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LA NOTION DE VALUATION
PAR

Paul Jarrarp (Paris)

K étant un corps commutatif, on appelait primitivement
valuation de K [45] une application ¢ de K dans ensemble R
des nombres réels positifs telle que:

o) =0=c=2=0, (1)
o(xy) = o) ¢ (y) , (2)
ole—+y) <o) + oy . (3)

On consideére comme équivalentes (et on est amené a iden-
tifier), deux valuations ¢ et ¢ telles que:

@(;v) > 1 == &i)(.’))) =1

La valuation o est dite non archimédienne si la condition (3)
peut étre remplacée par la condition plus forte:

—
—~——

o (x4 y) <sup (o), o) . (%

Elle est dite archimédienne dans le cas contraire.

OstrowsKi [H9] a montré que si ¢ est une valuation archi-
médienne d’un corps K, K est un sous-corps du corps C des
nombres complexes et o est équivalente a la valuation ¢ de K
définie par ¢(r) = | x| (| | étant la valeur absolue ordinaire
du nombre complexe x). Plus précisément, on a o{x) = |z |°
avee O < p << 1. La valuation ¢ est dite parfois en arithmétique
valuation a Uinfint.

Jar la suite, lorsque nous parlerons d’une valuation d’un

corps K nous entendrons toujours, sauf avis contraire, valuation
non archimédienne.
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Si ¢ est une valuation (non archimédienne) on peut poser:
¢(z) = — Log o (z) ,

¢ est alors une application de ensemble K*, formé par les élé-
ments de K différents de O, dans I’ensemble R des nombres
réels de signe quelconque telle que:

o (xy) = o(x) + oly) , (2)
oz -+ y) = inf (0(x), ¢ (y)) . (47)

Réciproquement la donnée d’une telle application ¢ permet
de définir une valuation de K. On dit parfois que ¢ est une
valuation exponentielle de K mais la plupart des auteurs (Kruwrr,
SCHILLING) appellent encore ¢ une valuation de K et c’est cette
forme exponentielle qui s’avere la plus maniable et la plus
capable de généralisations. C’est elle que nous emploierons par
la suite.

On voit que deux valuations exponentielles ¢ et w de K sont
équivalentes si et si seulement il existe un nombre réel A = 0
tel que ¢(x) = Aw(x) pour tout x e K. L’ensemble ¢(K*) est
un sous-groupe additif I' de R qui est dit groupe de vcaleurs de
la valuation ¢.

Q étant le corps de nombres rationnels et p un nombre pre-
mier, on définit la valuation p-adique v, de la fagon suivante:

Si x €Q, on peut poser x = p“% ol a et bsont deux entiers

premiers & p, « étant un entier bien déterminé (positif, négatif
ou nul). On pose alors ¢, (z) = o.

On montre que toute valuation (non archimédienne) de Q
est équivalente a une valuation p-adique.

Soit k& un corps (commutatif) quelconque et K = k(z) le

corps des fractions rationnelles a coeflicients dans k. Si a ¢ k£ et
o 8 (%)

fe K* on peut écrire f = (x — a) e ou f et g sont deux
polynomes premiers a £ — a. « est un entier bien déterminé tel
que — o définisse 'ordre d’infinitude de f au point a. Si on

pose ¢,(f) = «, on définit ainsi une valuation de K.
Enfin on obtient une nouvelle valuation de K = k(z) en

posant pour tout f = % e K*, w(f) = degré de A — degré de g.




LA NOTION DE VALUATION 7

Comme — w(f) définit Pordre d’infinitude de f a ['infini, on
appelle encore w la valuation a Uiwnfint de K.

o étant une valuation (archimédienne ou non) d’un corps K
prise sous la forme non exponentielle, on définit une distance
sur X en posant pour tout couple x, y € IKX:

Ut

dic, y) = olx —y) . (

L'inégalité (3) exprimant alors inégalité du triangle, on
voit que cette distance définit sur K une structure d’espace
métrique (on dit parfois uliramétrigue si ¢ est non archimédienne).

Un corps valué K peut done étre considéré comme un espace
topologigue (uniforme). Deux valuations équivalentes induisent
la- méme topologie et réciproquement. Une telle topologie est
compatible avec la structure de corps de K1 L’anneau
complété K est un corps sur lequel on peut prolonger par
continuité la valuation de K. On voit d’ailleurs que si ¢ est une
valuation non archimédienne de K (prise sous forme exponen-
tielle), la valuation de K est encore non archimédienne, et son
groupe de valeurs est le méme que celui de K. Ceci tient au fait
que si ¥ est un filire de Cauchy sur K auquel O n’est pas adhé-
rent, G U e tel que z, y e U— ¢(x) = v(y).)

