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LA NOTION DE VALUATION

PAR

Paul Jaffard (Paris)

K étant un corps commutatif, on appelait primitivement
valuation de K [45] une application 9 de K dans l'ensemble R

r
des nombres réels positifs telle que:

cp (;c) 0 x — 0 (1)

o (xij) o (.r) 9 (y) (2)

9 (x + y) < 9 (x) + f (y) (3)

On considère comme équivalentes (et on est amené à

identifier), deux valuations 9 et L telles que:

9 (x) > 1 4 M > 1 •

La valuation 0 est dite non arcliimédienne si la condition (3)

peut être remplacée par la condition plus forte:

9 (•» +* il) < sup (9 (x) 9 (y)) (4)

Elle est dite arcliimédienne dans le cas contraire.
Ostrowski [59] a montré que si 9 est une valuation

arcliimédienne d'un corps K, K est un sous-corps du corps C des

nombres complexes et 9 est équivalente à la valuation A de K
définie par ij;(,r) | x \ (| .r j étant la valeur absolue ordinaire
du nombre complexe x). Plus précisément, on a 9 (.r) j x |p

avec O < p < 1. La valuation ^ est dite parfois en arithmétique
valuation à V in fini.

Par la suite, lorsque nous parlerons d'une valuation d'un
corps K nous entendrons toujours, sauf avis contraire, valuation
non arcliimédienne.
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Si 9 est une valuation (non archimédienne) on peut poser:

v est alors une application de l'ensemble K*, formé par les
éléments de K différents de 0, dans l'ensemble R des nombres
réels de signe quelconque telle que:

Réciproquement la donnée d'une telle application v permet
de définir une valuation de K. On dit parfois que v est une
valuation exponentielle de K. mais la plupart des auteurs (Krull,
Schilling) appellent encore v une valuation de K et c'est cette
forme exponentielle qui s'avère la plus maniable et la plus
capable de généralisations. C'est elle que nous emploierons par
la suite.

On voit que deux valuations exponentielles v et w de K sont
équivalentes si et si seulement il existe un nombre réel À ^0
tel que v(x) Lw(x) pour tout x e K. L'ensemble e(K*) est

un sous-groupe additif T de R qui est dit groupe de valeurs de

la valuation e.

Q étant le corps de nombres rationnels et p un nombre
premier, on définit la valuation p-adique vp de la façon suivante:

Si x ç Q, on peut poser x pa^ où a et b sont deux entiers

premiers à p, a étant un entier bien déterminé (positif, négatif
ou nul). On pose alors vp(x) oc.

On montre que toute valuation (non archimédienne) de Q
est équivalente à une valuation p-adique.

Soit k un corps (commutatif) quelconque et K k(x) le

corps des fractions rationnelles à coefficients dans k. Si a e k et

/ e K*, on peut écrire f ~ (x — a)* où / et g sont deux

polynômes premiers k x — a. a est un entier bien déterminé tel
que — a définisse l'ordre d'infmitude de / au point a. Si on

pose va(j) a, on définit ainsi une valuation de K.
Enfin on obtient une nouvelle valuation de K k (x) en

posant pour tout / ~ e K*, w(f) degré de A — degré de g.

ç (x) --= — Log 9 (x)

(xy) V (x) F V {y)

v(x + y) > inf. (v(x), v (y))

(2')

(47)
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Comme — w(f) définit l'ordre d'infinitude de / à l'infini, on

appelle encore m la valuation, à Vinfini de K.

9 étant une valuation (archimédienne ou non) d'un corps K
prise sous la forme non exponentielle, on définit une distance

sur K en posant pour tout couple x, y K:

cl(x y) 9 {x — y) (5)

L'inégalité (3) exprimant alors l'inégalité du triangle, on
voit que cette distance définit sur K une structure d'espace
métrique (on dit parfois ultramé,trique si 9 est non archimédienne).

Un corps valué K peut donc être considéré comme un espace
topologique (uniforme). Deux valuations équivalentes induisent
la même topologie et réciproquement. Une telle topologie est

compatible avec la structure de corps de K L L'anneau

complété K est un corps sur lequel 011 peut prolonger par
continuité la valuation de K. On voit d'ailleurs que si. c est une
valuation non archimédienne de K (prise sous forme exponentielle),

la valuation de K est encore non archimédienne, et son

groupe de valeurs est le même que celui de K. Ceci tient au fait
que si À est un filtre de Cauchy sur K auquel 0 n'est pas adhérent,

A U c À tel que ,r, y 6 U —> v(x) 0 (y).)
Si ç est une valuation (non archimédienne) de K et F le

groupe de valeurs correspondants, on peut prendre comme
système fondamental de voisinages de 0 dans K l'ensemble
(Vs)Eer défini par

.r e V» V—. (x 0 ou \> U) > ï) • (6)

Si 9 est une valuation archimédienne de K, le complété K
est le corps R des nombres réels dans le cas où K C R, et le

corps C des nombres complexes dans le cas contraire.
Si vv est la valuation p-adique de Q, le complété Q de Q

pour cette valuation est le corps des nombres p-adiques de
Honsel.

