Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 40 (1951-1954)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

**Artikel:** PROPOS DU TRANCHET D'ARCHIMÈDE

Autor: Thébault, Victor

**DOI:** https://doi.org/10.5169/seals-515811

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## A PROPOS DU TRANCHET D'ARCHIMÈDE

PAR

Victor Thébault, Tennie (France).

Nous avons donné ici même deux articles relatifs à cette figure universellement connue et qui sert souvent de thème à des questions d'examens, sans avoir pour autant épuisé le sujet <sup>1</sup>. La présente note y revient avec une configuration plus générale que celle envisagée par Archimède.

1. — Aux extrémités A, B d'une corde donnée d'un cercle (O), de rayon R, on trace deux cercles arbitraires (O<sub>1</sub>), (O<sub>2</sub>), de rayons R<sub>1</sub>, R<sub>2</sub>, tangents intérieurement au cercle (O) en A, B, et les cercles ( $\omega_1$ ), ( $\omega_2$ ), de rayons  $\rho_1$ ,  $\rho_2$ , tangents à la fois aux cercles (O), (O<sub>1</sub>), (O<sub>2</sub>); puis on pose

$$\mathrm{OO_1} = a$$
 ,  $\mathrm{OO_2} = b$  ,  $\theta = \mathrm{angle} \; (\mathrm{AB} \; \text{, AO}) \; \text{,} \; \; \phi = \mathrm{angle} \; (\mathrm{O}\omega_1 \; \text{, Oz}) \; \text{.}$ 

Théorème. On a la relation

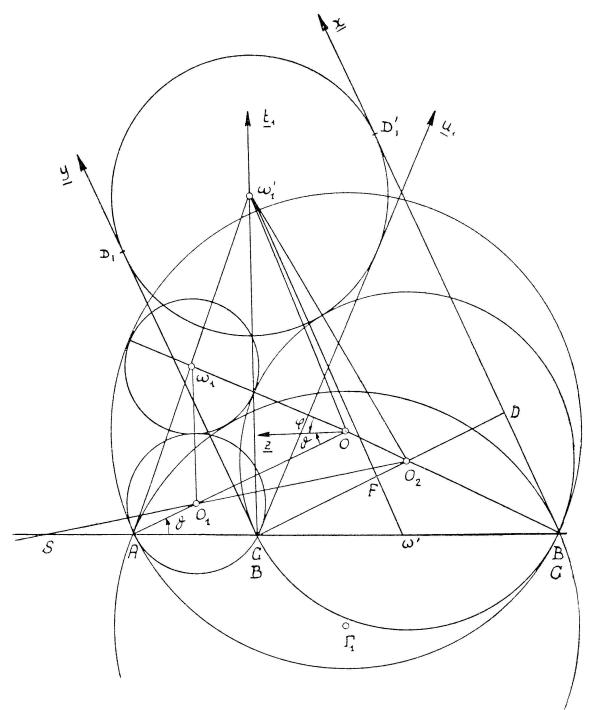
$$\frac{1}{\rho_1} + \frac{1}{\rho_2} = \frac{2}{\cos^2 \theta} \cdot \left[ \frac{1}{a} + \frac{1}{b} - \left( \frac{1 + \sin^2 \theta}{R} \right) \right] \tag{1}$$

entre les éléments de la figure (fig. 1).

Dans chacun des triangles  $O\omega_1O_2$ ,  $O\omega_1O_1$ , on obtient, d'abord,

$$\begin{array}{l} \overline{O_2\,\omega_1^2} = \,\overline{OO_2^2} + \,\overline{O\omega_1^2} + \,2OO_2 \,.\; O\omega_1\cos{(\phi-\theta)} \\ \overline{O_1\,\omega_1^2} = \,\overline{OO_1^2} + \,\overline{O\omega_1^2} - \,2OO_1 \,.\; O\omega_1\cos{(\phi+\theta)} \,\,, \end{array}$$

<sup>1</sup> L'Ens. math., vol. 33, 1934, pp. 349-359; vol. 34, 1935, pp. 309-324.



