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LA GEOMETRIE DES SOUS-VARIETES D'UN
ESPACE EUCLIDIEN A PLUSIEURS DIMENSIONS!?

PAR

Shiing-Shen CuHERN (Chicago).

La géomeétrie des sous-variétés d’un espace euclidien de
dimension quelconque contient naturellement comme cas parti-
culiers I’étude des courbes et des surfaces de I’espace euclidien
ordinaire. Cependant, malgré 'histoire trés ancienne du sujet,
nos renseignements dans le cas général sont assez maigres. Dans
cette conférence je me propose de parler de quelques progres
qul ont été accomplis récemment.

1. — Soient En*-¥ I'espace euchidien a n 4 NV dimensions
et M une variété différentiable a n dimensions régulierement
plongée dans En~. Cela signifie que tout point de M a un
voisinage dans lequel la variété peut étre définie en exprimant NV
coordonnées de E"* comme des fonctions des n autres coor-
données ayant des dérivées partielles continues d’un ordre assez

t Conférence faite & la seéance de la Société mathématique suisse, tenue & Berne
le 7 juin 1953.
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élevé. Pour simplifier nous supposerons que M est compacte,
bien que beaucoup de nos discussions soient valables sans cette
hypotheése. Dans une formulation générale nous nous intéressons
a des relations entre les courbures de la métrique riemannienne
induite de A/, les courbures relatives de M dans E"*N et les
propriétés topologiques de A/ elle-méme et de sa position dans
Fon- N

La premiére idée féconde, remontant au moins a Gauss,
consiste & étudier une application qui généralise 'application
normale d’une surface dans Uespace euclidien ordinaire. Soit en
effet G (n, N) (resp. Z?(n, N)) la variété grassmannienne des
variétés linéaires (resp. variétés linéaires orientées) a n dimen-
sions passant par un point fixe O de En-V. Cette variété est de
dimension n/V. Pourn = 1 ou /N = 1, G(n, N) est homéomorphe
a l'espace projectif réel et (j(n, N) a la sphere. Pour chaque
point x € M, on mene par"fl’espace linéaire 7' (r) & n dimensions
parallele au plan tangent a 4 en x. Cette construction conduit
a 'application tangentielle 7: M — G(n, N). D’une maniére
analogue on définit I'application tangentielle T: M — G (n, V),
st M est orientée. Ces applications jouent un role fondamental
dans I'étude de la géométrie de M dans En+-,

Tout d’abord I"application 7" induit des homomorphismes sur
les groupes d’homologie. Plus précisément, soit J un groupe de
coeflicients et, X étant un espace topologique, désignons par
(X, J) (resp. H"(X, J)) le groupe d’homologie (resp. de
cohomologie) de dimension r de X avec le groupe de coefficients J.
Lrapplication 7" induit les homomorphismes suivants:

Pyt I (M, J) = H (G (n, N), J)

D) 2

; ’ 1)
T (G(n, A«’)7J) s (JW, J) ( ‘

De plus, si J est un anncau, la somme directe des groupes de
cohomologic de différentes dimensions peut dtre munie d’une
structure d’anncau et I'homomorphisme 7% est un homomor-
phisme d’anncaux. Des considérations analogues sont valables
pour application 7.

De quelle manicre ces homomorphismes dépendent-ils de la
varicte 3 ? Pour étudier cette question disons que deux varié-
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tés M, et M, sont régulierement homotopes s’il existe une
famille M, (0 < ¢ < 1) de variétés plongées, dépendant conti-
nuement de ¢ et du point x € M, qui contient les variétés données
pourt = O et ¢ = 1. Il est clair que pour deux variétés réguliére-
ment homotopes les homomorphismes (1) sont les mémes.
D’autre part, M. WaiTNEY a démontré que si N >n + 1,
deux variétés de dimension n dans E**N sont toujours régu-
lierement homotopes . Dans ce cas les homomorphismes (1)
dépendent de M comme variété différentiable abstraite et ne
dépendent pas de sa position dans FE"*N. En particulier,
T* g’appellera 'homomorphisme caractéristique de M et un
élément de I'image de 7'* une classe caractéristique.

Il y a d’autres cas ou les homomorphismes (1) ne dépendent
que de M. Par exemple, si M est une hypersurface orientée
(N = 1), la variété é(n, 1) est homéomorphe a une sphére de
dimension n et les homomorphismes (1) sont essentiellement
déterminés par le degré de 'application T. Si, de plus, n est pair,
on peut démontrer que ce degré est égal a y (M)/2, ou y (M)
est la caractéristique d’Euler-Poincaré de M.

Dans le cas général il sera utile d’imposer des conditions
moins restrictives sur M, en admettant les cas o M peut se
rencontrer elle-méme de telle sorte qu’en chaque point ou M
se coupe elle-méme 1l n’y a que deux branches de M et que les
plans tangents a celles-ci soient transversaux I'un a 1'autre.
Ce sont les variétés immergées au sens de M. WuitNeY. L’appli-
cation tangentielle et la notion d’homotopie réguliére s’étendent
a ces variétés. Il est encore vrai que les homomorphismes (1)
sont les mémes pour deux variétés immergées réguliérement
homotopes.