1 fsl-a-tiirc nue les fondions / (.v. //) - .r - ?/ d y (x, ?/| r--. sont continues
par rapporl h rcnsouiblc des variables .v et. y cl la fonction h (x) ^ -L est continue
pou r .v # 0.

'
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Enfin, pour les différentes valuations du corps K — k(x)
que nous avons définies, les complétés sont des corps de séries
formelles. On obtient en particulier le corps k{(x)) des séries

formelles en x à coefficients dans k en prenant la valuation v0

(celle pour laquelle a — 0).
La notion de valuation se montre très fructueuse en géométrie

algébrique. Nous n'aborderons pas ici ce point de vue, nous
contentant de renvoyer pour cela le lecteur à une conférence de

Van Der Waerden [77], où il trouvera également une
bibliographie. Nous indiquerons seulement ici que si on considère une
fonction algébrique y d'une variable #, satisfaisant à l'équation
f(x, y) 0, où f(x, y) est un polynôme irréductible en x et y
à coefficients complexes, la surface de Riemann relative à cette
fonction est identique à l'ensemble (muni d'une topologie
convenable) des valuations du corps C (x, y) qui s'annulent
sur C. C'est grâce à cette notion de valuation (non archimé-
dienne) que l'on peut étendre la définition des surfaces de

Riemann au cas des fonctions algébriques sur un corps
quelconque (et non plus sur le corps des complexes). On trouvera
dans l'ouvrage de Chevalley [11] une systématisation de ce

point de vue algébrique inauguré par Dedekind et Weber
[13] (voir aussi [19]). Une étude plus simple en est faite
dans [52].

c étant une valuation (non archimédienne) d'un corps K,
on voit que l'ensemble (9 formé par 0 et par tous les éléments x
de K* tels que c (x) >0 est un ordre de K, c'est-à-dire un sous-
anneau de K, contenant l'élément unité 1 et tel que K soit corps
des quotients de cet anneau. C'est même un ordre maximal en
ce sens que tout ordre de K contenant strictement (9 est confondu
avec K. (9 est dit Vanneau de la valuation v. L'ensemble des

éléments x de K tels que x 0 ou v(x) > 0 forme un idéa]
maximal P de l'anneau (9 qui est dit idéal premier de la valuation.
Le corps (9/p JC est dit corps résiduel de la valuation v. (9 est

un anneau local, c'est-à-dire que P est son seul idéal maximal et

qu'il est noethérien. Deux valuations équivalentes déterminent
le même anneau de valuation et réciproquement. Etant donné
un corps K et un ordre maximal O de K, il existe toujours une
valuation c de K qui admette l'ordre (9 comme anneau de
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valuation. En considérant le corps projectif formé de la

réunion X U { co } avec les règles :

a oo co si a / ^

a X oo —- oo si ci ^ 0

j/0 oo et 1/co 0

on voit que l'homomorphisme canonique / de CP sur X se

prolonge en une application (encore notée /) de K sur évw à condition

de poser f(x) co si x ^
/ vérifie les formules suivantes (dans la mesure où elles ont

un sens) :

f(x + y) — /U9 + /(«/) (;)

/M /M/U) (»)

/(1/U - î// (-r) (9)

Une telle application / dam corps K sur un corps projectif Xy
est dite spécialisation de K sur X\y. (ou sur X).

On voit donc qu'à toute valuation de K correspond une

spécialisation de K sur un corps X, mais si on se donne une

spécialisation / de K sur X, il n'existe pas en générai de valuation

e de K qui définisse cette spécialisation /. Pour avoir cette

réciproque il faut étendre, comme l'a fait Krull [39] la notion
de valuation:

On appelle valuation généralisée (ou valuation de Ivrull)
d'un corps K (commutatif) une application ç de K* sur un

groupe totalement ordonné T 1 (groupe de valeurs) telle que
l'on ait encore les égalités (2') et (4'). Les valuations ordinaires
sont celles pour lesquelles T est isomorphe (au sens des groupes
ordonnés) à un sous-groupe du groupe additif des nombres
réels. De tels sous-groupes sont dits archimédiens ou de rang un.
Les valuations (non archimédiennes) ordinaires sont donc dites
valuations de rang un ou à groupe de valeurs archimédien. Par
valuation on entendra désormais une valuation généralisée.