St ¢ est nne valuation (non archimédienne) de K et I' le
groupe de valeurs correspondants, on peut prendre comme
systeme fondamental de voisinages de O dans K I'ensemble
(V:)zep défini par

veV. T2 (v =0 ou vx) = %) . (6)
St @ est une valuation archimédienne de K, le compléts K
est le corps R des nombres réels dans le cas ou K C R, et le
corps (i des nombres complexes dans le cas contraire.
Si ¢, est la valuation p-adique de Q, le complété Q de Q
pour cette valuation est le corps des nombres p-adiques de
Hensel.

oCTest=a=dire que les fonctions [ (v, ) == & —— yoel gy, y) — xy sonl conlinues
par rapporl & Pensemble des variables x ety el la fonction h () == —1«<>sl' continue
X

pour x4 ().
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Enfin, pour les différentes valuations du corps K = k(x)
que nous avons définies, les complétés sont des corps de séries
formelles. On obtient en particulier le corps k((z)) des séries
formelles en z a coefficients dans % en prenant la valuation ¢,
(celle pour laquelle a = 0).

La notion de valuation se montre trés fructueuse en géomé-
trie algébrique. Nous n’aborderons pas ici ce point de vue, nous
contentant de renvoyer pour cela le lecteur a une conférence de
VAN DeEr WAERDEN [77], ou il trouvera également une biblio-
graphie. Nous indiquerons seulement ici que si1 on considere une
fonction algébrique y d’une variable z, satisfaisant a I’équation
f(z,y) = 0, ot f(x,y) est un polynome irréductible en x et y
& coefficients complexes, la surface de Riemann relative a cette
fonction est identique a I’ensemble (muni d’une topologie
convenable) des valuations du corps C (x, y) qui s’annulent
sur C. C’est grace a cette notion de valuation (non archimé-
dienne) que l'on peut étendre la définition des surfaces de
Riemann au cas des fonctions algébriques sur un corps quel-
conque (et non plus sur le corps des complexes). On trouvera
dans ’ouvrage de Chevalley [11] une systématisation de ce
point de wvue algébrique inauguré par Dedekind et Weber
[13] (voir aussi [19]). Une étude plus simple en est faite
dans [52].

¢ étant une valuation (non archimédienne) d’un corps K,
on voit que ’ensemble O formé par O et par tous les éléments z
de K* tels que ¢(x) > 0 est un ordre de K, c’est-a-dire un sous-
anneau de K, contenant I’élément unité 1 et tel que K soit corps
des quotients de cet anneau. (Cest méme un ordre maximal en
ce sens que tout ordre de K contenant strictement © est confondu
avec K. © est dit 'anneau de la valuation v. L’ensemble des
éléments z de K tels que z = 0 ou ¢(x) > 0 forme un idéal
maximal p de anneau © qui est dit idéal premier de la valuation.
Le corps O/p = JK est dit corps résiduel de la valuation ¢. © est
un anneau local, ¢’est-a-dire que P est son seul idéal maximal et
qu’il est noethérien. Deux valuations équivalentes déterminent
le méme anneau de valuation et réciproquement. Etant donné
un corps K et un ordre maximal O de K, il existe toujours une
valuation ¢ de K qui admette Pordre © comme anneau de
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valuation. En considérant le corps projectif K formé de la
réunion K U { oo} avec les regles:

a-- o = % si a5+ w
a X w = o s a =0
1/0 = oo et 1/wo =0

on voit que I'homomorphisme canonique [ de € sur JU se pro-
longe en une application (encore notée f) de K sur J, & condi-
tion de poser f(x) = oo six # €.

f vérifie les formules suivantes (dans la mesure ou elles ont

un sens):

[+ y) = f(x)+ Fly) (7)
fley) = flx) [(y) (8)
f(lja) = 1/[(x) (9)

Une telle application f d'un corps K sur un corps projectif JC
est dite spéeialisation de K sur K (ou sur K.

On voit donc qu’a toute valuation de K correspond une
spécialisation de K sur un corps K, mais si on se donne une
spécialisation f de K sur U, il n’existe pas en général de valua-
tion ¢ de K qui définisse cette spécialisation f. Pour avoir cette
réciproque il faut étendre, comme I'a fait Krucr [39] la notion
de valuation:

On appelle valuation généralisée (ou valuation de Krull)
d’un corps K (commutatif) une application ¢ de K* sur un
groupe totalement ordonné I'! (groupe de valeurs) telle que
Pon ait encore les égalités (2') et (47). Les valuations ordinaires
sont celles pour lesquelles I' est 1somorphe (au sens des groupes
ordonnés) a un sous-groupe du groupe additif des nombres
réels. De tels sous-groupes sont dits archimédiens ou de rang un.
Lies valuations (non archimédiennes) ordinaires sont donc dites
valuations de rang un ou a groupe de valeurs archimédien. Par
valuation on entendra désormais une valuation généralisée.