On en sait plus dans le cas n = N = 1, ¢’est-a-dire le cas des
courbes fermées du plan avec un nombre fini de points doubles.
M. WHITNEY a démontré [19] qu’il est possible d’orienter une
telle courbe et de donner un signe a chaque point double tel que,
si vt (resp. v—) désigne le nombre de points doubles positifs

1 Ce théoréme a été déemontré dans [0] pour N > n + 2; mais la méthode de
démonstration et le théoréme que M peut Ctre plongée topologiquement dans 2
entrainent qu’il est encore vrai pour N > n -+ 1.

Les nombres entre crochets [] se référent a la Bibliographie a la fin de cet article.




GEOMETRIE DES SOUS-VARIETES 29

(resp. négatifs), le degré de I'application tangenticlle T est égal
a1 -+ v — v—. Ce théorétme contient comme cas particulier le
théoreme bien connu (« Umlaufssatz») qui aflirme que le degré
de T est égal & 1 pour une courbe fermée simple, convenablement
orientée. De plus, M. WaiTNEY a aussi démontré que, si les
degrés des applications tangentielles de deux courbes fermées
de ce genre sont les mémes, les courbes sont régulierement
homotopes. En d’autres termes, les classes des courbes fermées
régulierement homotopes sont en correspondance biunivoque
avec les entiers. J'ignore si un théoreme analogue est valable
pour le cas n = N > 1.

2. — Pour faire une étude plus approfondie des homomor-
phismes (1), le probléeme préliminaire est la connaissance des
groupes d’homologie et de cohomologie des variétés G (n, N)
et G(n, N). Ce probléeme a été traité par M. EnresMmaxx [5],
[8], [14], en utihsant les décompositions de ces variétés par les
variétés de Schubert. Nous nous intéressons surtout aux cas
ou J est soit le corps Z, des entiers modulo deux soit le corps R
des nombres réels. Faisons aussi 'hypotheése n + 1 < N. Alors
les ¢éléments de dimension < n de l'anneau de cohomologie
(G (n, N),Z,) sont engendrés (au sens de la structure d’anneau)
par des classes de cohomologie i de dimension 1, 1 <1 < n.
Les classes caractéristiques Wi = T*wi dans M sont Eppaées
tes classes de Stiefel-Whitney. Dans les applications il sera
commode d’introduire, avec I'indéterminée 7, le polynome de
Stiefel-Whitney:

o

n
W) = D IWHE, o = 1, (

i=0
Avec Panneau de coeflicients R les éléments de dimen-
sion < n de l'anneau de cohomologie de G (n, V) sont engendrés
par des classes p'* de dimension 4%, 4 < 4k < n. Leurs images
par 7%, les classes de cohomologie Pt = T* pit dans M, sont
appelées les classes de Pontrjagin. De méme, nous introduisons

le polynome de Pontrjagin:

P() = _\j (— 1E ikl po
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Bien entendu, les classes de Stiefel-Whitney et de Pontrjagin
sont des invariants de M comme une variété différentiable
abstraite. La description de ’anneau de cohomologie de G (n, V)
dans le cas n > IV est beaucoup plus compliquée.

D’aprés les théoremes célébres de M. pE Ruawm, il correspond,
a chaque classe de cohomologie de dimension r a coefficients
réels, une forme différentielle extérieure fermée de degré r,
définie modulo les dérivées des formes de degré r — 1. Pour
notre variété G(n, INV), qui est transformée transitivement par le
groupe de transformations orthogonales autour du point O, il
suffit de nous limiter aux formes qui sont invariantes par rap-
port a ce groupe. Nous nous proposons de donner explicitement
une telle forme correspondant a la classe p*~.

Pour cela, considérons la famille de tous les repéres rectan-
gulaires qui consistent en n -+ IV vecteurs unitaires ey, ..., €, n,
deux & deux perpendiculaires. Supposons que l’élément de
G(n, N) est déterminé par les n premiers vecteurs ey, ..., en.
Pour éviter des répétitions, faisons les conventions suivantes
sur nos indices:

1=47,ki=n, n+1=rst=n-+4+ N. (4)
Cela étant, définissons les formes de Pfaff
(J),is == dG,L o eS s (5)

ou les produits sont des produits scalaires. Comme I’espace
linéaire & n dimensions déterminé par les e; reste fixe quand on
fait sur les vecteurs e; et e, des transformations orthogonales
indépendantes, les formes extérieures (ou ordinaires) engendrées
par les w;; peuvent étre considérées comme des formes dans
G(n, N) s1 elles sont invariantes par ces transformations. Un
exemple simple est fourni par la forme différentielle quadratique
ordinaire
Q = 20‘)?3 : (6)
1,8

Elle définit une métrique riemannienne dans G (n, N). Pour
construire des formes différentielles extérieures dans G(n, V),
posons d’abord