1 Un groupe abélien (î est dif ordonné (resp. totalement) s'il existe une relation
d'ordre partielle (resp. iotaie) sur 0, notée X!, telle que a X b entraîne a + .x b a:

pour tout a: e 0.
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Si p est une valuation (généralisée) d'un corps K, on définit
encore un ordre de K qui est dit anneau de la valuation p,

un idéal premier p (idéal premier de la valuation) et une
spécialisation de K sur ÛC^ (cf/p)^. JC est dit le corps résiduel de

la valuation. O est un anneau local au sens large, c'est-à-dire

que p est son seul idéal maximal, mais n'est noethérien que
si p est une valuation de rang un.

Deux valuations p et p' d'un corps K ayant pour groupes
de valeurs respectifs F et F' sont considérées comme équivalentes

s'il existe un isomorphisme de groupe ordonné, a, de F
sur F' tel que, pour tout x e K*, on ait p' (x) g p (x). Pour
qu'il en soit ainsi, il faut et il suffit que les anneaux de ces deux
valuations soient les mêmes.

Etant donné un ordre d'un corps K, la condition nécessaire
et suffisante pour qu'il soit l'anneau d'une valuation définie
sur K est que pour tout x e K, x ecf entraîne i/x e (ft Krull
([40], § 5) donne des relations entre des propriétés de l'anneau
de valuation (9 et la valuation correspondante.

Si p est une valuation d'un corps K, on peut encore définir
une topologie sur K en prenant pour famille fondamentale de

voisinages de O celle définie par la formule (6) qui s'étend sans
difficulté au cas où la valuation n'est plus de rang un. Ici encore

K est un corps topologique et son complété K est un corps. Mais
ici deux valuations non équivalentes peuvent induire la même

topologie.
Etant donnés un corps K muni d'une valuation e, et un

surcorps quelconque K/ de K, le théorème sur le prolongement
des spécialisations montre que l'on peut toujours trouver sur K'
une valuation o' qui prolonge p. Le corps résiduel JC de p' peut
alors être considéré comme un surcorps du corps résiduel JC

de p et le groupe de valeurs F de p est un sous-groupe du groupe
de valeurs F' de p'. Le degré [f/C: ùv] s'il est fini est appelé le

degré d'inertie de l'extension K'/K. pour la valuation e', et l'index
[F': T], s'il est fini, est appelé Y indice de ramification.

La valuation p peut en général se prolonger de plusieurs
manières à K', et même d'un grand nombre de façons si K' est

une extension transcendante de K. Toutefois, si K' est une
extension algébrique, le prolongement ne peut se faire que
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d'une manière si K vérifie le lemme de Hensel1. Un tel corps Iv

est dit relativement complet. (On peut d'ailleurs montrer que si

pour toute extension algébrique K' de K, e ne peut se prolonger

que d'une manière à K/, alors K est relativement complet.)
Si v est une valuation de rang un, le complété K de K est

relativement complet. Il n'en est plus toujours ainsi si v n'est plus
de rang un, mais on peut montrer dans ce cas qu'il existe
toujours une extension immédiate K' de K (c'est-à-dire un surcorps
K' de K muni d'une valuation v' qui prolonge v et telle que le

degré d'inertie et l'indice de ramification correspondants soient
tous deux égaux à un) qui soit relativement complète.

L'étude des extensions algébriques d'un corps relativement
complet (étude de l'inertie et des divers groupes de ramification)
se trouve exposée par Ostrowski [60] dans le cas d'une valuation

de rang un. Schilling ([68] et [70]) a poursuivi cette étude
clans le cas d'une valuation de rang quelconque. Dans le cas
où K est un corps local, c'est-à-dire un corps valué, complet, tel
que sa valuation soit de rang un, discrète (cas où le groupe de
valeurs est isomorphe au groupe additif des entiers ordinaires)
et où le corps résiduel est fini, pour toute extension abélienne
finie O cle K le groupe de Galois cle Q/K est isomorphe au
groupe quotient de K* par le sous-groupe des normes des
éléments cle G*. Ce théorème se généralise au cas où VI est une
extension algébrique infinie de K en munissant K* d'une
certaine topologie et en Je complétant. C'est la théorie du corps
cle classe local. On la trouvera exposée par Schilling [70] et
Artin [2]. Des tentatives ont été faites pour étendre cette
théorie au cas des extensions galoisiennes non abélienne s cle K.
(Voir Shafarevitch [73] et Krasner [34] et [35].)

Dans le cas où K n'est pas relativement complet par rapport
a la valuation e, l'étude des prolongements de v à une extension
algébrique K' de K (et l'étude des extensions correspondantes
du corps résiduel) permettent de connaître la manière dont
l'idéal premier p de la valuation se décompose clans le corps K'.