ensuite

$$\begin{array}{lll} & \alpha~(\mathrm{R}-\rho_1)~\cos~(\phi+\theta)~=~2\mathrm{R}\,\rho_1-\alpha~(\mathrm{R}-\rho_1)\\ -& b~(\mathrm{R}-\rho_1)~\cos~(\phi-\theta)~=~2\mathrm{R}\,\rho_1-b~(\mathrm{R}-\rho_1) \end{array}\;,$$

puis, en multipliant les deux membres de ces égalités par b et a, en ajoutant et retranchant,

$$\begin{array}{lll} ab & (\mathbf{R} - \mathbf{p_1}) \, \sin \, \varphi \, \sin \, \theta \, = \, (a \, + \, b) \, \, \mathbf{R} \, \mathbf{p_1} - ab \, \left( \mathbf{R} \, + \, \mathbf{p_1} \right) \\ ab & (\mathbf{R} - \mathbf{p_1}) \, \cos \, \varphi \, \sin \, \theta \, = \, (a \, - \, b) \, \, \mathbf{R} \, \mathbf{p_1} \end{array} ,$$

et enfin

$$\left[\frac{\left(a+b\right)\operatorname{R}\rho_{1}-ab\left(\mathrm{R}+\rho_{1}\right)}{ab\left(\mathrm{R}-\rho_{1}\right)\sin\,\theta}\right]^{2}+\left[\frac{\left(a-b\right)\operatorname{R}\rho_{1}}{ab\left(\mathrm{R}-\rho_{1}\right)\cos\,\theta}\right]^{2}=\sin^{2}\varphi+\cos^{2}\varphi=1\ .$$

L'Enseignement mathémat., T. 40, 1951-1954.

Il en résulte l'équation du second degré en ρ<sub>1</sub>

$$[(a^{2} + b^{2}) + 2ab\cos\theta] R^{2} - 2ab(a + b) R\cos^{2}\theta - (ab\sin\theta\cos\theta)^{2}] \cdot \rho_{1} - 2ab R\cos^{2}\theta [(a + b) R - ab(1 + \sin^{2}\theta)] \cdot \rho_{1} + (abR\cos^{2}\theta)^{2} = 0$$
 (2)

dont les racines donnent les mesures des rayons  $\rho_1$ ,  $\rho_2$  des cercles  $(\omega_1)$ ,  $(\omega_2)$ . Des relations classiques entre la somme et le produit des racines de cette équation, on déduit l'égalité (1) qui, pour  $\theta = 0$ , se réduit à la formule bien connue <sup>1</sup>

$$\frac{1}{\rho_1} = \frac{1}{\rho_2} = \frac{1}{a} + \frac{1}{b} - \frac{1}{R} ,$$

lorsque la corde AB se confond avec un diamètre du cercle (O). (Tranchet d'Archimède.)

COROLLAIRE. Si la somme  $\frac{1}{a} + \frac{1}{b}$  conserve une valeur constante, il en est de même de la somme  $\frac{1}{\rho_1} + \frac{1}{\rho_2}$  et, dans cette hypothèse, la droite  $O_1$   $O_2$  passe par un point fixe.

La constance des deux sommes provient de la formule (1). D'autre part, les cercles  $(\omega_1)$ ,  $(\omega_2)$  sont les transformés du cercle (O) par l'inversion de module  $\overline{PA}^2 = \overline{PB}^2$ , dont le centre coı̈ncide avec le pôle P de la corde AB par rapport au cercle (O), et la droite  $O_1$   $O_2$  passe par un point fixe situé sur OP.

Théorème. Les centres de similitude  $S_1$ ,  $S_2$  des cercles  $(\omega_1)$ ,  $(\omega_2)$  avec le cercle (O) sont situés sur l'axe radical des cercles  $(O_1)$ ,  $(O_2)$  et les cercles de centres  $S_1$ ,  $S_2$  orthogonaux aux cercles  $(O_1)$ ,  $(O_2)$  sont tangents au cercle (O).