~a
~—

Qi = — Dl o A o, (
S
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et puis

1 o . : : Q
Oy = =584 -. G5 J1 oo Ty Qfl i A .o AQ (8)

; Toin Jon 0
(2 7)™ m! m Im

ou le symbole 8(; ... im; J1 .- Jm) N'est pas nul si et seulement
8i Jq, --v, [ cONstituent une permutation de iy, ..., iy, auquel cas
il est égal & - 1 ou — 1 suivant que la permutation est paire
ou impaire. De plus, la sommation dans (8) est étendue a tous
les iy, ..., im de 1 & n. Il est facile de voir que les formes 0y, restent
invariantes, si I'on applique des transformations orthogonales
indépendantes aux vecteurs e; et e,.. Elles sont donc des formes
différentielles extérieures de degré 2m dans G (n, V). Comme £
est antisymétrique dans les indices 7, 7, on déduit immeédiatement
de la définition (8) que 0., = 0, si m est impair.

Le théoreme fondamental dans cet ordre d’idées est le fait
que la forme 04, 4 < 4k < n, est fermée et que la classe de
cohomologie qu’elle détermine est précisément p** [5], p. 82.

5. — I faut appliquer ces considérations a la géométrie de
la varieté M dans £ Y. Pour cela on emploie la méthode du
repére mobile. On entend par repere dans En+N la figure formée
d’un point x et de n -+ V vecteurs unitaires ey, ..., €, . n, deux a
deux perpendiculaires, d’origine x. Nous nous limitons a la
famille de tous les repeéres ou z est un point de M et ¢y, ..., e,
sont des vecteurs tangents & M en z. Alors les vecteurs e, sont
normaux & M en z. On a e . de = 0, et on posera »; = ¢;dx, ol
les produits sont des produits scalaires. La variété ayant un plan
tangent en chaque point, les formes de Pfafl w; sont toujours
linéairement indépendantes. On obtient I'application tangen-
ticlle 7" en menant par O Pespace linéaire a n dimensions déter-
miné par les vecteurs e;.

Développons en détail les formules fondamentales de la
geometrie locale de M. On peut écrire, pour la famille de repéres
considérée,

B
([L = “LO)L (’i 5
i
19)
L ) 1 .
My = :_\_J Vapfpr Oap T Opy =0, 1A, B=<a-4 N

L linseignement mathém.. . 40, 1951-1954. 3
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On en déduit
0 = d(dz) = zde A o; Ewis/\"’i'
1

Les formes «; étant linéairement indépendantes, cela entraine
\
W = ZAsijmj ’ (10)
j

ou
Ay = Ay . (11)

Avec ces quantités, on construit les formes différentielles qua-
dratiques ordinaires

. N '
P ZAsij 0; 0; , (12)

qui généralisent la seconde forme fondamentale d’une surface.
Si ¢ = Xy - es est un vecteur unitaire normal, on a en effet

— dydx = Zos‘}”s i (13)
S

On obtient les courbures riemaniennes de la métrique rieman-
nienne induite de M par la considération des formes

Ol Rt
Qij = ‘>_1°)is N Wig = \ 2146 As;l op N\ o
s k l,s
(1%)
1
- T 9 E (ASikAsjl - AsiIAsjk) o N\ o .
R,l,s
Les expressions
-
Ry = Y (Agin Agjy — Agiy Agjn) (15)

8

sont essentiellement les composantes du tenseur de Riemann-
Christoffel. Plus précisément, si = est un élément plan passant
par x déterminé par les vecteurs linéairement indépendants
suivants:

E:E i€ s 71:27%61" (16)

i
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la courbure riemannienne en w est donnée par la formule

N , cor
] (Asih Asﬂ, ” “18L1 4<ﬂh) iy =k My
R, 7) = 2 ‘“‘“”;’\1 . (17)
— By le — 39 1) iy Sk T
L.3.h,1

D’apres la définition des classes de Pontrjagin et le théoreme
& la fin du dernier paragraphe, il s'ensuit que les formes Gy
obtenues a partir de 6,; en substituant aux ;; les expressions (14)
sont des formes différentielles fermées dans I/ et que Oy
détermine la classe P de Pontrjagin au sens du théoréeme
de M. de Rham. Cette pronosmon est aue essentiellement a
M. Poxrtnyaciy [15], qui n’a du reste pas donné la correspon-
dance exacte. On a ici une relation entre les propriétés de
courbure de 1/ et les invariants de sa structure différentiable
A ma connaissance on ne sait pas si les classes de Pon‘tljaom
de 1/ sont des invariants topologiques, tandis que, d’aprés un
théoreme de M. Tron [18], les classes de Stiefel-Whitney le sont.