1 Le lenmip de Ilensel peu! sVnoncer delà façon suivante: Soi i / (x) un polynôme
irréductible dont les eoelïieienls son! si! nés dans O mais non pas (ous dans p.- le polynôme

correspondant S (A) a eoelïieienls dans X es! puissance d'un polynôme irréductible
(dans l'anneau des polynômes à. eoelïieienls dans X).
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Cette étude généralise celle faite par Hilbert à propos des corps
algébriques. Les méthodes de démonstrations sont néanmoins
assez différentes (D EURiNG [14], Ostrowski [60]).

Soit K une extension algébrique finie du corps des rationnels
ou un corps de fonctions algébriques de degré de transcendance 1

sur un corps fini: Les seules valuations possibles de K sont les
valuations archimédiennes et les valuations non archimédiennes
de rang un. Si dans chaque classe d'équivalence de valuations
(archimédiennes ou non) on choisit convenablement un
représentant (en notation non exponentielle), on obtient une famille
(<Pi)tei de valuations de K telle que pour tout x e K*, n <pL (x)

tei
ait un sens et soit égal à 1. Une telle propriété caractérise d'ailleurs

les corps en question, c'est la formule du produit d'ARTiN-
Whaples [3]. Elle caractérise les corps pour lesquels est valable
la théorie du corps de classe. Elle joue d'ailleurs un rôle important

dans cette théorie sous la forme qui lui a été donnée par
Chevalley [10]: Si, à chaque valuation <pt de la famille (cpL) tGI,

on associe le complété KL de K pour cette valuation, on peut
définir un groupe des idéles 1 et un groupe de classes d'idéles
(quotient du groupe des idéles par le sous-groupe des idéles

principaux). La théorie du corps de classe décrit alors le groupe
de Galois de l'extension abélienne maximale de K comme
quotient du groupe des classes d'idéles par un certain sous-groupe
(voir par exemple Weil [78]).

On voit donc toute l'importance qu'ont les valuations dans

la théorie des nombres. On en trouvera une utilisation
systématique dans l'ouvrage de Hasse [16].

Nous voudrions dans ce qui suit donner des indications sur
une autre catégorie de problèmes pour laquelle l'utilisation des

valuations (ou de conceptions les généralisant) ont permis de

faire d'importants progrès, ce sont les problèmes concernant la
divisibilité.

i Soit P le produit direct ]~I Kt. Un élément a de P est dit un idéle si pour tous
i ei

les i I, sauf un nombre fini, on a <pt(at) 1 et si pour tout i G I on a cpt(at) # 0.

Les idéles forment un groupe multiplicatif.
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Un groupe abélien © est dit préordonné si on a défini entre

certains éléments de © une relation que l'on note < et qui
vérifie les propriétés suivantes:

x < x pour tout X © ©

x < y et y < s entraîne x < 5

x < y entraîne xz < yz pour tout z © @

La relation d'équivalence sur ©:

z as y x A y et y © m (13)

est alors compatible avec la structure de groupe. L'ensemble

quotient G de © par cette relation d'équivalence est donc muni
canoniquement d'une structure de groupe ordonné. Le groupe
ordonné G est dit associé au groupe préordonné ©.

© étant un groupe abélien quelconque, se donner sur ® une
structure de préordre (compatible avec sa structure de groupe)
revient à se donner l'ensemble ©_,_ formé par tous les éléments x
de © tels que 1 < x (grâce à la relation x < y yx~{ e © +
On voit que © + est un sous-semi groupe de ©. Réciproquement
la donnée d'un sous-semigroupe G de © permet de définir une
structure de préordre sur © (c'est une structure d'ordre si et
si seulement G U G-1 ^ jlj). Le groupe ordonné associé G est
filtrant1 si et si seulement © est groupe des quotients de G.
On voit par suite qu'étudier la divisibilité des éléments de © par
rapport au sous-semigroupe © ; revient à étudier la structure
de préordre définie par © sur © ou la structure d'ordre du

groupe ordonné associé G.

Si maintenant on se donne un ordre A d'un corps K, A* est
un sous-semi-groupe multiplicatif de K* et définit donc sur K*
une structure de préordre. Le groupe ordonné associé G (qui est
filtrant) est dit groupe de divisibilité de K par rapport à l'ordre A.

D'après Krull[39], pour que A soit intégralement clos 2 dans
K, il faut et il suffit que A soit l'intersection de tous les sur-

1 C'est-à-dire que pour (oui, couple (a, b) éléments de 0, il existe un élément x
ne (} I e! que a, b V. x.

- A esl dit rnic(jralome.nl clos dans K si tout élément de K vérifiant une équation
de la tonne .v" j- cq x'1-1 fi- an ~ 0 avec cq < A(l V i^n) est lui-même continu
dans A.