Il suffit, en effet, d'appliquer le théorème de Stewart au triangle  $O\omega_1$   $O_1$  et à la cévienne  $O_1$   $S_1$  qui partage le segment  $O\omega_1$  dans le rapport  $OS_1$ :  $O\omega_1 = R$ :  $\rho_1$  pour obtenir, après réductions et par analogie, les expressions

$$(P_1) = \left(\frac{2R\rho_1}{R+\rho_1}\right)^2, \qquad (P_2) = \left(\frac{2R\rho_2}{R+\rho_2}\right)^2$$

des puissances des points  $S_1$ ,  $S_2$  par rapport aux cercles  $(O_1)$ ,  $(O_2)$ . De plus, les rayons des cercles de centres  $S_1$ ,  $S_2$  orthogonaux

<sup>1</sup> Journal de Bourger, 1878-287, question 113.

aux cercles (O<sub>1</sub>), (O<sub>2</sub>) ont pour mesures

$$\frac{2\mathrm{R}\,\rho_1}{\mathrm{R}\,+\,\rho_1} = \,\mathrm{R}\,-\frac{\mathrm{R}\,\left(\mathrm{R}\,-\,\rho_1\right)}{\mathrm{R}\,+\,\rho_1} = \,\mathrm{R}\,-\,\mathrm{OS}_1 \ \mathrm{et} \ \mathrm{R}\,-\,\mathrm{OS}_2 \ ,$$

ce qui achève d'établir la proposition.

Théorème. Si l'on trace des cercles  $(O_1)$ ,  $(O_2)$  tangents au cercle (O) en A, B et des cercles  $(O_1')$ ,  $(O_2')$  tangents au cercle (O) en A, B, de manière que  $OO_2 = AO_1'$ ,  $OO_1 = BO_2'$ , les cercles tangents aux cercles (O),  $(O_1)$ ,  $(O_2)$  et (O),  $(O_1')$ ,  $(O_2')$  sont tangents au cercle (O) aux mêmes points.

En effet, les points de contact du cercle (O) avec les cercles  $(\omega_1)$ ,  $(\omega_2)$  tangents aux cercles (O),  $(O_1)$ ,  $(O_2)$  coïncident avec les contacts des tangentes au cercle (O) menées par le point  $S \equiv (AB, O_1 O_2)$  avec celui-ci et qui se confondent nécessairement avec les points de contact du cercle (O) avec les cercles  $(\omega_1)$ ,  $(\omega_2)$  tangents aux cercles (O),  $(O_1)$ ,  $(O_2)$ , car les points A, B étant antihomologues sur les cercles  $(O_1)$  et  $(O_2)$ ,  $(O_1)$  et  $(O_2)$ , les droites AB,  $(O_1 O_2)$ ,  $(O_2)$  sont concourantes.

2. — Dans ce qui suit, on suppose que le cercle (O) et la corde AB restent fixes, tandis que les cercles  $(O_1)$ ,  $(O_2)$  sont variables et se coupent en un point C qui se déplace sur la corde AB entre A et B.

Dans ces hypothèses, il est clair que les cercles  $(O_1)$ ,  $(O_2)$  se rencontrent sous un angle constant  $(OB, AO) = 2\theta'$  (figs. 1-2).

D'autre part, par l'inversion i de pôle A, dont la puissance est  $\overline{AB}$ .  $\overline{AC}$ , les points B, C s'échangent, le cercle  $(O_2)$  se transforme en lui-même, tandis que les cercles  $(O_1)$ , (O) se changent en deux droites Bx, Cy perpendiculaires à la droite AO, dont la première coupe le cercle  $(O_2)$  sous l'angle  $2\theta'$ , alors que la seconde est tangente au cercle  $(O_2)$  en C; les cercles  $(\omega_1)$ ,  $(\omega_2)$  tangents aux cercles (O),  $(O_1)$ ,  $(O_2)$  se transforment en deux cercles égaux  $(\omega_1)$ ,  $(\omega_2)$ , de rayon  $\rho_1' = \rho_2'$ , tangents au cercle  $(O_2)$  et aux droites Bx, Cy.

Théorème. Les cercles  $(\omega_1)$ ,  $(\omega_2)$  enveloppent le cercle (O) et, chacun, un cercle  $(\Gamma_1)$ ,  $(\Gamma_2)$  et leurs centres  $\omega_1$ ,  $\omega_2$  décrivent,

chacun, une ellipse  $(E_1)$ ,  $(E_2)$  ayant pour foyer commun le centre O du cercle (O) et pour second foyer le centre  $\Gamma_1$ ,  $\Gamma_2$  du cercle  $(\Gamma_1)$ ,  $(\Gamma_2)$ .

