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SUR L'« INDÉFINIMENT» MATHÉMATIQUE

PAR

Henri Lorent (Bruxelles)

L'adverbe indéfiniment a cours, en mathématiques, dans
diverses circonstances. Notre intention est de chercher à

préciser à quels genres d'opérations il prépare une conclusion, et
de juger s'il ne prête à aucun reproche. Pour atteindre ces buts,
il nous sera utile de faire usage du vocabulaire de la théorie
des ensembles; nous allons rappeler dans quelle mesure.

I

L Un ensemble de noix est distingué des autres ensembles
de noix par le nombre de ses noix; tout ensemble d'êtres concrets
est fini. En mathématiques, il y a des ensembles de nombres
qui n'ont pas de fin, des ensembles qualifiés trans finis.

Un premier type d'ensemble transfini a pour modèle la suite
des nombres entiers naturels:

1, 2, 3. 4, n, n f 1, etc., etc. (i) ;

chacun a un suivant par l'addition d'une unité, et cela indéfiniment.

Ce type d'ensemble est dit dénombrable; il resterait
dénombrable si bon en retranchait quelques-uns des premiers
termes.

Tout autre ensemble que l'on peut faire correspondre, terme
pour terme, à celui des nombres entiers est aussi dénommé
dénombrable; par exemple le suivant, formé des nombres pairs

2, 4, 6, 8, 2//, 2 (n + 1) ;

1/Enseignement nialhénuiL, T. U), 1951-1 05\.
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On voit que ce dernier a tous termes appartenant à
l'ensemble des nombres entiers; il est dit pour cela sous-ensemble
du premier; en voici d'autres:

3, 6, 9, 12, 3n, 3 (n + 1)

n,2 n,3 n,in,n.n, + 1)

12, 22, 32, 42, l)2

13, 23, 33, 43, n3, + l)3

Un ensemble fini en sous-ensembles de (1) peut-il épuiser
(1)

Celui des nombres pairs et celui des nombres impairs l'épui-
sent, mais pour d'autres plus restreints on ne peut l'affirmer.

Voici d'autres exemples d'ensembles dénombrables dont les
termes (correspondant aux entiers à partir de 2) ne sont pas
entiers :

7., V„ •••

V/2,'\/3?A/4 ••• A/n \/n + 1

le lecteur en construira aisément autant qu'il le voudra, un
nombre « indéfini ».

2. — Un second type d'ensemble mathématique est la ligne
droite, ensemble de ses points. Un point de la droite distinct
d'un autre ne peut lui être dit suivant ou consécutif, car un
segment AB de droite correspond point pour point à une demi-
droite indéfinie BX.

En effet, projetons AB sur BX d'un point P tel que PA soit
parallèle à BX; tout point C de AB est projeté sur BX en un
point C', y compris le point A qui est projeté à l'infini sur BX.

Si nous marquons sur BX les points dont les distances à B

sont mesurées par les termes d'un des ensembles dénombrables
ci-dessus, nous formerons un sous-ensemble dénombrable de

l'ensemble des points de BX; ce dernier ensemble est dénommé
ensemble qui a la puissance du continu (en abrégé: ensemble

continu).
Voici d'autres exemples d'ensembles continus: une courbe

quelconque, plane ou gauche, ensemble de ses points; un rec-
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tangle, ensemble continu des parallèles à sa hauteur menées par
un point de l'ensemble continu de sa base; une pyramide
triangulaire SABC, ensemble continu des triangles SAD menés

par son arête S'A et les points de son autre arête BC; une sphère,
ensemble continu des grands cercles menés par un de ses

diamètres, etc...
Nous y reviendrons à partir de la mesure de certains d'entre

eux.

** *

3. — Revenons à F adverbe indéfiniment. Comment le pré-
sente-t-on aux débutants en géométrie élémentaire, quand on

l'y rencontre
Puisqu'on va leur faire faire des constructions géométriques

(si on leur fait jouer quelque activité dans leur information
scientifique), il leur faut au préalable vérifier leur planche à

dessin; pour cela, on leur fera fixer une fine ficelle en un point du
contour de la planche; tournant autour de ce point, la ficelle doit
balayer la planche sans heurter des saillies ni enjamber des

dépressions; si le même résultat est atteint aussi à partir d'un
autre point du contour de la planche, celle-ci est suffisamment
plane pour servir au dessin géométrique.