(10)

(11)

(12)
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anneaux de valuation (contenus dans K) qui le contiennent.
Ceci revient à dire qu'il existe une famille de valuations (ct)ieI
de K telle que:

x e A (pour tout tel on a q Pc) > 0) (14)

Par suite, si pour tout i e I I\ désigne le groupe de valeurs de

la valuation cr, dans le cas où A est intégralement clos dans K,
on a obtenu une réalisation du groupe de divisibilité G
correspondant comme sous-groupe du produit direct ordonné

nr=r.tel

Si A est entièrement clos dans son corps des quotients K, la
donnée d'une famille de valuations de K telle que la relation (14)
soit vérifiée, permet parfois d'obtenir non seulement des

renseignements sur la divisibilité des éléments de K par rapport
à A, mais encore sur la divisibilité des A-idéaux fractionnaires
de K. En effet, si à tout sous-ensemble a de K borné inférieure-
ment (c'est-à-dire tel qu'il existe un élément a de K tel que
ciC (a), (a) désignant le A-idéal principal engendré par a) on
fait correspondre le sous-ensemble al défini de la façon suivante:

x e q pour tout tel, a« e vi tel que vl (x) > q (aj (15)

on voit qu'on définit ainsi une opération de fermeture qui obéit

aux règles suivantes:

« C q (16)

a c bj —> q C tq (17)

Si a < K*, { a }r (a) ah (18)

a q « (aa)l (19)

On a donc ici des lois qui sont formellement les mêmes que
celles qui lient un sous-ensemble (borné intérieurement) de K
à l'idéal engendré par cet ensemble. On appellera donc cij le

l'idéal engendré par a. Dans le cas où un I-idéal peut être

engendré par un nombre fini d'éléments, on dira qu'il est fini.
On dira qu'un I-idéal cq est principal s'il est de la forme (a).
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On peut remarquer de plus que si on désigne par ad l'idéal
ordinaire (ou idéal de Dedekind) engendré par a, on a toujours
ad Cl ax. Les I-idéaux sont donc des d-idéaux particuliers.

Comme pour les idéaux ordinaires, on peut définir la somme
et le produit de deux I-idéaux en posant:

ar ; l\ (a u D, (20)

s : : C - (a b)f (21)

On voit que la somme et le produit de deux I-idéaux finis est

encore un I-idéal fini et que l'idéal A (1) est unité pour la
multiplication.

A la suite de l'introduction des e-idéaux par Artin et Van
der Waerden, Prüfer [61] a étudié systématiquement les

propriétés d'un système général de r-idéaux finis, c'est-à-dire
d'une correspondance qui à tout sous-ensemble fini a de K fait
correspondre un sous-ensemble a,, de K tel que ad C ar et que
les relations (16) à (19) se trouvent vérifiées (en remplaçant
partout le symbole I par r). Prüfer a été amené à introduire

les opérations sur ces /'-idéaux et à envisager les quatre
propriétés suivantes :

r — a Tout r-idéal (fini) est principal,
r ~ ß Les r-idéaux (finis) forment un groupe multiplicatif,
r — y Les r-idéaux finis forment un semi-groupe, c'est-

à dire que: ar x hr ar X cr entraine br cr,
r S L'anneau A est r-clos, c'est-à-dire que ar X (b) Z) cy X (c)

entraîne (b) z> (c).

Chacune de ces propriétés est moins forte que la précédente.
De plus A est d-clos si et si seulement il est intégralement clos.
Prüfer montra en outre que les propriétés d — ß et d — y
sont équivalentes. Un anneau vérifiant la propriété d — ß (les
idéaux finis forment un groupe ou encore tout idéal fini est
inversible) est appelé par Krull anneau de multiplication.

Krull [41] a donné une importante caractérisation des

anneaux de multiplication: A est anneau de multiplication si
et si seulement il est arilhmétiquement utilisable, c'est-à-dire
intégralement clos dans son corps des quotients K et tel que,

J/Kiisi'igiiemcnt mal.hcin., T. 40, I 0;11-105 4. o
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si on considère la famille ((\)lI de toutes les valuations de K
compatibles avec l'anneau A (une valuation ç de K sera dite
compatible avec un ordre A de K si et si seulement son anneau
de valuation contient A), les I-idéaux finis correspondants se

confondent avec les ^-idéaux finis. Dans un tel anneau on peut
donc attribuer à tout idéal fini ad une valeur

ÇL (ad> inf KW) 6 ri

pour tout i e I et on a:

x e a z^±. vl (x) > vl (ad) pour tout i I (22)

Pour décrire les idéaux infinis, il faut recourir à la notion
de surclasse d'un groupe totalement ordonné (introduite par
Krull [39]).