Il suffira d'examiner ce qui se passe pour le cercle  $(\omega_1)$ . Si l'on désigne par D, F les points de rencontre de la droite  $O_2$  C avec la droite Bx et la parallèle à celle-ci menée par le centre  $\omega_1$  du cercle  $(\omega_1)$ , d'après ce qui précède, on obtient les relations

$$\begin{split} \mathrm{O_2\,D} \, = \, \mathrm{R_2\,cos} \,\, 2\theta' \,\,, \quad 2\rho_1^{'} \, = \, \mathrm{CD} \, = \, \mathrm{CO_2} \, + \, \mathrm{O_2\,D} \, = \, \mathrm{R_2} \,\,. \,\, (1 \, + \, \mathrm{cos} \,\, 2\theta') \,\,, \\ \mathrm{O_2\,F} \, = \, \mathrm{FD} \, + \, \mathrm{DO_2} \, = \, \rho_1^{'} \, - \, \mathrm{O_2\,D} \, = \, \frac{\mathrm{R_2}}{2} \,\, (1 \, - \, \mathrm{cos} \,\, 2\theta') \,\,, \end{split}$$

dont il résulte que le rapport  $\frac{O_2 \, F}{O_2 \, C}$  et, par suite, le rapport  $\frac{FC}{F\omega_1'}$ , conservent des valeurs constantes. Le triangle  $O_2 \, \omega_1' C$  reste donc semblable à lui-même quand le point C varie sur AB.

L'inversion i intervertit les points B, C et dans cette seconde figure, si A, B sont des points fixes, le centre  $\omega_1$  du cercle  $(\omega_1)$  décrit une droite fixe B $t_1$  passant par B. La seconde tangente B $u_1$  à ce cercle est donc fixe. Dès lors, dans la figure initiale, lorsque C varie entre A et B, le cercle  $(\omega_1)$  reste tangent aux deux cercles fixes (O),  $(\Gamma_1)$  inverses des droites  $By \equiv Cy$  et  $Bu_1$ . Puisque le cercle  $(\omega_1)$  touche le cercle (O) intérieurement et le cercle  $(\Gamma_1)$  extérieurement, son centre décrit une ellipse  $(E_1)$  de foyers O et  $\Gamma_1$ . Il est évident que les enveloppes du cercle  $(\omega_1)$  et le lieu de son centre  $\omega_1$  sont composés des arcs de (O),  $(\Gamma_1)$ ,  $(E_1)$  situés au-dessus de AB.

COROLLAIRE. Le cercle ( $\gamma$ ) transformé d'une droite arbitraire  $B\Delta$  située à l'intérieur de l'angle des tangentes By,  $Bu_1$  au cercle ( $\omega_1$ ) de la seconde figure, par l'inversion i, rencontre les cercles correspondants ( $\omega_1$ ) de la première sous un même angle.

Car la droite  $B\Delta$  coupe les cercles  $(\omega_1)$  sous un même angle. En particulier, le cercle  $(\gamma)$  qui correspond à la droite  $Bt_1$  coupe orthogonalement tous les cercles  $(\omega_1)$ , lorsque C varie entre A et B.

3. — Supposons maintenant que le point C reste fixe entre A et B et modifions légèrement les notations. Soient  $(\omega_1)$ ,  $(\omega_2)$ ,

 $(\omega_3), ..., (\omega_n)$  les cercles, de rayons  $\rho_1, \rho_2, ..., \rho_n$ , tangents respectivement aux trois cercles  $[(O), (O_1), (O_2)], [(O), (O_1), (\omega_1)], [(O), (O_1), (\omega_2)], ..., [(O), (O_1), (\omega_{n-1})].$ 

Théorème. Le centre  $\omega_k$ ,  $(1 \leqslant k \leqslant n)$ , de l'un des cercles de la couronne de cercles  $(\omega_1)$ ,  $(\omega_2)$ , ...,  $(\omega_n)$  décrit une ellipse  $(E_k)$  ayant pour foyers les centres O,  $O_1$  des cercles (O),  $(O_1)$  et un sommet en A.