P Un groupe abclien (roest dit ordonné (resp. tolalement) 8'il exisle une relation
dordre partielle (resp. totale) sur G, notée <, telle que a £ b enlraine a = & << b 4+ x
pour toul x e G.
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Si ¢ est une valuation (généralisée) d’un corps K, on définit
encore un ordre @ de K qui est dit anneau de la valuation o,
un idéal premier p (idéal premier de la valuation) et une spécia-
lisation de K sur I, = (O/p),. K est dit le corps résiduel de
la valuation. © est un anneau local au sens large, c’est-a-dire
que P est son seul idéal maximal, mais © n’est noethérien que
st ¢ est une valuation de rang un.

Deux valuations ¢ et ¢’ d’un corps K ayant pour groupes
de valeurs respectifs I" et 1" sont considérées comme équiva-
lentes s’il existe un isomorphisme de groupe ordonné, o, de I
sur 1 tel que, pour tout z e K* on ait ¢’ (z) = o ¢ (z). Pour
qu’il en soit ainsi, il faut et il suflit que les anneaux de ces deux
valuations soient les mémes.

Etant donné un ordre ¢ d’un corps K, la condition nécessaire
et suffisante pour qu’il soit 'anneau d’une valuation définie
sur K est que pour tout z € K, z €@ entraine 1/x ¢ ©. KruLL
([40], § 5) donne des relations entre des propriétés de 'anneau
de valuation @ et la valuation correspondante.

Si ¢ est une valuation d’un corps K, on peut encore définir
une topologie sur K en prenant pour famille fondamentale de
voisinages de O celle définie par la formule (6) qui s’étend sans
difficulté au cas ou la valuation n’est plus de rang un. Ici encore

K est un corps topologique et son complété K est un corps. Mais
ici deux valuations non équivalentes peuvent induire la méme
topologie.

Etant donnés un corps K muni d’une valuation ¢, et un
surcorps quelconque K’ de K, le théoréme sur le prolongement
des spécialisations montre que ’on peut toujours trouver sur K’
une valuation ¢’ qui prolonge ¢. Le corps résiduel ' de ¢’ peut
alors étre considéré comme un surcorps du corps résiduel JU
de ¢ et le groupe de valeurs I' de ¢ est un sous-groupe du groupe
de valeurs I de ¢’. Le degré [[K': K] 'l est fini est appelé le
degré d’inertie de I'extension K'/K pour la valuation ¢’, et 'index
[[': T'], s’1l est fini, est appelé 'tndice de ramification.

La valuation ¢ peut en général se prolonger de plusieurs
maniéres a K’, et méme d’un grand nombre de facons si K’ est
une extension transcendante de K. Toutefois, si K’ est une
extension algébrique, le prolongement ne peut se faire que
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d’une manicre si K vérifie le lemme de Hensel & Un tel corps K
est dit relativement complet. (On peut d’ailleurs montrer que si
pour toute extension algébrique K’ de K, ¢ ne peut se prolonger
que d’une maniére a K’, alors K est relativement complet.)
Si ¢ est une valuation de rang un, le complétée K de K est rela-
tivement complet. Il n’en est plus toujours ainsi si ¢ n’est plus
de rang un, mais on peut montrer dans ce cas qu’il existe tou-
jours une extension immeédiate K" de K (c¢’est-a-dire un surcorps
K" de K muni d’une valuation ¢’ qui prolonge ¢ et telle que le
degré d’inertie et I'indice de ramification correspondants soient
tous deux égaux a un) qui soit relativement compléte.

L’étude des extensions algébriques d'un corps relativement
complet (étude de {'inertie et des divers groupes de ramification)
se trouve exposée par Ostrowskl [60] dans le cas d’une valua-
tion de rang un. ScHiLLING ([68] et [70]) a poursuivi cette étude
dans le cas d’une valuation de rang quelconque. Dans le cas
ou K est un corps local, ¢’est-a-dire un corps valué, complet, tel
que sa valuation soit de rang un, discrete (cas ot le groupe de
valeurs est 1somorphe au groupe additif des entiers ordinaires)
et ol le corps résiduel est fini, pour toute extension abélienne
finie Q de K le groupe de Galois de €Q/K est isomorphe au
agroupe quotient de K* par le sous-groupe des normes des élé-
ments de Q* (e théoréme se généralise au cas o Q est une
extension algébrique infinie de K en munissant K* d’une
certaine topologic et en le complétant. Cest la théorie du corps
de classe local. On la trouvera exposée par Scuirrixg [70] et
Armin [2]. Des tentatives ont été faites pour étendre cette
théorie au cas des extensions galoisiennes non abéliennes de K.
(Voir Suarareviten [73] et Krasyer [34] et [35].)

Dans le cas ot K n’est pas relativement complet par rapport
a la valuation ¢, I’étude des prolongements de ¢ a une extension
algeébrique K’ de K (et I’étude des extensions correspondantes
du corps résiduel) permettent de connaitre la maniere dont
Pidéal premier p de la valuation se décompose dans le vorps K'.