4. — Le résultat le plus important de ce genre est peut-étre
la formule de Gavss-Bonygt [2], [5], [10]. Eile n’est pas exacte-
ment contenue comme cas particulier dans les considérations
précédentes, mais peut-étre déduite d’une maniére analogue.
Dans ce cas nous supposons que I/ est de dimension paire
cl orientée, de sorte que I’application tangentielle soit
1t 31— @(}z, N). Soient fneN-l un hyperplan passant par
O ot @(n, N — 1) la variété grassmannienne dans FEnN-t,
G(n, N—1) est une sous-variété orientée de dimension
(N — 1) de G(n, V) et définit un cyele z. A ce cvele corres-
pond un cocyele y de dimension 7, & coefficients réels, qui est
défini par la condition que, pour tout cycle z de dimension n,
on a
v.s5 = KI(%, 3), (18)

ot le symbole A/, & droite, désigne le nombre d’intersection des
wveles entre parentheses. Comme dans le dernier paragraphe,
notre probléme est de trouver une forme différentielle extérieure
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fermée qui est invariante par le groupe des rotations autour de O
transformant G (n, N) et qui détermine la classe de cohomo-
logie de y au sens du théoréeme de M. de Rham. On trouve
qu'une telle forme est donnée par

n
) " -
Q= (—1)2 N Q. . :
( ) n e E i 2”‘112 A A an~1 n’ (19)
9N g2 <_’L_ p in
T\

oug, i est 4 1 ou—1,suivant que iy, ..., i, est une permuta-
tion paire ou impaire de 1, ..., n, et est nul si deux i sont égaux.

Quand on substitue dans (19) les expressions (14), on obtient
une forme différentielle fermée qui détermine la classe de

cohomologie de 7* v. En d’autres termes, on a

~ ~ ~

JQ = Tx M=y T () = KL, Tu())
M

ou M désigne le cycle fondamental de la variété orientée M.

I1 est possible de déterminer plus explicitement cette derniére
expression. En effet, soit ¢, le vecteur unitaire perpendiculaire
a EntN-1. Supposons que & et T (M) n’ont qu’'un nombre fini
de points communs, c¢’est-a-dire que M n’a qu’un nombre fini
de points ou les plans tangents soient perpendiculaires a g¢,.
En projetant ¢, orthogonalement sur le plan tangent a chaque
point x de M, on définit un champ continu de vecteurs sur ¥
avec un nombre fini de points ou les vecteurs sont nuls. On
vérifie alors que K/ (&, ~T* (M)) est égal & la somme des indices
des singularités de ce champ de vecteurs. Cette somme est, comme
il est bien connu, égale a la caractéristique d’Euler-Poincaré
v (M) de M. La formule ci-dessus peut donc étre écrite

Ja=ym . (20)
M

C’est la formule de Gauss-Bonnet.
La forme sous l'intégrale dans (20) peut étre écrite

Q= K(z)o, A ... No, = K(x)dV , (21)
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ott d17 est Iélément de volume de M et K (x) est un invariant
scalaive qui ne dépend que de la métrique riemannienne de M.
(et invariant nlest autre que la courbure de Lipschitz-
Killing [11], [13] et possede une interprétation géométrique
simple. Pour cela rappelons qu’une hypersurface a une courbure
scalaire, ¢est la courbure de Gauss-Ironecker qui est le quotient
du déterminant de la scconde forme fondamentale par le déter-
minant de la premiere forme fondamentale. Comme la seconde
forme fondamentale dépend dn choix du vecteur normal, la
courbure de Gauss-Kronecker est un invariant de 'hypersurface
si 1 est pair et est déterminée au signe preés si n est 1mpair.
Dans tous les cas elle est bien déterminde si I'on fixe un vecteur
normal. Maintenant soient J/ une sous-variété générale dans
[En N ot o = Sp.ee un vecteur unitaire normal aupoint v de .
S
Soient M (¢) la projection orthogonale de I/ dans Pespace
linéaire & 7 + ! dimensions déterminé par ¢ et le plan tangent
A M en w, et G(x, ¢) la courbure de Gauss-Kronecker de i (¢)
au point .r. Désignons par doy_y I'élément de volume de hyper-
sphere unitaire dans espace normal a 1/ en . Sen volume total
I

est une constante donnée par
l -
27 ,
= TS (22)
Fiz)

Cela étant, on démontre gque Pintégrale

]

—')—’C—T”‘ / G (L . \"j) ({GQ\"_l &" <
“TneN-1

Cn

| SN]
o
N

étendue a 'hyperspheére unitaire dans 'espace normal est nulle
s1 n est impair et égale & A (x) st n est pair. Clest ainsi que
Pinvariant A (x) a été introduit par Lipscuitz et KiLLiNG.

o. — Les développements ci-dessus se rapportent a I'étude
de Papplication tangentielle. Nous allons terminer ces discussions
par des remarques sur une application analogue, I'application
normale N: 1/ — G (N, n). Elle est définie par la condition que,
pour r e A7, N (x) est 'espace linéaire a [V dimensions passant
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par O et paralléle a 'espace normal a M en z. Cela conduit,
d’une maniére tout a fait analogue & I'application tangentielle,
aux classes caractéristiques de Stiefel-Whitney et de Pontrjagin,
dites normales. Nous désignons les polynomes correspondants par

N
W = > wdt o we =1, (24)
1=0
P() = Z (— 1)7;,334;;141{7 P—1. (25
O<h<4N
Posons
= 1
Qrs - 9 2 (Arih Asil — Aril Asik) STAA 0 (26)
1,k 1
et puis
—_— /1 . .
®4k — (2 W)Qk (2 ’7{) !E 8 (7’1, ses g r'zh ; 51, tee Szh) ersl /\ oo /\ Qrzk S2k .