Car

$$OO_k + O_1O_k = R - \rho_k + R_1 + \rho_k = R + R_1$$
;

de plus,  $(E_k)$  passe par le point A qui est une position limite du centre  $\omega_k$  du cercle  $(\omega_k)$ .

Les centres des cercles de la couronne de cercles déterminée par les cercles (O), (O<sub>1</sub>), au-dessous de AB, appartiennent aussi à l'ellipse ( $E_k$ ). Ceux des cercles des couronnes de cercles relatives aux cercles (O), (O<sub>2</sub>), au-dessus et au-dessous de AB, sont situés sur une autre ellipse de foyers O, O<sub>2</sub> ayant un sommet en B.

Notes. — 1. Si l'on transforme la figure par l'inversion i, les cercles  $(\omega_k)$  se changent en des cercles égaux  $(\omega_k)$  dont les centres  $\omega_k$  sont alignés sur une perpendiculaire à la droite AO. Le cercle  $(\gamma)$  transformé d'une droite arbitraire située entre les tangentes By et Bu<sub>1</sub> à ces cercles, rencontre les cercles  $(\omega_k)$  sous le même angle. En particulier, le cercle transformé de leur ligne des centres  $B\omega_k$  est orthogonal aux cercles  $(\omega_k)$ .

- 2. Lorsque le point C varie entre A et B, les cercles  $(\omega_k)$  envisagés se transforment par l'inversion i en une suite de cercles  $(\omega_k)$  dont le cercle  $(\omega_1)$  considéré au paragraphe 2 fait partie. La tangente  $Bu_k$  relative au cercle  $(\omega_k)$ , de rang k, de cette suite reste fixe; de sorte que le cercle  $(\omega_k)$  qui lui correspond enveloppe le cercle (O) et un cercle  $(\Gamma_k)$ , passant par A et B, et son centre  $\omega_k$  décrit une ellipse  $(E_k)$  de foyers O,  $\Gamma_k$ .
- 3. Considérons la chaîne de cercles  $(\omega_1)$ ,  $(\omega_2)$ , ...,  $(\omega_n)$ , de rayons  $\rho_1$ ,  $\rho_2$ , ...,  $\rho_n$ , tangents aux trois cercles (O),  $(O_2)$ ,  $(\omega_1)$ , et tangents entre eux de proche en proche. L'inversion i transforme ces cercles en les cercles égaux  $(\omega_1)$ ,  $(\omega_2)$ , ...,  $(\omega_n)$ ,

de rayons  $\rho_1'$ , tangents aux droites parallèles By et Cx, respectivement en  $D_1$ ,  $D_2$ , ...,  $D_n$  et  $D_1'$ ,  $D_2'$ , ...,  $D_n'$ . Désignons par M et N les points de contact de  $(\omega_1'$  et  $(O_2)$  et le point de rencontre de la tangente à ces deux cercles en M avec By; par  $\omega_1''$ ,  $\omega_1'''$  et  $\omega'$  les projections orthogonales de  $\omega_1$ ,  $\omega_1'$  sur AB et le milieu de BC (fig. 2).

On obtient déjà

$$BC = 2R_2 \sin \theta'$$
,  $\rho_1^{'} = \frac{BC}{2} \sin \theta' = R_2 \sin^2 \theta'$ ,

puis

$$D_1\,B\,=\,2MN\,=\,2\sqrt{R_2\,\rho_1^{'}}\,=\,2R_2\sin\,\theta^\prime\;, \qquad DC\,=\,R_2\sin\,2\theta^\prime\;,$$
 ce qui donne, d'abord,

tang 
$$D_1 B \omega_1' = \frac{\rho_1'}{D_1 B} = \frac{1}{2} \sin \theta'$$
,

ensuite, de proche en proche,

$$\begin{split} \tan \mathbf{D_2} \mathbf{B} \mathbf{\omega_2'} &= \frac{\mathbf{\rho_1'}}{2\mathbf{\rho_1'} + \mathbf{D_1} \, \mathbf{B}} = \frac{\sin \, \theta'}{2 \, \left( 1 + \sin \, \theta' \right)} \,, \, \ldots \,, \\ \tan \mathbf{D_n'} \mathbf{B} \mathbf{\omega_n'} &= \frac{\sin \, \theta'}{2 \, \left[ 1 + \left( n - 1 \right) \, \sin \, \theta' \right]} \,. \end{split}$$

Si  $\theta' = \frac{\pi}{2}$ , on retrouve la figure du tranchet pour laquelle

tang 
$$D_n B \omega_n' = \frac{1}{2n}$$
.

