transformations orthogonales autour du point 0, il
suffit de nous limiter aux formes qui sont invariantes par
rapport à ce groupe. Nous nous proposons de donner explicitement
une telle forme correspondant à la classe pkk.

Pour cela, considérons la famille de tous les repères
rectangulaires qui consistent en n + N vecteurs unitaires c1? en+N,
deux à deux perpendiculaires. Supposons que l'élément de

G(n, N) est déterminé par les n premiers vecteurs ex, en•

Pour éviter des répétitions, faisons les conventions suivantes
sur nos indices:

1 < i, j, h, l S n n + 1 < r, s91 <. n + N (4)

Cela étant, définissons les formes de Pfafï

dei ' > (5)

où les produits sont des produits scalaires. Comme l'espace
linéaire à n dimensions déterminé par les ei reste fixe quand on
fait sur les vecteurs e\ et er des transformations orthogonales
indépendantes, les formes extérieures (ou ordinaires) engendrées

par les coiS peuvent être considérées comme des formes dans

G(n,N) si elles sont invariantes par ces transformations. Un
exemple simple est fourni par la forme différentielle quadratique
ordinaire

® • <6)

i, s

Elle définit une métrique riemannienne dans G(n, N). Pour
construire des formes différentielles extérieures dans G(n, N)1

posons d'abord
wis A <àjs 5 (A

s
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et puis

0*» ^ 4» ; h • • • i,A A ßjm Jm
(8)

où le symbole S(^ im; jq /m) n'est pas nul si et seulement
si q, /m constituent une permutation de auquel cas

il est égal à + 1 ou — 1 suivant que la permutation est paire
ou impaire. De plus, la sommation dans (8) est étendue à tous
les q, im de 1 à n. Il est facile de voir que les formes 02m restent
invariantes, si l'on applique des transformations orthogonales
indépendantes aux vecteurs et et er. Elles sont donc des formes
différentielles extérieures de degré 2m dans G(?i, N). Gomme Qij
est antisymétrique dans les indices i, /, on déduit immédiatement
de la définition (8) que 0om — 0, si m est impair.

Le théorème fondamental dans cet ordre d'idées est le fait
que la forme 0^î3 4 < 4k< n1 est fermée et que la classe de

cohomologie qu'elle détermine est précisément p'lh [5], p. 82.

3. — Il faut appliquer ces considérations à la géométrie de

la variété M dans ER~rN. Pour cela on emploie la méthode du
repère mobile. On entend par repère clans .En rA la figure formée
d'un point x et de n + vecteurs unitaires eLl en v, deux à

deux perpendiculaires, d'origine x. Nous nous limitons à la
famille de tous les repères où x est un point de M et cl7 en

sont des vecteurs tangents h M en x. Alors les vecteurs es sont
normaux à M en x. On a es dx 0, et on posera oyL ^ e^dx, où
les produits sont des produits scalaires. La variété avant un plan
tangent en chaque point, les formes de Pfaff ou sont toujours
linéairement indépendantes. On obtient l'application tangen-
tielle T en menant par O l'espace linéaire à n dimensions déterminé

par les vecteurs
Développons en détail les formules fondamentales de la

géométrie locale de M. On peut écrire, pour la famille de repères
considérée,

(9)

Ei j --= (oAB eB coAB 4- coBA r::= o
3

| < 4
} ß < n jy

/>'
— ~

I/Knxciunomcnl mal Ihm n.. T. 40, 1951-1954. s
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On en déduit

0 es - ä (dx) e8 • 2 dei A Ewis A •

i i

Les formes oh étant linéairement indépendantes, cela entraîne

do)
j

OÙ

• f11)

Avec ces quantités, on construit les formes différentielles
quadratiques ordinaires

^ <12>

i,3

qui généralisent la seconde forme fondamentale d'une surface.
Si v 2 es • es est un vecteur unitaire normal, on a en effet

s

— dvdx yicsrs (13)
s

On obtient les courbures riemaniennes de la métrique rieman-
nienne induite de M par la considération des formes

^ij °^is ^ js ^sik^sjl^k ^
s k,l,s

1 vi
i (Asik Asji Asn Agjfc) cùfo A -

(14)

k,l,s

Les expressions

ijkl zLl ^sik^sjl ^sil^sjk) (t5)
s

sont essentiellement les composantes du tenseur de Riemann-
Christofïel. Plus précisément, si tc est un élément plan passant
par x déterminé par les vecteurs linéairement indépendants
suivants :
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la courbure riemannienne en tz est donnée par la formule