P Le femne de Henset peat senoncer de la facon suivanle: Soit () un polyvnome
irrcductible doni les cocflicients sont situés dans © mais non pas tous dans P: le poly-
nome correspondant [ (x) & coeflicienls dans K est puissance d'un polyndme irré«luctih‘lc
{(dans Panncau des polvnomes a coefficients dans K
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Cette étude généralise celle faite par Hilbert a propos des corps
algébriques. Les méthodes de démonstrations sont néanmoins
assez différentes (DEurING [14], OsTROWSKI [60]).

Soit K une extension algébrique finie du corps des rationnels
ou un corps de fonctions algébriques de degré de transcendance 1
sur un corps fini: Les seules valuations possibles de K sont les
valuations archimédiennes et les valuations non archimédiennes
de rang un. Si dans chaque classe d’équivalence de valuations
(archimédiennes ou non) on choisit convenablement un repré-
sentant (en notation non exponentielle), on obtient une famille

(). er de valuations de K telle que pour tout x ¢ K* II ¢, (x)
tel

ait un sens et soit égal a 1. Une telle propriété caractérise d’ail-
leurs les corps en question, c’est la formule du produit d’ ARTIN-
WuarLEs [3]. Elle caractérise les corps pour lesquels est valable
la théorie du corps de classe. Elle joue d’ailleurs un réle impor-
tant dans cette théorie sous la forme qui lui a été donnée par
CHEVALLEY [10]: Si, a chaque valuation ¢, de la famille (¢,) ,¢1,

on assocle le complété IA{L de K pour cette valuation, on peut
définir un groupe des idéles! et un groupe de classes d’idéles
(quotient du groupe des idéles par le sous-groupe des idéles
principaux). La théorie du corps de classe décrit alors le groupe
de Galois de ’extension abélienne maximale de K comme quo-
tient du groupe des classes d’idéles par un certain sous-groupe
(voir par exemple WEIL [78]).

On voit donc toute 'importance qu’ont les valuations dans
la théorie des nombres. On en trouvera une utilisation systé-
matique dans I'ouvrage de HassE [16].

Nous voudrions dans ce qui suit donner des indications sur
une autre catégorie de problemes pour laquelle I'utilisation des
valuations (ou de conceptions les généralisant) ont permis de
faire d’importants progres, ce sont les problémes concernant la

divisibilité.

1 Soit P le produit direct T[] KL. Un élément a de P est dit un idéle si pour tous

el
les t € I, sauf un nombre fini, on a ¢,(a,) = 1 et si pour tout ¢+ €I on a e (a) # 0.

Les idéles forment un groupe multiplicatif.
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Un groupe abélien & est dit préordonné si on a défini entre
certains éléments de 5 une relation que l'on note <C et qui
vérifie les propriétés suivantes:

x <x pour tout x< @ (10)
x <<y et y <z entraine & <3 (11)
x <y entraine a3 <<ys pour tout <Y (12)
La relation d’équivalence sur O:
r=y 2 ax<y et y < (13)

est alors compatible avec la structure de groupe. L’ensemble
quotient G de & par cette relation d’équivalence est donc muni
canoniquement d’une structure de groupe ordonné. Le groupe
ordonné G est dit associé au groupe préordonné (9.

» étant un groupe abélien quelconque, se donner sur ¢ une
structure de préordre (compatible avec sa structure de groupe)
revient a se donner 'ensemble (8 formé par tous les éléments x
de & tels que 1 << x (grace a la relation » <<y == yax ' € ®.).
On voit que (5, est un sous-semi groupe de (. Réciproquement
la donnée d’un sous-semigroupe © de & permet de définir une
structure de préordre sur & (c’est une structure d’ordre si et
siseulement @ YO = {1}). Le groupe ordonné associé G est
filtrant® si et si seulement & est groupe des quotients de €.
On voit par suite qu’étudier la divisibilité des éléments de & par
rapport au sous-semigroupe (9. revient a étudier la structure
de préordre définie par &, sur & ou la structure d’ordre du
groupe ordonné associé G.

Si maintenant on se donne un ordre A d’'un corps K, A* est
un sous-semi-groupe multiplicatif de K* et définit done sur K*
une structure de préordre. Le groupe ordonné associé (v (qui est
filtrant) est dit groupe de divistbilité de K par rapport a Pordre A.