Si r est un groupe totalement ordonné, on appelle surclasse
de T un sous-ensemble 9 de T borné inférieurement et tel que:

oc û et ß > a —> ß e Q (23)

Une surclasse Û est dite principale si elle contient un plus petit
élément cù. On la note alors (co).

Lorsque A est un anneau de multiplication, on peut dans
certains cas montrer que les I-idéaux (en prenant pour I un
ensemble convenable de valuations de K compatibles avec A)
coïncident avec les d-idéaux (et non plus seulement les I-idéaux
finis). Un idéal ad est alors défini en lui faisant correspondre

pour tout indice i une surclasse Ql — (c\(ad)) de I\. On a plus
précisément :

x e ad —çL (x) e ût pour tout tel. (24)

Le problème qui se pose alors est de savoir quelles conditions
doit remplir un système de surclasses arbitraires (Ot)tÇI pour
qu'il existe un idéal cid tel que (et(ûd)) ÜL pour tout i e I.
Ce problème a été résolu par Krull dans le cas où A est l'anneau
des entiers d'un corps algébrique infini [36]. Les valuations
étant alors de rang un, il a pu en déduire des conditions nécessaires

et suffisantes pour qu'étant donnés deux idéaux ctd et bd

il existe un idéal cd avec ad — &d X Cd' Nous l'avons résolu [25]
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dans le cas où A est un anneau du type de Dedekind (c'est-à-dire
tel que tout idéal entier non nul de A ne soit contenu que dans

un nombre fini d'idéaux maximaux de A et que tout idéal
premier de A ne soit contenu que dans un idéal maximal). Dans
le cas où l'anneau A est de plus uniforme, c'est-à-dire dans le

cas où les valuations qui interviennent sont de rang un, les

résultats de Krull permettent alors de donner des conditions
nécessaires et suffisantes pour qu'étant donnés deux idéaux ad

et bd, il existe un idéal cd tel que ad — bd X cd.
Nous avons récemment pu étendre cette étude au cas où A,

étant toujours supposé anneau de multiplication du type de

Dedekind, n'est plus supposé uniforme [26]. Pour cela nous
avons été amené à étudier la divisibilité des idéaux dans un
anneau de valuation. Si ç est une valuation de K, l'anneau
de valuation correspondant et V le groupe de valeurs, on sait
[39] qu'il y a correspondance biunivoque entre les cNidéaux
(entiers et fractionnaires) de K et les surclasses de F, la
surclasse il correspondant à l'idéal ad étant v (ad). Tout (9-idéal
fini est alors principal. Il en est ainsi si et si seulement la surclasse
correspondante est principale. Au produit ad X bd correspond
Ja somme A + B des surclasses A et B relatives à ad et bcl.

A + B est principale si et si seulement A et B le sont. Si P est
archimédien, il est soit un groupe discret (auquel cas toute
surclasse est principale), soit un sous-groupe dense dans le

groupe additif R des nombres réels. A toute surclasse non
principale A on peut alors faire correspondre un nombre réel a
(et réciproquement) tel que:

l 6 A 5 > OC (25)

On pose dans ce cas A ((a)). (oc n'est pas nécessairement
contenu dans T).

Ceci permettait à Krull de montrer que si P est
archimédien, étant données deux surclasses A et B, il existe une
surclasse C telle que A B + G si et si seulement on est dans
l'un des deux cas suivants:

1) B est une surclasse principale,
2) Ni A ni B n'est principale.
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La situation est plus complexe si F n'est plus supposé archi-
médien. Il faut alors considérer l'ensemble (Pt) t n des surclasses

premières de T. (Une surclasse P de T est dite première si
P C (0) r+ et si a, b^. P entraînent a + b pÊ P.) (Pt) t n (et
par suite II) est totalement ordonné par la relation:

P« < Pß Pß C Pa (26)

A une surclasse première P{ on fait correspondre le sous-

groupe Ht de T engendré par les éléments positifs de F qui ne
sont pas contenus dans P£. Ht est un sous-groupe isolé de F [39],
c'est-à-dire que FL r/Ht peut être considéré comme totalement

ordonné par la relation:

9t (x) > 9 > (y) aÄ e Ht avec x + h e y (27)

(L désigne ici l'homomorphisme canonique de F sur FL).

Nous avons montré qu'à toute surclasse A correspond un
indice a e II appelé indice caractéristique de A qui est le plus
grand possible tel que :

x 6 A 9t (x) 9t (A) (28)

(cpt (A) est une surclasse de TJ.
Si T est totalement ordonné on peut le munir d'une topologie

(compatible avec sa structure de groupe) en prenant pour
système fondamental de voisinages de 0 l'ensemble: (LUa)r9a>0
défini par:

x 6 lia — a < x < a (29)

On peut prolonger au complété F la structure d'ordre
total de T. Si a est l'indice caractéristique de la surclasse A, la
surclasse cpa (A) de Ta est soit principale, soit telle qu'il existe

fa avec xa e<pa (A) xa > aa.