(27)

Alors la forme différentielle O, est fermée et détermine la classe
normale de Pontrjagin P, 11 est sous-entendu que la forme @4
dépend de la position de M dans E**N et non seulement de sa
métrique riemannienne, contrairement au cas des classes de
Pontrjagin tangentielles.

Il y a des relations entre les classes caractéristiques tangen-
tielles et normales qu’on peut déduire commodément par I’étude
de I’homéomorphisme involutif ¢: G(n, N) — G (NN, n), défini
en prenant pour chaque espace linéaire a n dimensions passant
par O son espace linéaire perpendiculaire. Les homomorphismes
induits par o sur les groupes d’homologie et de cohomologie
ont été déterminés par Wu WenN-Tsun, au moins dans les
dimensions qui nous intéressent[22]. Les relations entre les
classes caractéristiques, qui en résultent, peuvent étre écrites
sous la forme suivante:

W) Wi =1, (28)
P)P(t) =1, (29)

ou les polynomes seront multipliés formellement, la multiplica-
tion des coefficients étant celle de I'anneau de cohomologie.
D’aprés WHITNEY, on appelle (28), (29) les théorémes de dualité.
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Pour justifier I'étude des classes caractéristiques, il seratl
important de démontrer qu’elles ne sont pas triviales. On doit &
M. Wu Wen-Tsux plusieurs exemples ot des classes caractéristi-
ques ne s’annulent pas [22]. D’autre part, on a des théoremes
sur la trivialité de certaines classes caractéristiques. En particu-
lier, d’apres MM. Serrert, Whrrsey et Tuow, la classe W est
toujours nulle [16], [18], [21]. De plus, si M est orientable, la
classe 1N, qui peut étre définie avec les coeflicients entiers,
est nulle. Cela signifie géométriquement qu’il est possible de
délinir sur une variété orientable un champ continu de vecteurs
normaux non nuls.

I

—

5. — J’ai beaucoup insisté sur les propriétés tovologiques de
Papplication tangentielle. 11 y a des questions plus géométriques
qui seraient aussi intéressantes. L’une des plus naturelles est la
condition sur Uapplication 7 : M — G(n, N) pour qu’elle soit
une application tangentielle.

On peut donner immédiatement une condition nécessaire.
Sott en effet b un vecteur unitaire fixe. Le produit scalaire
[(x) = bx, we M, délinit une fonction continue sur 3. I/ étant
compacte, cette fonetion posséde un maximum et un minimum,
otton a bdr = 0. Cela veut dire que les éléments 77 () correspon-
dants sont situés dans ’hyperplan passant par O ct perpendicu-
laire & 0. Par conséquent, pour chaque 4 il y a au moins deux
points de 37 dont les images par 7" sont dans hyperplan per-
pendiculaire & 0. Pour n = 1 cette condition est sullisante pour
que Papplication 7" soit application tangentielle d'une courbe
close. Jlignore st ce résultat s’étend pour n quelconque.

Néanmoins on déduit de cette condition des conséquences
imtéressantes. Pour simplifier supposons que 3 soit orientée,
de sorte que application a considérer soit 77: 3 — é(f’l, N).
livaluons le volume de Pensemble des points de I'hypersphére
de rayon unité de /"N, chaque point étant compté un nombre
de Tois égal au nombre des 7'(x) contenu dans son hyperplan
perpendiculaire. Par la méthode de la géométrie intégrale ce
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volume peut étre exprimé par une formule du type de Crofton.
Avec les notations du paragraphe 4, on pose
CT?.

K* (x) = Q—C—V—I /ﬂlG(I,V)’dCSArﬂlio 3 (30)
N+iN—1 o

ou la fonction sous I'intégrale est la valeur absolue de G(x, ¢).
Alors on trouve que le volume considéré est égal a

20/ L N
I s /K*(x)dV.
Cn
M

Parce que chaque hyperplan contient au moins deux T(x), zeM,
ce volume est > 2¢,,.n-1, et on a I'inégalité

fK* (x)dV = ¢, , (31)
M

ou 'on fait la convention que ¢; = 2. Pour une courbe fermée
dans ’espace euclidien ordinaire I'intégrale du premier membre
de (31) est égale a I'intégrale de la valeur absolue de la courbure
de M, divisée par =, et la formule (31) se réduit au théoreme bien
connu de M. FencuEL. Il est clair que 'invariant K* (x) dépend
de la position de M dans E"*N et on a K*(x) > K(x), pour
tout z € M.