D’apres Kruir [39], pour que A soit intégralement clos 2 dans
K, il faut et 1l sullit que A soit l'intersection de tous les sur-

b Clesl-a-dire que pour loulb couple (a, b) ¢léments de G, il existe un ¢lément x
e Gotel que a, b < x.
2N estdil intégralement clos dans K si toul ¢lement de K veérifiant une équation
Vg forme ot wit—1 v - : o :
de fa forme x™ - ap X" - L @, = 0 avee a; << A(l < i1<n) est lui-méme continu
dans A,
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anneaux de valuation (contenus dans K) qui le contiennent.
Ceci revient a dire qu’il existe une famille de valuations (¢),¢;
de K telle que:

xe A == (pourtout tel ona ¢ (x) >0). (14%)

Par suite, s1 pour tout v € I I', désigne le groupe de valeurs de
la valuation ¢., dans le cas ot A est intégralement clos dans K,
on a obtenu une réalisation du groupe de divisibilité G corres-
pondant comme sous-groupe du produit direct ordonné

Hr =r1.
tel
Si A est entierement clos dans son corps des quotients K, la
donnée d’une famille de valuations de K telle que la relation (14)
soit vérifiée, permet parfois d’obtenir non seulement des ren-
seignements sur la divisibihité des éléments de K par rapport
a A, mais encore sur la divisibilité des A-idéaux fractionnaires
de K. En effet, si a tout sous-ensemble a de K borné inférieure-
ment (c’est-a-dire tel qu’il existe un élément a de K tel que
aC (a), (a) désignant le A-idéal principal engendré par a) on
fait correspondre le sous-ensemble a; défini de la fagon suivante:

x € a == pour tout vel, swa, ¢ atel que v (z) > v (a) (15)

on voit qu’on définit ainsi une opération de fermeture qui obéit
aux regles suivantes:

aCa; (16)
aC b — 0, C b (17)
Sia< K* {a} = (1) = aA (18)
aa, = (aa); (19)

On a donc ici des lois qui sont formellement les mémes que
celles qui lient un sous-ensemble (borné inférieurement) de K
a l'idéal engendré par cet ensemble. On appellera donc a; le
I-idéal engendré par a. Dans le cas ot un I[-idéal peut étre
engendré par un nombre fini d’éléments, on dira qu’il est fint.
On dira qu’un I-idéal a; est principal 1l est de la forme ().
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On peut remarquer de plus que si on désigne par a, I'idéal
ordinaire (ou idéal de Dedekind) engendré par a, on a toujours
a; C a;. Les [-idéaux sont donc des d-idéaux particuliers.

Comme pour les idéaux ordinaires, on peut définir la somme
et le produit de deux l-idéaux en posant:

a, b= (aU b, (20)
a X b= {al)

L : L i

On voit que la somme et le produit de deux I-idéaux finis est
encore un [-idéal fini et que I'idéal A = (1) est unité pour la
multiplication.

A la suite de 'introduction des ¢-idéaux par ArTIN et VAN
pER WAERDEN, PrUFER [61] a étudié systématiquement les
propriétés d'un systéme général de r-idéaux finis, c’est-a-dire
d’une correspondance qui a tout sous-ensemble fini a de K fait
correspondre un sous-ensembie a, de K tel que a, C a, et que
les relations (16) a (19) se trouvent vérifiées (en remplacant
partout le symbole I par r). PrUrer a été amené a intro-
duire les opérations sur ces r-idéaux et a envisager les quatre
propriétés suivantes:

r— o Tout r-idéal (fini) est principal,

r— f  Les radéaux (finis) forment un groupe multiplicatif,

r—— vy Les r-idéaux finis forment un semi-groupe, c’est-
a dire que: a, X 0, = a, X ¢, entraine b, = ¢,

r—— 8 [’anneau A est r-clos, ¢’est-a-dire quea, x (6) D a, X (¢)
entraine (0) D (c).

Chacune de ces propriétés est moins forte que la précédente.
De plus A est d-clos si et si seulement il est intégralement clos.
PrioFEr montra en outre que les propriétés d — B et d
sont équivalentes. Un anneau vérifiant la propriété d — § (les
idéaux finis forment un groupe ou encore tout idéal fini est
mversible) est appelé par KruLr anneau de multiplication.

Krurr [41] a donné une importante caractérisation des
anmeaux de multiplication: A est anneau de multiplication si
et sioseulement 1t est arithmétiqguement uitlisable, ¢ est-a-dire
intégralement clos dans son corps des quotients K et tel que,

Az

L linseignement mathém., T. 40, 1951-195%, 2
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si on considere la famille (¢,),.; de toutes les valuations de K
compatibles avec I'anneau A (une valuation ¢ de K sera dite
compatible avec un ordre A de K si et si seulement son anneau
de valuation contient A), les I-idéaux finis correspondants se
confondent avec les d-idéaux finis. Dans un tel anneau on peut
donc attribuer a tout idéal fini a; une valeur

o (ag) = inf (0 (1)) € T,

pour tout tel et on a:

r € a; == ¢ (x) > 9 (ay) pour tout vel. (22)

Pour décrire les idéaux infinis, il faut recourir a la notion
de surclasse d’un groupe totalement ordonné (introduite par
Krurr [39]). .