D'autre part,

$$\omega_{1}^{'}\omega' = \frac{1}{2}(D_{1}B + D_{1}^{'}C) = R_{2}\sin\theta'(2 + \cos\theta')$$
;

et, comme les cercles  $(\omega_1)$  et  $(\omega_1)$  se correspondent, à la fois, dans l'inversion i et dans une homothétie de pôle A,

$$\frac{\omega_1 \; \omega_1^{''}}{2 \rho_1} = \frac{\omega_1^{'} \; \omega_1^{'''}}{2 \rho_1^{'}} = \frac{1}{2} \left(2 \, + \, \cos \, \theta^{\prime}\right) \; .$$

C'est la formule connue

$$\frac{\omega_1 \, \omega_1^{''}}{2\rho_1} = 1$$

relative au tranchet, quand  $\theta' = \frac{\pi}{2}$ .

Les mêmes conclusions ont lieu pour la chaîne des cercles analogues tangents aux trois cercles (O),  $(O_1)$ ,  $(\omega_1)$ .

4. — Cas particulier: tranchet d'Archimède. Tout ce qui précède s'applique à cette figure dans laquelle la corde AB se confond avec un diamètre du cercle (O). Certaines des propriétés invoquées présentent cependant un intérêt particulier. Ainsi, en conservant la figure et les notations du paragraphe 3:

Les cercles  $(\omega_k)$  sont orthogonaux au cercle décrit sur la distance du point A à son conjugué harmonique A', par rapport à C et B, comme diamètre et le cercle décrit sur un segment arbitraire AI dont l'extrémité I est centre A et A', comme diamètre, coupe les cercles  $(\omega_k)$  sous le même angle.

Cette allusion au tranchet d'Archimède nous incite, pour terminer, à rappeler un triangle spécial dont nous avons signalé de très nombreuses propriétés <sup>1</sup>.

Si l'on considère deux cercles arbitraires  $(O_1)$ ,  $(O_2)$  tangents intérieurement au cercle (O) aux extrémités A et B d'un diamètre de celui-ci et tels que  $OO_1 = a$ ,  $OO_2 = b$ , en se rapportant à deux axes rectangulaires suivant les diamètres perpendiculaires AB,  $A_1B_1$  du cercle (O), on obtient les coordonnées

$$x_{_{\mathrm{H}}} = \frac{(a-b)(2R-a-b)R}{(a+b)R-ab}.$$
  $y_{_{\mathrm{H}}} = R - \frac{(a^2+b^2)R}{(a+b)R-ab},$  (3)

$$x_{\omega} = \frac{(a-b) R^2}{(a+b) R - ab}, \qquad y_{\omega} = \frac{2R \sqrt{ab (R-a) (R-b)}}{(a+b) R - ab}, \quad (4)$$

d'une part, de l'orthocentre H du triangle PQV dont les sommets P, Q et V coïncident avec les milieux des demi-circonférences  $(O_1)$ ,  $(O_2)$ , au-dessus de AB, et avec celui de la demi-circonférence (O), au-dessous de AB; d'autre part, du centre  $\omega$  du cercle tangent aux cercles (O),  $(O_1)$ ,  $(O_2)$ .

Dans le tranchet, où a + b = R, on obtient  $x_{H} = x_{\omega}$ , et, d'après (3), (4), la droite  $\omega H$  qui joint le centre du cercle inscrit au tranchet à l'orthocentre du triangle PQV est perpendiculaire au diamètre AB du cercle (O) et réciproquement.

(20 octobre 1950.)

<sup>1 1935,</sup> loc. cit.