Dans le cas d’une courbe de I’espace ordinaire ces considéra-
tions conduisent au théoréme intéressant de MM. Fary et
MiLnor [9], [12]. Ce théoréme se rapporte a une courbe satis-
faisant a 'inégalité

f K*(z)dV < 2¢, . (32)
M

Sous 1’hypothése (32) on voit qu’il y a un vecteur unitaire b
de sorte que la fonction f (z) = bz, x ¢ M, n’a qu’un maximum
et un minimum. On voit facilement qu’alors la courbe M est
isotope a un cercle et n’est pas un nceud.

Ce résultat peut étre étendu au cas général, de la maniére sui-
vante 1: Supposons que la condition (32) soit satisfaite. Alors
la variété M a ses nombres de Betti modulo 2 nuls pour les dimen-

1 Pour les détails analytiques voir Pappendice & la fin de cet article.
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sions 1, 2, ..., n — 1. Cela tient au fait que la fonction f (v) = bz,
we M, pour un certain b, n’a qu'un maximum et un minimum
ot ne se réduit pas & une constante. Alors ses nombres de type
ko1 <k <n—1, au sens de M. Morsk sont tous nuls. L’énoncé
st ainst une conséquence immédiate des inégalités de M. Morse,
qui affirment que le nombre de type £ d’une fonction continue
sur M oest au moins égal au nombre de Betti modulo deux pour
la dimension k. Cette généralisation est aussi connue a M. MrLNoOR.
Il est peut-étre justifié d’appeler courbure totale I'intégrale
du premier membre de (31), contrairement & 'usage qui remonte
a Gavuss. Les résultats ci-dessus montrent que c’est une notion
féconde de laquelle on peut faire des applications simples.

7. — lLa question des implications giobales de la métrique
rieinannienne d’une surface dans I'espace ordinaire a été beau-
coup étudiée; deux des problemes les plus importants sont ceux
de réalisation et de rigidité. Quand n > 3, la métrique rieman-
nienne a des conséquences trés fortes, méme localement. St M
est de plus compacte, elle contient un point x, & une distance
maximum d’un pomnt fixe O de £n+N. L’étude de la géométrie
locale en ce point conduil aux résultats dont je vais parler [6].

Appelons d’abord une direction tangentielle direction asymp-

totique si elle annule toutes les formes Wy:

o= M dgio e = 0. (33)
i,

lIest Tacile de voir qu’au point x, il n’y a pas de directions
asymptotiques réelles. M. T. Orsukr a démontré le lemme
swivant ': S1 le second membre de (17) est < 0 pour tous
les éléments plans déterminés par £, 7, le systéme d’équations (33)
a des solutions réelles non-triviales wi, 81 N <n—1. Ce lemme
a cté conjecturé par M. Kurper et moi et démontré dans des
cas simples. THa comme conséquence le théoreme géométrique
suivant: Si Pespace tangent & chaque point de M contient un
espace linéaire & ¢ dimensions tel que la courbure riemannienne
sotl = 0 pour tous ses éléments plans, alors V > q. Il est clair
que ce théoreme n'est pas vrai localement.

PHSL Uneautre démonsiration a ¢le donnee par M. T.Srrizcer & Leiden, 1Tollande.
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Une autre question de ce genre concerne I'entier w(x) tel que
n — wp(z) soit le nombre minimum de formes de Pfaff linéaire-
ment indépendantes au moyen desquelles les formes €2;; dans (14)
peuvent, étre exprimées. Soit n — v(z) le nombre minimum de
formes de Pfaff linéairement indépendantes au moyen desquelles
les formes différentielles ordinaires Vs peuvent étre exprimées.
M. Kuirer et mol avons démontré les inégalités

viz) S ule) SN 4 vz . (34)

On en déduit la conséquence géométrique suivante: Si
by == mf w(z), alors N > u,. En particulier, si la métrique

rlemanmenne induite de M est euclidienne, on a p, = n et,
par suite, V > n. Ce résultat est dit & M. Tompkins; 1l généralise
le fait bien connu qu’une surface développable dans l’espace
ordinaire n’est pas close.

8. — A coté des invariants arithmétiques introdutts ci-dessus,
on en a d’autres qui jouent un role important dans la géométrie
de M dans E*+*N, Nous avons vu, dans la formule (13), qu’il y a
une forme différentielle quadratique ordinaire (la seconde forme
fondamentale) associée a chaque vecteur unitaire normal. Les
vecteurs normaux, dont la seconde forme fondamentale est nulle,
appartiennent a un sous-espace linéaire de I’espace normal.
Son espace perpendiculaire dans I’espace normal de M est
appelé le premier espace normal. Sa dimension p(x) est égale
au nombre des formes linéairement indépendantes parmi les
Y, d’ot p(z) < n(n + 1)/2.

Un autre invariant arithmétique de M peut étre introduit
comme il suit. Choisissons les vecteurs e; dans l’espace normal
tels que ey.q, ..., en:p solent dans le premier espace normal.
Alors YW,.4, ..., Yusp sont linéairement indépendantes et
Wripity oy Yooy en sont des combinaisons linéaires. On
considére les lignes de formes de Pfaff:

I © 1<i1=n. (35)

A

L,nm+l? 2 i n+p?