Si I' est un groupe totalement ordonné, on appelle surclasse
de I' un sous-ensemble € de I' borné inférieurement et tel que:

xe) et B=a-— Be. (23)

Une surclasse Q est dite principale si elle contient un plus petit
élément ®. On la note alors (w).

Lorsque A est un anneau de multiplication, on peut dans
certains cas montrer que les I-idéaux (en prenant pour I un
ensemble convenable de valuations de K compatibles avec A)
coincident avec les d-idéaux (et non plus seulement les I-idéaux
finis). Un 1déal a,; est alors défini en lui faisant correspondre
pour tout indice . une surclasse Q, = (¢,(a,)) de I',.. On a plus
précisément:

rea; == ¢ (x) € Q pour tout e l. (24)

Le probléme qui se pose alors est de savoir quelles conditions
doit remplir un systeme de surclasses arbitraires (£),.; pour
qu’il existe un idéal a, tel que (¢, (a,;)) = Q, pour tout vel.
Ce probleme a été résolu par KruLL dans le cas ou A est ’anneau
des entiers d’un corps algébrique infini [36]. Les valuations
étant alors de rang un, il a pu en déduire des conditions néces-
saires et suffisantes pour qu’étant donnés deux idéaux a, et b,
il existe un idéal ¢; avec a; = b; X ¢4 Nous I'avons résolu [25]
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dans le cas ol A est un anneau du type de Dedekind (c’est-a-dire
tel que tout idéal entier non nul de A ne soit contenu que dans
un nombre fini d’idéaux maximaux de A et que tout i1déal pre-
mier de A ne soit contenu que dans un idéal maximal). Dans
le cas ou 'anneau A est de plus uniforme, c¢’est-a-dire dans le
cas ou les valuations qui interviennent sont de rang un, les
résultats de Krull permettent alors de donner des conditions
nécessaires et suflisantes pour qu’étant donnés deux idéaux a,
et b, il existe un idéal ¢, tel que a;, = b; X ¢ .

Nous avons récemment pu étendre cette étude au cas ou A,
¢tant toujours supposé anneau de multiplication du type de
Dedekind, n’est plus supposé uniforme [26]. Pour cela nous
avons ¢été amené a étudier la divisibilité des idéaux dans un
anneau de valuation. Si ¢ est une valuation de K, © Panneau
de valuation correspondant et I' le groupe de valeurs, on sait
[39] quil y a correspondance biunivoque entre les ©@-idéaux
(entiers et fractionnaires) de K et les surclasses de I', la sur-
classe € correspondant a I'idéal a, étant ¢ (a,). Tout O-idéal
fini est alors principal. Il en est ainsi si et si seulement la surclasse
correspondante est principale. Au produit a;, x 0, correspond
la somme A + B des surclasses A et B relatives & a, et 0,
A - B est principale si et si seulement A et B le sont. Si I' est
archimédien, il est soit un groupe discret (auquel cas toute
surclasse est principale), soit un sous-groupe dense dans le
groupe additif R des nombres réels. A toute surclasse non prin-
cipale A on peut alors faire correspondre un nombre réel o
(et réciproquement) tel que:

Ee A= F > o (25)

On pose dans ce cas A = ((«)). (« n’est pas nécessairement
contenu dans I).

Cect permettait & KrurL de montrer que si I' est archi-
médien, étant données deux surclasses A et B, il existe une

surclasse C telle que A = B 4- C si et si seulement on est dans
Pun des deux cas suivants:

1) B est une surclasse principale,
2) Ni A ni B n’est principale.
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La situation est plus complexe si I' n’est plus supposé archi-
médien. II faut alors considérer I’ensemble (P,), 1y des surclasses
premiéres de I'. (Une surclasse P de I' est dite premiére si
PC(0)=T1_etsia, b =P entrainent a + b == P.) (P), ¢ 1 (et
par suite 1I) est totalement ordonné par la relation:

P, < Py=xP, CP, (26)

A une surclasse premiére P, on fait correspondre le sous-
groupe H, de I' engendré par les éléments positifs de I' qui ne
sont pas contenus dans P.. H, est un sous-groupe isolé de I'" [39],
c’est-a-dire que I', = I'/H, peut étre considéré comme totale-
ment ordonné par la relation:

o, () ¢ =>(y)c=aheH avecz +hey (27)

(, désigne ici I’homomorphisme canonique de I' sur I').

Nous avons montré qu’a toute surclasse A correspond un
indice o €Il appelé indice caractéristiqgue de A qui est le plus
grand possible tel que:

re A==9 (z) € o, (A (28)

(o, (A) est une surclasse de I').

Si I' est totalement ordonné on peut le munir d’une topologie
(compatible avec sa structure de groupe) en prenant pour
systéme fondamental de voisinages de O Pensemble: (U,) ;.-
défini par:

z2eUg 7= —a<z < a. (29)

On peut prolonger au complété I' la structure d’ordre
total de I". Si « est I'indice caractéristique de la surclasse A, la
surclasse ¢, (A) de I', est soit principale, soit telle qu’il existe
aaef‘a avec x, €9, (A)==zx, > a,.