_J ^sik^sjl U ri] ^h %

R 0, TT) 2 (17)

1 Sjl S il A r'j A T>1

LfJtJ

D'après la définition des classes de Pontrjagin et le théorème
à la fin du dernier paragraphe, il s'ensuit que les formes 04fe

obtenues à partir de 04/, en substituant aux Ûij les expressions (14)
sont des formes différentielles fermées dans M et que 04fi
détermine la classe P'ik de Pontrjagin au sens du théorème
de BP de Rham. Cette proposition est due essentiellement à

BP Poxtrjagix [15], qui n'a du reste pas donné la correspondance

exacte. On a ici une relation entre les propriétés de

courbure de M et les invariants de sa structure difîérentiable.
A ma connaissance on ne sait pas si les classes de Pontrjagin
de M sont des invariants topologiques, tandis que, d'après mi
théorème de BP Thom [18], les classes de Stiefel-Whitney le sont.

4. — Pe résultat le plus important de ce genre est peut-être
la formule de Gauss-Bonnet [2], [5], [10]. Elle n'est pas exactement

contenue comme cas particulier dans les considérations
précédentes, mais peut-être déduite d'une manière analogue.
Dans ce cas nous supposons que M est de dimension paire
et orientée, de sorte que l'application tangentielle soit
7: jI—* G(?o A). Soient 1 un hyperplan passant par
0 et G- (//, A - - - 1 la variété grassmannienne dans En ~ N~[.

G(n, A' — 1) est une sous-variété orientée de dimension
n(N— 1) de G(n, N) et définit un cycle A ce cycle correspond

un coeyele y de dimension /y à coefficients réels, qui est
défini par la condition que, pour tout cycle e de dimension
on a

T « ~ - KI[Ç, A (18)

où le symbole Kl, à droite, désigne le nombre d'intersection des
cycles entre parenthèses. Comme dans le dernier paragraphe,
notre problème est de trouver une forme différentielle extérieure
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fermée qui est invariante par le groupe des rotations autour de 0
transformant G{n, N) et qui détermine la classe de cohomo-
logie de y au sens du théorème de M. de Rham. On trouve
qu'une telle forme est donnée par

n

n « (-1)2 fS i i A A (19)
n î1 ••• ln Li '2 ln-1 Ln

/ -n \ 1- X

2n tc
2

où in est + 1 ou — 1, suivant que in est une permutation

paire ou impaire de 1, ny et est nul si deux 4 sont égaux.
Quand on substitue dans (19) les expressions (14), on obtient
une forme différentielle fermée qui détermine la classe de

cohomologie de 77* y. En d'autres termes, on a

fa f*(y)M y Kl (1, 7\ (M)
M

où M désigne le cycle fondamental de la variété orientée M.
Il est possible de déterminer plus explicitement cette dernière

expression. En effet, soit e0 le vecteur unitaire perpendiculaire
à En+N~l. Supposons que Ç et T (M) n'ont qu'un nombre fini
de points communs, c'est-à-dire que M n'a qu'un nombre fini
de points où les plans tangents soient perpendiculaires à e0.

En projetant e0 orthogonalement sur le plan tangent à chaque
point x de ilf, on définit un champ continu de vecteurs sur M
avec un nombre fini de points où les vecteurs sont nuls. On

vérifie alors que Kl (£, T*(M)) est égal à la somme des indices
des singularités de ce champ de vecteurs. Cette somme est, comme
il est bien connu, égale à la caractéristique d'Euler-Poincaré
X(M) de M. La formule ci-dessus peut donc être écrite

l'a (20)
M

C'est la formule de Gauss-Bonnet.
La forme sous l'intégrale dans (20) peut être écrite

f2 » K(x)(ù1 A ••• A K (x) dV (21)



G É 0 M É T RIE D E S S 0 U S - VA RIÉTÉ S 35

où dV est l'élément de volume de AI et K(x) est un invariant

scalaire qui ne dépend que de la métrique riemannienne de Al.