Le plus grand entier 7 (x), tel qu’il existe t (x) lignes dont les
pt (z) formes sont linéairement indépendantes s’appelle le type
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de M au point z. On a évidemment 7(z) = [n/p (z)], le dernier
nombre étant le plus grand entier < n/p ().

Cela étant, on a le théoréme local suivant, qui est di a
M. ALLENDOERFER [1], [4]: Deux variétés isométriques, dont les
premiers espaces normaux sont de méme dimension, ne différent
que par un mouvement (propre ou impropre), si Pune d’entre
elles est de type > 3.

Ce théoréme peut étre considéré comme un théoréme de
rigidité locale. Bien entendu, la condition sur le type est tres
forte.

I

9. — Pour mieux comprendre la géométrie des sous-variétés,
il serait utile d’étudier avec plus de détails le cas d’une surface
dans E*(n = N = 2). Nous faisons une autre hypothése sim-
plificatrice en supposant que M est orientée. Alors I’application
tangentielle est T: M — é(2, 2). Dans ce cas on peut donner
de cette derniére variété une description simple. En effet, soient
Pup, 1 < @, B < 4, les coordonnées pliickeriennes dans G (2, 2).
Ce sont les coordonnées homogénes assujetties aux conditions

pocB + Ppy = 0, P12 Psa + P13 Pas + P1aPes = 0. (36)

Nous les normalisons par la condition

2
D\Pgg = 2 - (37)
o,

Alors les coordonnées p,p satisfaisant aux conditions (36), (37)
peuvent étre considérées des coordonnées dans G (2, 2), de sorte
que les deux plans orientés qui donnent le méme plan non
orienté aient des coordonnées différant par le signe. Introduisons
des coordonnées nouvelles dans G (2, 2) en posant
Xy = Pis + Paas T2 = Pas + P1a, Xs = Pa1 + Pas , (38)
Yr = P12 — Psa s Y2 = P2z — P1a> Yz = Par—— Paa -
Avec ces coordonnées zy, ¥, 1 < A < 3, les conditions (36) et
(37) sont équivalentes aux conditions

2 2 2 2 2 2 )
x1+x2—|—x3=y1+y2—]—y3=1. (39)
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Cect démontre que la variété é(Z, 2) est homéomorphe au pro-
duit cartésien de deux spheéres Sy et 5, ordinaires. Comme G (2, 2)
peut étre identifiée avec la variété des droites orientées de
Pespace elliptique & trois dimensions, ce fait est a la base d’une
représentation de Fubini et Study.

Fixons une orientation de Sy et S, et désignons par M, S, S,
les cycles fondamentaux de ces variétés. Les invariants homo-
logiques qu’on peut déduire de I'homomorphisme f* sont les
entiers dy, d, définis par la condition T (M) ~ dySy -+ dySy,
ou 7, désigne I’homomorphisme induit par 7. On peut démon-
trer que [7], s1 les orientations de S, et §, sont convenablement
choisies, on a d, = d; et que la valeur commune est la moitié
de la caractéristique d’Euler de M. La démonstration s’appuie
sur ’étude de I'homéomorphisme & introduit dans le no 5,
qui est dans notre cas un homéomorphisme de 6(2, 2) en
elle-méme. Son homomorphisme induit sur les cycles a 1'effet de
fixer un des cyeles Sy et S, et changer le signe de Pautre. Ce
fait et le résultat W2 = 0 (a coefficients entiers) conduisent
facilement a I’égalité d, = d,,.

Pour exprimer les relations de ces résultats avec les inva-
riants différentiels de M dans E4, il faut déterminer dans G(2,2)
des formes différentielles extérieures fermées ®,, ®, duales aux
cycles Sy et §y, c’est-a-dire telles que

A
ro

) AS‘] = Lg,\:, ng == AS‘,

Lo (50)

f(DB: 8, 1zZa, B

S

ou & est le symbole de Kronecker. Ces formes ®;, @, ne sont pas
univoquement déterminées. Cependant on peut démontrer que
les choix

1
Q, = 4_7_-5{‘913 A @3 T 01 A @pg — @13 A g — @3 A (’)24} ’

(41)

1
O, = Lt {")13 N 03 4 014 A 0gg 4 @33 N 014 + a3 A w24} ?
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satisfont aux conditions (40). On en déduit les formules intégrales
suitvantes

;);If f Kdl v (M) (42)
i o M
! (Agry Ayre — Aure Ayiy - Agoy Agoe — Agae Ayn) dV = 0.

M
Ces formules ont ¢été données pour la premiere fois par
M. Brascuxe [3].