Toute surclasse de I' se trouve alors parfaitement décrite
et 4 partir de la on peut trouver les conditions nécessaires et
suffisantes pour qu’étant données deux surclasses A et B, il
existe une surclasse C telle que A = B -+ C.

Au moyen d’une famille de valuations qui sont compatibles
avec cet anneau, on peut facilement caractériser les ordres




LA NOTION DE VALUATION 19

d'un corps qui sont des anneaux factoriels (tout élément est
produit d’éléments premiers), et les anneaux de Dedekind (tout
idéal est produit d’idéaux premiers), et démontrer & partir
de 14 certains théoremes de permanence (par exemple si A est
factoriel, Panneau de polynomes A [z] Pest aussi, si A est un
anneau de Dedekind et si Q est une extension algébrique finie
de I’anneau des quotients K de A, I'ensemble B des éléments
de Q entiers sur A est aussi un anneau de Dedekind). On pourra
consulter a ce sujet [6], [25], [55], [57] et le chapitre 4 de [70].

Dans un mémoire paru en 1939 [46], LorENzZEN a jeté les
bases d’une étude systématique des groupes préordonnés (abé-
liens). 11 a défini pour un groupe préordonné (§ la notion de
systéme de r-idéaux dans toute sa généralité ainsi que la notion
de systéme de r-idéaux finis. 11 a étendu a un tel systeme les
résultats de PrUFER sur les propriétés r — o, r — 3,7 — v et
r— 9. Enfin il a étudié les réalisations du groupe ordonneé
associé G comme sous-groupe d'un produit direct de groupes
totalement ordonnés en étendant la méthode utilisée par KruLrr
dans le cas du groupe de divisibilité d’un anneau intégralement
clos. Etant donné un systame de r-idéaux (finis ou non), il a été
pour cela amené a considérer les homomorphismes croissants ¢
de & sur un groupe totalement ordonné I' tels que:

p(a) c I'_  entraine ofa) ', . (30)

Nous proposons d’appeler un tel homomorphisme une
r-valuation de .

On voit que si A est un ordre du corps K, les d-valuations
de K sont les valuations de K compatibles aveec A. On définit
alors la notion de semi-groupe de r-valuation. Le théoréme de
Kruri s’étend de la maniére suivante: © vérifie la propriété
r— o finie si et si seulement ® . est intersection de semi-
groupes de r-valuation. LorENzEN en déduit en particulier
quun groupe ordonné G est réalisable comme sous-groupe d’un
produit direct de groupes totalement ordonnés si et si seulement
il est semi-clos, c’est-a-dire si pour tout entier strictement
positif n et tout z € G la relation nx > 0 entraine z > 0.
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Si le groupe G est réticulé, un homomorphisme croissant ¢
de G sur un groupe totalement ordonné est dit propre si:

¢ (inf (z, y)) = inf (¢ (x), ¢(y)) pour tout 2z, ycG  (31)

Or de tels homomorphismes de G sont précisément les ¢-valua-
tions de G, le t-systeme étant le r-systeme particulier défini par:

zTE€aqEZAay, ..., ap € a avec z = inf (e, ..., a,) (32)

Comme un groupe réticulé vérifie la propriété ¢ — 3 finie,
LoreNZEN en déduit qu’'un groupe réticulé G est toujours
réalisable d’une maniére propre comme sous-groupe d’un
produit direct G' de groupes totalement ordonnés, c’est-a-dire
de maniére que les opérations sup. et inf. coincident sur G et
sur G’

DieupoNNE [15] a complété sur certains points la théorie
de LorENZEN et a montré que le résultat sur les groupes semi-
clos pouvait s’obtenir en considérant certaines s-valuations
particuliéres * d’'un groupe ordonné G qui sont les affinements
de sa structure d’ordre.

Nous avons obtenu des précisions sur les réalisations d’un
groupe réticulé en introduisant pour de tels groupes la notion
de réalisation rréductible ([22] et [24]): Etant donnée une

réalisation propre de G dans II I', la composante « €l sera
L€l
dite essentielle si ’homomorphisme croissant de G dans II I, ne
t£ o
définit plus une réalisation de G. La réalisation de G dans

I ', sera dite irréductible si toutes les composantes v el sont
el
essentielles. Nous avons montré que deux réalisations irré-

ductibles d’un groupe réticulé sont identiques. On en déduit en
particulier qu'un groupe réticulé ne peut étre réalisé que d’une
maniére comme somme ou produit direct de groupes totalement
ordonnés. Pour cela nous avons été amenés a introduire dans

1 Le s-systéme est défini par:

x<as';zsra < q avec a=x .
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un groupe réticulé la notion de filet. Les filets de G sont les
classes d’équivalence définies dans G . par:

=y == (pour tout s ¢ G_, inf (x, 5) = 0 == inf (y, z) = 0) . (Y) (33)

En désignant par x le filet qui contient z € G, on voit que
Iensemble & des filets est ordonné par la relation:

£ gt (pour tout ze G_,inf (v, 5) = 0 —> inf (y, z) = 70) .