Cet invariant n'est autre que la courbure de Lipschitz-

Killing [11], [13] et possède une interprétation géométrique

simple. Pour cela rappelons qu'une hypersurface a une courbure

scalaire, c'est la courbure de Gauss-Kronecker qui est le quotient

du déterminant de la seconde forme fondamentale par le

déterminant de la première forme fondamentale. Comme la seconde

forme fondamentale dépend du choix du vecteur normal, la

courbure de Gauss-Kronecker est un invariant de 1 ii \ p ersurface

si n est pair et est déterminée au signe près si n est impair.
Dans tous les cas elle est bien déterminée si l'on fixe un vecteur

normal. Maintenant soient AI une sous-variété générale dans

EU rX et e — un vecteur unitaire normal au point x de AI.

Soient J/(c) la projection orthogonale de .1/ dans 1 espace

linéaire à n -j- 1 dimensions déterminé par e et le plan tangent
à AI en a, et G (v, e) la courbure de Gauss-Kronecker de AI (ej

au point x. Désignons par dox-\ l'élément de volume de 1 hyper-

sphère unitaire dans P espace normal à Al en x. Son volume total
est une constante donnée par

Cela étant, on démontre que l'intégrale

-T-^ / GU> Ada123)- cn X 1
«

étendue à Phypersphère unitaire dans l'espace normal nst nulle
si n est impair et égale à K (x) si n est pair. C'est ainsi que
l'invariant K (x) a été introduit par Lipschitz et Killing.

5, — Les développements ci-dessus se rapportent à l'étude
de l'application tangentielle. Nous allons terminer ces discussions

par des remarques sur une application analogue, l'application
normale i\: AI G (Ah n). Elle est définie par la condition que,
pour .r e .1/, N (x) est l'espace linéaire à iV dimensions passant
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par 0 et parallèle à l'espace normal à M en x. Cela conduit,
d'une manière tout à fait analogue à l'application tangentielle,
aux classes caractéristiques de Stiefel-Whitney et de Pontrjagin,
dites normales. Nous désignons les polynômes correspondants par

N
W (l) y^WH1 t W° 1

> (24)

i=o

P(t) 2 (— P° 1 (25)
0 <ft< 4IV

Posons

Qrg ~ tarife A ' (2©

h, l

et puis

"?T S S (rl : ••• ' s A A So.4
(2 7T)2fe (2 k)

-ft 1 ^ ri8i r2fc

(27)

Alors la forme différentielle 04& est fermée et détermine ]a classe

normale de Pontrjagin P4fe. Il est sous-entendu que la forme 04fe

dépend de la position de M dans En+N, et non seulement de sa

métrique riemannienne, contrairement au cas des classes de

Pontrjagin tangentielles.
Il y a des relations entre les classes caractéristiques tangentielles

et normales qu'on peut déduire commodément par l'étude
de l'homéomorphisme involutif a: G(n, A) —> G (A, n), défini
en prenant pour chaque espace linéaire à n dimensions passant
par 0 son espace linéaire perpendiculaire. Les homomorphismes
induits par g sur les groupes d'homologie et de cohomologie
ont été déterminés par Wu Wen-Tsun, au moins dans les

dimensions qui nous intéressent [22]. Les relations entre les

classes caractéristiques, qui en résultent, peuvent être écrites

sous la forme suivante:
W (t) W(t) 1 (28)

P[t)P[t) =1, (29)

où les polynômes seront multipliés formellement, la multiplication
des coefficients étant celle de l'anneau de cohomologie.

D'après Whitney, on appelle (28), (29) les théorèmes de dualité.
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Pour justifier l'étude des classes caractéristiques, il serait

important de démontrer qu'elles ne sont pas triviales. On doit a

M. Wu Wen-Tsun plusieurs exemples où des classes caractéristiques

ne s'annulent pas [22]. D'autre part, on a des théorèmes

sur la trivialité de certaines classes caractéristiques. En particulier,

d'après MM. Seifert, Whitney et Thom, la classe H'A est

toujours nulle [16], [18], [21J. De plus, si M est orientable, la
classe I DE qui peut être définie avec les coellicients entiers,
est nulle. Cela signifie géométriquement qu'il est possible de

définir sur une variété orientable un champ continu de vecteurs

normaux non nuls.