Toute surclasse de F se trouve alors parfaitement décrite
et à partir de là on peut trouver les conditions nécessaires et
suffisantes pour qu'étant données deux surclasses A et B, il
existe une surclasse G telle que A B + C.

Au moyen d'une famille de valuations qui sont compatibles
avec cet anneau, on peut facilement caractériser les ordres
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d'un corps qui sont des anneaux jactoriels (tout élément est

produit d'éléments premiers), et les anneaux de Dedekind (tout
idéal est produit d'idéaux premiers), et démontrer à partir
de là certains théorèmes de permanence (par exemple si A est

factoriel, l'anneau de polynômes A [x] l'est aussi, si A est un

anneau de Dedekind et si O est une extension algébrique finie
de l'anneau des quotients K de A, l'ensemble B des éléments

de Q entiers sur A est aussi un anneau de Dedekind). On pourra
consulter à ce sujet [6], [25], [55], [57] et le chapitre 4 de [70].

Dans un mémoire paru en 1939 [46], Lorenzen a jeté les

bases d'une étude systématique des groupes préordonnés (abé-

liens). Il a défini pour un groupe préordonné 6) la notion de

système de r-idéaux dans toute sa généralité ainsi que la notion
de système de r-idéaux finis. Il a étendu à un tel système les

résultats de Prüfer sur les propriétés r—- oc, r -— ß, r — y et

r —- 3. Enfin il a étudié les réalisations du groupe ordonné
associé G comme sous-groupe d'un produit direct de groupes
totalement ordonnés en étendant la méthode utilisée par Krell
dans le cas du groupe de divisibilité d'un anneau intégralement
clos. Etant donné un système de r-idéaux (finis ou non), il a été

pour cela amené à considérer les homomorphismes croissants e

de 65 sur un groupe totalement ordonné T tels que:

r (a) c IN entraîne e(ar) c T> « (30)

Nous proposons d'appeler un tel homomorphisme une
r-valuation de 65.

On voit que si A est un ordre du corps K, les ^-valuations
de K sont les valuations de K compatibles avec A. On définit
alors la notion de semi-groupe de r-valuation. Le théorème de

Krull s'étend de la manière suivante: © vérifie la propriété
r— S finie si et si seulement 65 f est intersection de semi-

groupes de /'-valuation. Lorenzen en déduit en particulier
qu'un groupe ordonné G est réalisable comme sous-groupe d'un
produit direct de groupes totalement ordonnés si et si seulement
il est semi-clos, c'est-à-dire si pour tout entier strictement
positif n et tout c; c G la relation nx > 0 entraîne x > 0.
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Si le groupe G est réticulé, un homomorphisme croissant 9
de G sur un groupe totalement ordonné est dit propre si:

9 (inf (x, y)) inf (9 (x), 9 (y) pour tout x, y Q G (31)

Or de tels homomorphismes de G sont précisément les £-valua-
tions de G, le ^-système étant le r-système particulier défini par:

x e at 7=7. an e a avec x > inf (at, an) (32)

Gomme un groupe réticulé vérifie la propriété l — S finie,
Lorenzen en déduit qu'un groupe réticulé G est toujours
réalisable d'une manière propre comme sous-groupe d'un
produit direct G' de groupes totalement ordonnés, c'est-à-dire
de manière que les opérations sup. et inf. coïncident sur G et
sur G'.

Dieudonné [15] a complété sur certains points la théorie
de Lorenzen et a montré que le résultat sur les groupes semi-
clos pouvait s'obtenir en considérant certaines ^-valuations
particulières 1 d'un groupe ordonné G qui sont les affinements
de sa structure d'ordre.

Nous avons obtenu des précisions sur les réalisations d'un
groupe réticulé en introduisant pour de tels groupes la notion
de réalisation irréductible ([22] et [24]) : Etant donnée une
réalisation propre de G dans II I\, la composante oc e I sera

«61
dite essentielle si l'homomorphisme croissant de G dans II I\ ne

définit plus une réalisation de G. La réalisation de G dans

n rt sera dite irréductible si toutes les composantes tel sont
tel
essentielles. Nous avons montré que deux réalisations
irréductibles d'un groupe réticulé sont identiques. On en déduit en

particulier qu'un groupe réticulé ne peut être réalisé que d'une
manière comme somme ou produit direct de groupes totalement
ordonnés. Pour cela nous avons été amenés à introduire dans

1 Le s-système est défini par:
.x < ag 7^ a a <- a avec a ^ x
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un groupe réticulé la notion de filet. Les filets de G sont les

classes d'équivalence définies dans Gr par:

x as: y —1 (pour tout : e G+ inf (x, z) 0 inf (y, n} 0) f1) (33)

En désignant par x le filet qui contient x 6 G.r, on voit que
l'ensemble Â des filets est ordonné par la relation :

J ^ X -r-*- (pour tout 5 G inf s) 0 —-> inf (y, z) 0)
'

(34)

L'ensemble À admet le plus petit élément 0 {0}. Un

filet x sera dit minimal s'il est différent de 0 et si y < x entraine

y ô.

