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22 PAUL JÄFFARD

supposée continue). Un sous-ensemble A de K sera dit borné si

pour tout ensemble ouvert V contenant 0 on peut trouver un
ouvert U contenant 0 tel que AU c V.

Un élément x de K sera dit nilpotent si xn tend vers 0 lorsque
n croit indéfiniment. Pour que la topologie de K puisse être
définie par une valuation non archimédienne, il faut et il suffît

que les deux conditions suivantes se trouvent réalisées:

1° Si A est un sous-ensemble de K auquel 0 n'est pas adhérent,

A-1 est borné.
2° Il existe un sous-groupe additif de K qui soit à la fois

borné et ouvert.

Pour que la topologie de K puisse être définie par une valuation

archimédienne ou par une valuation non archimédienne de

rang un, il faut et il suffît que la condition 1° se trouve vérifiée
ainsi que:

2° L'ensemble des éléments nilpotents est ouvert.

Les corps topologiques (non nécessairement commutatifs)
vérifiant la condition 1° ont été étudiés par Kaplansky sous le

nom de corps du type V [29]. Ils possèdent déjà certaines
propriétés des corps valués. Les résultats de Shafarevitch et
Kaplansky montrent que tout corps (commutatif ou non)
localement compact a sa topologie induite par une valuation
(non exponentielle). Braconnier [7] a établi ce résultat directement

en remarquant que dans un tel corps la multiplication
par un élément x multiplie la mesure de Haar par un facteur
constant ç (x) qui se trouve être la valuation cherchée. On

trouvera dans [30] un exposé et une bibliographie détaillée de

ces questions.
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LA GÉOMÉTRIE DES SOUS-VARIÉTÉS D'UN
ESPACE EUCLIDIEN A PLUSIEURS DIMENSIONS 1

PAR

Shiing-Shen Chern (Chicago).

La géométrie des sous-variétés d'un espace euclidien de

dimension quelconque contient naturellement comme cas
particuliers l'étude des courbes et des surfaces de l'espace euclidien
ordinaire. Cependant, malgré l'histoire très ancienne du sujet,
nos renseignements dans le cas général sont assez maigres. Dans
cette conférence je me propose de parler de quelques progrès
qui ont été accomplis récemment.

I

1. — Soient En~rX l'espace euclidien à n + N dimensions
et M une variété difîérentiable à n dimensions régulièrement
plongée dans En Cela signifie que tout point de M a un
voisinage dans lequel la variété peut être définie en exprimant N
coordonnées de En ' x comme des fonctions des n autres
coordonnées ayant des dérivées partielles continues d'un ordre assez

i Conférence faite à la séance de la Société mathématique suisse, tenue à Berne
le 7 juin 1953.
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