II

5. — J'ai beaucoup insisté sur les propriétés topologiques de

l'application tangentielle. Il y a des questions plus géométriques
qui seraient aussi intéressantes. L'une des plus naturelles est la
condition sur l'application T : M —> G- (/g N) pour qu'elle soit
une application tangentielle.

On peut donner immédiatement une condition nécessaire.
Soit en eilet h un vecteur unitaire fixe. Le produit scalaire

j (xJ — bx1 x e i/, dé huit une fonction continue sur M. M étant
compacte, cette fonction possède un maximum et un minimum,
où on a bdx — 0. Cela veut dire que les éléments T (x) correspondants

sont situés dans I'hyperplan passant par 0 et perpendiculaire

à b. Par conséquent, pour chaque b il y a au moins deux
points de M dont les images par T sont dans l'hyperplaii
perpendiculaire à b. Pour n t cette condition est suffisante pour
que l'application 77 soit l'application tangentielle d'une courbe
close. J'ignore si ce résultat s'étend pour n quelconque.

Néanmoins on déduit de cette condition des conséquences
intéressantes. Pour simplifier supposons que M soit orientée,
de sorte que l'application à considérer soit T : 1/—» L(v, N).
Evaluons le volume de l'ensemble des points de fhypersphère
de rayon unité de IG1

:

Y, chaque point étant compté un nombre
de fois égal au nombre des T (x) contenu dans son hyperplan
perpendiculaire. Par la méthode de la géométrie intégrale ce



38 S. S. CHERN

volume peut être exprimé par une formule du type de Crofton.
Avec les notations du paragraphe 4, on pose

£*(*) 9/n f \G(x,v)\dcN_{>Q (30)
zcnrN-iJ —

où la fonction sous l'intégrale est la valeur absolue de G(x, v).
Alors on trouve que le volume considéré est égal à

Parce que chaque hyperplan contient au moins deux f (x), x G M,
ce volume est > 2cn+IV_ll et on a l'inégalité

jK*(x)dV^cn,(31)
M

où l'on fait la convention que c1 2. Pour une courbe fermée
dans l'espace euclidien ordinaire l'intégrale du premier membre
de (31) est égale à l'intégrale de la valeur absolue de la courbure
de M1 divisée par 7r, et la formule (31) se réduit au théorème bien

connu de M. Fenchel. Il est clair que l'invariant K* (x) dépend
de la position de M dans En+N, et on a K*(x) > K(x), pour
tout x e M.

Dans le cas d'une courbe de l'espace ordinaire ces considérations

conduisent au théorème intéressant de MM. Fary et

Milnor [9], [12]. Ce théorème se rapporte à une courbe
satisfaisant à l'inégalité

J X* (x) dV < 2 cn (32)

M

Sous l'hypothèse (32) on voit qu'il y a un vecteur unitaire b

de sorte que la fonction / (x) bx, x z M, n'a qu'un maximum
et un minimum. On voit facilement qu'alors la courbe M est

isotope à un cercle et n'est pas un nœud.
Ce résultat peut être étendu au cas général, de la manière

suivante1: Supposons que la condition (32) soit satisfaite. Alors
la variété M a ses nombres de Betti modulo 2 nuls pour les dimen-

1 Pour les détails analytiques voir l'appendice à la fin de cet article.
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sions 1, 2, n — 1. Cela tient au fait que la fonction / (x) a» bx,

.r s M\ pour un certain n'a qu'un maximum et un minimum
et ne se réduit pas à une constante. Alors ses nombres de type
k\ î < k < n -— 1, au sens de M. Morse sont tous nuls. L'énoncé
est amsi une conséquence immédiate des inégalités de M. Morse,
qui affirment que le nombre de type k d'une fonction continue
sur M est au moins égal au nombre de Betti modulo deux pour
la dimension k. Cette généralisation est aussi connue à M. Milnor.

Il est peut-être justifié d'appeler courbure totale l'intégrale
du premier membre de (31), contrairement à l'usage qui remonte
à Gauss. Les résultats ci-dessus montrent que c'est une notion
féconde de laquelle on peut faire des applications simples.