G admet une réalisation irréductible si et si seulement tout
filet de G différent de 0 est supérieur ou égal à un filet minimal.
Les ^-valuations essentielles de G sont alors définies simplement
à partir des filets minimaux correspondants.

Lorsque le groupe ordonné G n'est plus réticulé, de

nombreux problèmes se posent encore sur les réalisations de G

comme sous-groupe d'un produit direct de groupes totalement
ordonnés.

Les valuations non archimédiennes ont été étendues au cas
où le corps considéré n'est plus commutatif. (Schilling [69]
et [70].) Le groupe de valeurs peut alors ne plus être abélien.
Toutefois, d'après un théorème d'H. Cartan, le groupe de

valeurs est sûrement abélien s'il est archimédien [8]. Lorenzen
[46] a étendu de même sa théorie au cas d'un groupe préordonné
non abélien.

Enfin toute une série de recherches sur la topologie des corps
valués ont été entreprises. Les travaux de Shafarevitcii [72],
KaplansK y [29] et Zelinsky [80] ont permis de donner des

conditions nécessaires et suffisantes pour qu'un corps topo-
logique ait sa topologie induite par une valuation:

Soit K un corps commutatif possédant une topologie compatible

avec sa structure d'anneau (la fonction ijx n'est pas

1 (clic relation d'équivalence est un cas particulier des équivalences principales
dans les demi-qroupes qui jouent un rôle important dans cette théorie. (Voir par
exemple P. Dubrcil: Contribution à la. Ihéorie des demi-ffroupes, C. R. Acacl Se Paris
l. (G (10.1), pp. 1-rv.)
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supposée continue). Un sous-ensemble A de K sera dit borné si

pour tout ensemble ouvert V contenant 0 on peut trouver un
ouvert U contenant 0 tel que AU c V.

Un élément x de K sera dit nilpotent si xn tend vers 0 lorsque
n croit indéfiniment. Pour que la topologie de K puisse être
définie par une valuation non archimédienne, il faut et il suffît

que les deux conditions suivantes se trouvent réalisées:

1° Si A est un sous-ensemble de K auquel 0 n'est pas adhérent,

A-1 est borné.
2° Il existe un sous-groupe additif de K qui soit à la fois

borné et ouvert.

Pour que la topologie de K puisse être définie par une valuation

archimédienne ou par une valuation non archimédienne de

rang un, il faut et il suffît que la condition 1° se trouve vérifiée
ainsi que:

2° L'ensemble des éléments nilpotents est ouvert.

Les corps topologiques (non nécessairement commutatifs)
vérifiant la condition 1° ont été étudiés par Kaplansky sous le

nom de corps du type V [29]. Ils possèdent déjà certaines
propriétés des corps valués. Les résultats de Shafarevitch et
Kaplansky montrent que tout corps (commutatif ou non)
localement compact a sa topologie induite par une valuation
(non exponentielle). Braconnier [7] a établi ce résultat directement

en remarquant que dans un tel corps la multiplication
par un élément x multiplie la mesure de Haar par un facteur
constant ç (x) qui se trouve être la valuation cherchée. On

trouvera dans [30] un exposé et une bibliographie détaillée de

ces questions.
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LA GÉOMÉTRIE DES SOUS-VARIÉTÉS D'UN
ESPACE EUCLIDIEN A PLUSIEURS DIMENSIONS 1

PAR

Shiing-Shen Chern (Chicago).

La géométrie des sous-variétés d'un espace euclidien de

dimension quelconque contient naturellement comme cas
particuliers l'étude des courbes et des surfaces de l'espace euclidien
ordinaire. Cependant, malgré l'histoire très ancienne du sujet,
nos renseignements dans le cas général sont assez maigres. Dans
cette conférence je me propose de parler de quelques progrès
qui ont été accomplis récemment.

I

1. — Soient En~rX l'espace euclidien à n + N dimensions
et M une variété difîérentiable à n dimensions régulièrement
plongée dans En Cela signifie que tout point de M a un
voisinage dans lequel la variété peut être définie en exprimant N
coordonnées de En ' x comme des fonctions des n autres
coordonnées ayant des dérivées partielles continues d'un ordre assez

i Conférence faite à la séance de la Société mathématique suisse, tenue à Berne
le 7 juin 1953.
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