L’ensemble & admet le plus petit élement 0 = {0}. Un

filet x sera dit minimal §'il est différent de O et si y << x entraine

g == .

G admet une réalisation irréductible si et si seulement tout
filet de G différent de O est supérieur ou égal a un filet minimal.
Les t-valuations essentielles de G sont alors définies simplement
a partir des filets minimaux correspondants.

Lorsque le groupe ordonné G n'est plus réticulé, de nom-
breux probléemes se posent encore sur les réalisations de G
comme sous-groupe d’un produit direct de groupes totalement
ordonnés.

Les valuations non archimeédiennes ont été étendues au cas
ot le corps considéré n’est plus commutatif. (ScHiLLing [69]
et [70].) Le groupe de valeurs peut alors ne plus étre abélien.
Toutefois, d’aprés un théoreme d’H. Carrtan, le groupe de
valeurs est strement abélien §’il est archimédien [8]. LoreNzEN
[46] a étendu de méme sa théorie au cas d’un groupe préordonné
non abélien.

Enfin toute une série de recherches sur la topologie des corps
valués ont été entreprises. Les travaux de SmararmviTcu [72],
KarLaxsky [29] et Zevinsky [80] ont permis de donner des
conditions nécessaires et suffisantes pour qu'un corps topo-
logique ait sa topologie induite par une valuation:

Soit K un corps commutatif possédant une topologic compa-
tible avee sa structure d’anneau (la fonetion 1/z n’est pas

"oCeble relation d’equivalenee est un cas particulier des ¢quivalences principales
dans les demi-groupes qui jouent un role important dans cette théorie. (Voir par
exemple o Dubreil: Coulribution & la théorie des dewi-groupes, €. R. Acad. Sc. Paris,
Lo65 (19%1), pp. 1-52)
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supposée continue). Un sous-ensemble A de K sera dit borné si
pour tout ensemble ouvert V contenant O on peut trouver un
ouvert U contenant O tel que AU C V.

Un élément x de K sera dit nilpotent si 2" tend vers O lorsque
n croit indéfiniment. Pour que la topologie de K puisse étre
définie par une valuation non archimédienne, il faut et il suffit
que les deux conditions suivantes se trouvent réalisées:

10 S1 A est un sous-ensemble de K auquel O n’est pas adhé-
rent, A™! est borné.

20 II existe un sous-groupe additif de K qui soit & la fois
borné et ouvert.

Pour que la topologie de K puisse étre définie par une valua-
tion archimédienne ou par une valuation non archimédienne de
rang un, il faut et il suffit que la condition 1° se trouve vérifiée
ainsi que:

20 [’ensemble des éléments nilpotents est ouvert.

Les corps topologiques (non nécessairement commutatifs)
vérifiant la condition 1° ont été étudiés par KAPLANSKY sous le
nom de corps du type V [29]. Ils possedent déja certaines pro-
priétés des corps valués. Les résultats de SHAFAREVITCH et
KarLANSKY montrent que tout corps (commutatif ou non)
localement compact a sa topologie induite par une valuation
(non exponentielle). BRACONNIER [7] a établi ce résultat directe-
ment en remarquant que dans un tel corps la multiplication
par un élément x multiplie la mesure de HaAar par un facteur
constant ¢ (z) qui se trouve étre la valuation cherchée. On
trouvera dans [30] un exposé et une bibliographie détaillée de
ces questions.
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LA GEOMETRIE DES SOUS-VARIETES D'UN
ESPACE EUCLIDIEN A PLUSIEURS DIMENSIONS!?

PAR

Shiing-Shen CuHERN (Chicago).

La géomeétrie des sous-variétés d’un espace euclidien de
dimension quelconque contient naturellement comme cas parti-
culiers I’étude des courbes et des surfaces de I’espace euclidien
ordinaire. Cependant, malgré 'histoire trés ancienne du sujet,
nos renseignements dans le cas général sont assez maigres. Dans
cette conférence je me propose de parler de quelques progres
qul ont été accomplis récemment.

1. — Soient En*-¥ I'espace euchidien a n 4 NV dimensions
et M une variété différentiable a n dimensions régulierement
plongée dans En~. Cela signifie que tout point de M a un
voisinage dans lequel la variété peut étre définie en exprimant NV
coordonnées de E"* comme des fonctions des n autres coor-
données ayant des dérivées partielles continues d’un ordre assez

t Conférence faite & la seéance de la Société mathématique suisse, tenue & Berne
le 7 juin 1953.
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