7. — La question des implications globales de la métrique
riemannienne d'une surface dans l'espace ordinaire a été beaucoup

étudiée; deux des problèmes les plus importants sont ceux
de réalisation et de rigidité. Quand n > 3, la métrique riemannienne

a des conséquences très fortes, même localement. Si M
est de plus compacte, elle contient un point x0 à une distance
maximum d'un point fixe 0 de En • v. L'étude de la géométrie
locale en ce point conduit aux résultats dont je vais parler [6].

Appelons d'abord une direction tangentielle direction asymp-
totique si elle annule toutes les formes XVS :

Ts= V Asi]- üij 0 (33)
ci

M est facile de voir qu'au point x0 il n'y a pas de directions
asymptotiques réelles. M. T. Otsuki a démontré le lemme
suivant 1

: Si le second membre de (17) est yt 0 pour tous
les éléments plans déterminés par le système d'équations (33)
a des solutions réelles non-triviales w,-, si < — 1. Ce lemme
a été conjecturé par M. Kuiper et moi et démontré dans des
cas simples. 11 a comme conséquence le théorème géométrique
suivant: Si 1 espace tangent à chaque point de M contient un
espace linéaire à q dimensions tel que la courbure riemannienne
soil < 0 pour tous ses éléments plans, alors N > q. Il est clair
que ce théorème n'est pas vrai localement.

1 11 s I. t ne ;iulri! (Iriiionsl radon a à là donnée liai' M. T. Smixiim à l.eiden, Hollande.
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Une autre question de ce genre concerne l'entier \l{x) tel que
n — ii(x) soit le nombre minimum de formes de Pfafï linéairement

indépendantes au moyen desquelles les formes Q^ dans (14)

peuvent être exprimées. Soit n — v (x) le nombre minimum de

formes de Pfafî linéairement indépendantes au moyen desquelles
les formes différentielles ordinaires Ts peuvent être exprimées.
M. Kuiper et moi avons démontré les inégalités

On en déduit la conséquence géométrique suivante : Si

(jl0 inf (x(#), alors N > p.0. En particulier, si la métrique

riemannienne induite de M est euclidienne, on a fji0 n et,

par suite, N > n. Ce résultat est dû à M. Tompkins; il généralise
le fait bien connu qu'une surface développable dans l'espace
ordinaire n'est pas close.

8. — A côté des invariants arithmétiques introduits ci-dessus,

on en a d'autres qui jouent un rôle important dans la géométrie
de M dans EnfiV. Nous avons vu, dans la formule (13), qu'il y a

une forme différentielle quadratique ordinaire (la seconde forme
fondamentale) associée à chaque vecteur unitaire normal. Les

vecteurs normaux, dont la seconde forme fondamentale est nulle,
appartiennent à un sous-espace linéaire de l'espace normal.
Son espace perpendiculaire dans l'espace normal de M est

appelé le premier espace normal. Sa dimension p(x) est égale

au nombre des formes linéairement indépendantes parmi les

Ts, d'où p(x) < n(n + l)/2,
Un autre invariant arithmétique de M peut être introduit

comme il suit. Choisissons les vecteurs es dans l'espace normal
tels que en+i, • en+p soient dans le premier espace normal.
Alors xFn.: i, xFn : p sont linéairement indépendantes et

xFn+p+1, en sonb des combinaisons linéaires. On

considère les lignes de formes de Pfafî:

V (x) < [JL (x) < N + V (x) (34)

n + i ' * * * ' °*i} n+p ' 1 < i < n (35)

Le plus grand entier t (x), tel qu'il existe t (x) lignes dont les

px (x) formes sont linéairement indépendantes s'appelle le type
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de M au point x. On a évidemment t(x) < \jijp (#)], le dernier

nombre étant le plus grand entier < n/p {x).

Cela étant, on a le théorème local suivant, qui est dû à

M. Allendoerfer [1], [4]: Deux variétés isométriques, dont les

premiers espaces normaux sont de même dimension, ne diffèrent

que par un mouvement (propre ou impropre), si l'une d entre

elles est de type > 3.

Ce théorème peut être considéré comme un théorème de

rigidité locale. Bien entendu, la condition sur le type est très

forte.

III

9. — Pour mieux comprendre la géométrie des sous-variétés,

il serait utile d'étudier avec plus de détails le cas d'une surface

dans E*(n N 2). Nous faisons une autre hypothèse

simplificatrice en supposant que M est orientée. Alors l'application

tangentielle est T : M—> G(2,2). Dans ce cas on peut donner

de cette dernière variété une description simple. En effet, soient

paß, 1 < a, ß < 4, les coordonnées plückeriennes dans G (2, 2).