[’étude de ia variété 6(2, 2) conduit aussi a un résultat, di a
M. Wu Wex-Tsux, qui a une conséquence géométrique intéres-
sante. Cest le probleme de considérer une courbe paramétrique
fermée simple dans G (2, 2) et de voir si elle est la projection
d'une telle courbe dans G (2, 2). Une telle courbe dans G (2, 2)
peut &tre donnée par (z(t), y (1), 0 <t <1, ou x(f) €Sy,
y()yedSy, et x(0) = + z(1), y(0) = £ y (1), en désignant par
— x {1), — y (1) respectivement les points antipodes de x (1),
y (1) dans Sy, §y. M. Wu Wex-Tsux a démontré que si, pour
deux valeurs différentes quelconques t', ¢ de ¢, (¢, t") = (0, 1),
les plans correspondants dans G (2, 2) n'ont que le pomnt O
en commun, alors la courbe est la projection d’une courbe fermée
simple dans G(2, 2). Interprété dans la géométrie elliptique
réglée, cela veut dire gqu'une surface réglée dans un espace
elliptique a trois dimensions est toujours orientable. Elle est done
homéomorphe & un tore 1.

10. — Je termine cette conférence par quelques questions
naturelles:

A) Trouvez des invariants des sous-variétés relatifs & I’homo-
topie réguliere définie dans le n® 1. En particulier, y a-t-il des
paires de sous-variétés homéomorphes a deux dimensions dans
un espace euclidien & quatre dimensions qui ne sont pas régu-
licrement homotopes ?

B) Y a-t-il d’autres conditions nécessaires que les condi-
tions déja connues pour que 'application 7': M — G (n, N) soit
une application tangentielle ?

C) Dans Uespace euclidien & quatre dimensions y a-t-il une
surface compacte a courbure gaussienne toujours négative ?

PN T Horr an’a fail remarquer que ce théoreéme est un corollaire d’un théoreme
plus geéncral, & savoir qu’il n’est pas possible de plonger topologiquement 1a bouteille
de Klein dans Pespace projectit reel 4 trois dimensions.
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APPENDICE.

Nous nous proposons de donner ici les formules concernant
les courbures K (x) et K* (x) et une démonstration du théoréme
suivant, énoncé dans le n® 6: L’inégalité (32) entraine que la
variété compacte M- a ses nombres de Betti modulo 2 tous
nuls pour les dimensions 1, 2, ..., n — 1.

Nous utilisons les notations du texte. Désignons par
v = 2¢ge; un vecteur unitaire normal. Alors la forme (13) est

S

la seconde forme fondamentale de la projection orthogonale M (¢)
de M dans I’espace linéaire & n 4 1 dimensions déterminé par ¢
et par le plan tangent & M en z. Par définition, la courbure
G (x, v) de Gauss-Kronecker de M (¢) est égale au déterminant:

Gla, o) = | Do Ag;] - (43)

Pour calculer I'intégrale dans (23) il faut développer ce déter-
minant. Le développement sera un polynome homogéne de
degré n en ¢s, dont un terme général est de la forme

ool A oA = M A :

S1 Sp "8 0y Sptnin ty tp  Sitihy Sninln ’
ou les indices i, ..., & sont tous distincts. Pour qu’un terme
donne une valeur non nulle dans I'intégrale (23) il faut que les
exposants Ay, ..., Az solent tous pairs. On est conduit ainsi a la
démonstration du résultat que l'intégrale (23) est nulle s1 n
est impair et égale a K (z) si n est pair.

Pour exprimer I’élément de volume sur I’hyperspheére de
rayon unité autour de l'origine O, avec le point courant ¢, on
prend un repére aq, ..., dn.n, dont le dernier vecteur a,.y est
identique a ¢. Alors I’élément de volume est donné par
I’expression

II (at dQ) - II (at danJrN) ’

1_::t_§n+N~1 1§t__<_n+N——1

ou le produit est au sens du produit extérieur. Il est sous-entendu
que ce produit est indépendant du choix des n 4 N — 1 pre-
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miers vecteurs. Dans le cas présent ou ¢ est un vecteur normal
en z € M nous choisissons a; = e;(z) et posons

de sorte que u,.y s = ¢s. On trouve alors
da,, y = dv = Zdos - ey + Zosdes :
S S

d’out on déduit

s s,J
do - a, = 2 do U + 2 Vg Upp Wgy
S s, 1
Il §’en suit que
H (a,dv) = =+ _S_: s Asij doy_y dV .
1=<t<n+N- s

Il s’agit d’intégrer la valeur absolue de cette expression pour tous
les vecteurs normaux unitaires en tous les points z € M. Notre
discussion dans le n® 6 implique que cette intégrale est
> 2¢pen—t . Utilisant Pexpression (30) pour la courbure totale
K*(x), on obtient I'inégalité (31).

Maintenant supposons que l'inégalité (32) soit valable. Cela
implique que les directions auxquelles la fonction coordonnée
n’a qu'un maximum et un minimum ont une mesure positive.
Il s’ensuit qu’il y a une fonction coordonnée non constante qui
n’a qu'un maximum et un minimum. Des inégalités de Morse
résulte alors 1’énoncé au début de cet appendice.
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