Ce sont les coordonnées homogènes assujetties aux conditions

Pa$ + PÇta. 0 ' PizPzi + Pis P&2 + PuPïs 0 (36)

Nous les normalisons par la condition

S riß ^ 2 • (37)

«,ß

Alors les coordonnées paß satisfaisant aux conditions (36), (37)

peuvent être considérées des coordonnées dans G{2, 2), de sorte

que les deux plans orientés qui donnent le même plan non
orienté aient des coordonnées différant par le signe. Introduisons
des coordonnées nouvelles dans G (2, 2) en posant

«1 Pl2 + Psi ^2 P23 + Pu ^3 Psi + P24
(38)

Vi — p 12 p34 2/2 — P23 P14 i Vs — Psi P24 •

Avec ces coordonnées 1 < X < 3, les conditions (36) et
(37) sont équivalentes aux conditions

2 - 2
-

2 ^ i ^ i ^ a /f)A\
X1 + x^ + xa yi+ y^ + y3 1 (39)
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Ceci démontre que la variété G(2, 2) est homéomorphe au produit

cartésien de deux sphères Sx et Sy ordinaires. Comme G (2, 2)

peut être identifiée avec la variété des droites orientées de

l'espace elliptique à trois dimensions, ce fait est à la base d'une
représentation de Fubini et Study.

Fixons une orientation de Sx et Sy et désignons par Ff, Sx, Sy
les cycles fondamentaux de ces variétés. Les invariants homo-

logiques qu'on peut déduire de l'homomorphisme T* sont les

entiers dx^ dy définis par la condition / ^iltj ^ dx Sx I dy Sy,
où désigne l'homomorphisme induit par T. On peut démontrer

que [7], si les orientations de Sx et Sy sont convenablement
choisies, on a dx dy et que la valeur commune est la moitié
de la caractéristique d'Euler de M. La démonstration s'appuie
sur l'étude de l'homéomorphisme a introduit dans le n° 5,

qui est dans notre cas un homéomorphisme de G (2, 2) en
elle-même. Son homomorphisme induit sur les cycles a l'effet de

fixer un des cycles Sx et Sy et changer le signe de l'autre. Ce

fait et le résultat IF2 — 0 (à coefficients entiers) conduisent
facilement à l'égalité dx dy.

Pour exprimer les relations de ces résultats avec les

invariants différentiels de M dans £4, il faut déterminer dans G(2, 2)
des formes différentielles extérieures fermées Ol7 d>2 duales aux
cycles Sx et Sy, c'est-à-dire telles que

/ ^ i < «, ß < 2 .V, - .Çx, ,Ç, A'„ (40)

ou Sa est le symbole de Kronecker. Ces formes Ol7 02 ne sont pas
univoquement déterminées. Cependant on peut démontrer que
les choix

*^108 ^^Wi4 ^w24 0)43 ^Wi4 w2s ^Wa4} '

(41)

^2 { wi3 A <^23 F W14 A W24 + W13 A W14 ~f W23 A W24 } 5
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satisfont aux conditions (40). On en déduit les formules intégrales
suivantes

Ces formules ont été données pour la première fois par
M. Blascuke [3j.

L'étude de la variété G(2, 2) conduit aussi à un résultat, dû à

AL Wu Wev-Tsün, qui a une conséquence géométrique intéressante.

C'est le problème de considérer une courbe paramétrique
fermée simple dans G(2, 2) et de voir si elle est la projection
d'une telle courbe dans G(2, 2). Une telle courbe dans G (2, 2)

peut être donnée par (x (t), y (£)), 0 < i < 1, où x(t)eSx,
y(t) e $y, et x(0) ± x{i), y(0) ± y (1), en désignant par
— x{î), — y (1) respectivement les points antipodes de x (1),

y (1) dans Sx, Sy. AL Wu Wek-Tsux a démontré que si, pour
deux valeurs différentes quelconques L, l" de G (G, t") yS (0, 1),
les plans correspondants dans G (2, 2) n'ont que le point 0
en commun, alors la courbe est la projection d'une courbe fermée

simple dans G (2, 2). Interprété dans la géométrie elliptique
réglée, cela veut dire qu'une surface réglée dans un espace
elliptique à trois dimensions est toujours orientable. Elle est donc

homéornorplie à un tore L

10. — Je termine cette conférence par quelques questions
naturelles :

A) Trouvez des invariants des sous-variétés relatifs à l'homo-
Lopie régulière définie dans le n° 1. En particulier, y a-t-il des

paires de sous-variétés homéomorphes à deux dimensions dans
un espace euclidien à quatre dimensions qui ne sont pas
régulièrement homotopes

B) Y a-t-il d'autres conditions nécessaires que les conditions

déjà connues pour que l'application T: M —> G (/?, N) soit
une application tangentielle

G) Dans l'espace euclidien à quatre dimensions y a-t-il une
surface compacte à courbure gaussienne toujours négative

321 A4gg A 322 A 421 cl \ — 0

M

| .M. II. Hopf m'a. l'ait remarquer que ce théorème, est, un corollaire d'un théorème
plus général, à savoir qu'il n'est pas possible de plonger topoloqiquenient la bouteille
de Klein dans l'espace projectit réel à trofi dimensions.
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Appendice.

Nous nous proposons de donner ici les formules concernant
les courbures K (x) et A* (x) et une démonstration du théorème
suivant, énoncé dans le n° 6: L'inégalité (32) entraîne que la
variété compacte M a ses nombres de Betti modulo 2 tous
nuls pour les dimensions 1, 2, n — 1.

Nous utilisons les notations du texte. Désignons par
v 2eses un vecteur unitaire normal. Alors la forme (13) est

s

la seconde forme fondamentale de la projection orthogonale M(v)
de M dans l'espace linéaire à n -|- 1 dimensions déterminé par v

et par le plan tangent k M en x. Par définition, la courbure
G(x, v) de Gauss-Kronecker de M(v) est égale au déterminant:

G(x, v)| 2 çsAsij| • <43)

S

Pour calculer l'intégrale dans (23) il faut développer ce
déterminant. Le développement sera un polynome homogène de

degré n en es, dont un terme général est de la forme

+ v (.' U \ • 4- A • A • •111
% Sn S1l1J1 Snlnjn ^ ti tk 8tnh Sn1n1n 1

où les indices tu sont tous distincts. Pour qu'un terme
donne une valeur non nulle dans l'intégrale (23) il faut que les

exposants Ax, soient tous pairs. On est conduit ainsi à la
démonstration du résultat que l'intégrale (23) est nulle si n
est impair et égale à K (x) si n est pair.

Pour exprimer l'élément de volume sur l'hypersphère de

rayon unité autour de l'origine 0, avec le point courant e, on
prend un repère an+iv, dont le dernier vecteur an+jv est

identique à v. Alors l'élément de volume est donné par
l'expression

II M") II M«Wiv) -

l<t<n + N-i l<t<n + N-l

où le produit est au sens du produit extérieur. Il est sous-entendu

que ce produit est indépendant du choix des n + N — 1 pre-
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miers vecteurs. Dans le cas présent où v est un vecteur normal

en xi Mnous choisissons cq e» et posons

ar ~2iUrs'
S

de sorte que Un+N>s vs. On trouve alors

dan+N dv2 dVs'®s + S Pgde« '
s s

d'où on déduit

dv ' ai — 2 çs 00si 2 çs ^sij °*j '

s s. j

dç ' ar 2 + 2 Mri "st *

s s, t

Il s'en suit que

n k
1 <t<n+N-l

2 VsAsij I ""V-loôo
I d cr at i d V

Il s'agit d'intégrer la valeur absolue de cette expression pour tous
les vecteurs normaux unitaires en tous les points x e M. Notre
discussion dans le n° 6 implique que cette intégrale est
> 2cn+jv-i- Utilisant l'expression (30) pour la courbure totale
K* (x), on obtient l'inégalité (31).

Maintenant supposons que l'inégalité (32) soit valable. Cela

implique que les directions auxquelles la fonction coordonnée
n'a qu'un maximum et un minimum ont une mesure positive.
Il s'ensuit qu'il y a une fonction coordonnée non constante qui
n'a qu'un maximum et un minimum. Des inégalités de Morse
résulte alors l'énoncé au début de cet appendice.
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