Qu'arriverait-il si la planche était plus grande, au tableau
noir de la classe, par exemple Et si plus grande encore, tellement

grande que nous ne pouvons y faire jouer notre ficelle
Les élèves font appel à leur imagination et admettent que le
plan peut être prolongé autant qu'on le veut et dans quelque
direction que ce soit (haut, bas, gauche, droite...) sans perdre
sa propriété de plan, qu'il peut être indéfiniment prolongé.

Parvenus là, ils acceptent Je premier emploi que fait Euclide
d'un synonyme 1

; sa « demande » n° 2 est : « Prolonger continuellement,

selon sa direction, une droite finie. » Et nous leur ferons
prolonger, au moyen de leur règle (préalablement vérifiée) un
segment de droite jusqu'aux limites de leur feuille de papier de
dessin.

1 Vous ci Ions d'après les Eléments de Géométrie cI'Euclide, traduits par F. Pevrard
(Paris, an XII-lSO'j), p. 5.
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4. — Le premier usage de la droite indéfinie est fait à propos
des droites parallèles. Nous lisons, en effet, chez Euclide (p. 4)

et chez tous ses successeurs: « Les parallèles sont des droites qui,
étant placées sur un même plan et qui étant prolongées de part
et d'autre à l'infini, ne se rencontrent nulle part. »

La proposition XXVII du premier livre (p. 44) dit: « Si une
droite tombant sur deux autres droites fait les angles alternes
égaux entre eux, ces deux droites seront parallèles. »

D'autre part, parmi ses notions communes ou axiomes, il a

placé, sous le n° 11 (p. 6) l'axiome suivant: « Si une droite tombant

sur deux droites fait les angles intérieurs du même côté
plus petits que deux droits, les deux droites prolongées à l'infini
se rencontreront du côté où les angles sont plus petits que deux
droits.» (Il s'agit évidemment de la somme de ces angles
intérieurs.) Ayant démontré que deux perpendiculaires à une
même droite sont parallèles, il résulte de cet axiome 11 que par
un point extérieur on ne peut mener qu'une seule parallèle à

une droite donnée, ce qui est l'énoncé actuel du postulatum
déEuclide.

Demandons à un dessinateur de vérifier ce postulat. Il
songera à tracer deux perpendiculaires à une même droite XY ; son

équerre à angle droit A posée sur XY par le côté AB, il tracera
le segment de droite le long de l'autre côté AG; même opération
en un autre point de OX; non satisfait de ces deux « parallèles »,

il tracera les segments le long de l'hypoténuse dans deux
positions de l'équerre. Il aura l'impression visuelle que les deux
couples de segments ainsi tracés sont deux couples de segments
parallèles.

Cependant, ceux d'un couple ne se rencontreraient-ils pas
quelque part, hors du dessin limité où ils passent? Et si l'équerre
de notre dessinateur présente une petite erreur dans l'angle
utilisé (1/100 de minute, par exemple), quid L'œil du dessinateur

pourrait être satisfait; le travailleur qui construirait un
objet d'après le plan du dessinateur en produirait un qui, s'il
présentait une erreur, en produirait une pratiquement
négligeable.

Pour l'un et l'autre de ces hommes, tout se passerait comme
si, d'un point de XY, toutes les droites intérieures à un angle oc
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pouvaient rencontrer la perpendiculaire à XY élevée en un
point A.

Le dessinateur peut, sans inconvénient pratique, se comporter
comme si est vrai le postulat suivant remplaçant celui d'Euciide:
«, En un point A de XY il existe un angle oc (angle de parallélisme)
tel que Vensemble, de la puissance du continu, des droites issues
de A dans Vangle a, rencontrent à V infini la perpendiculaire à XY. »

C'est le postulat de Lobatchewsky 1, un des auteurs d'une
géométrie non euclidienne.

5. — Un autre problème fondamental de la géométrie est le
suivant : abaisser d'un point P la perpendiculaire sur la droite
XY. Comment le dessinateur le résout-il

De P comme centre, il décrit une circonférence coupant XY
en deux points A et B ; de A et B comme centres, il en décrit
deux autres se coupant en Q; PQ est la perpendiculaire cherchée.

Reste-t-elle unique si loin que P soit de XY
Le dessinateur a piqué en P, en A, en B la pointe sèche de

son compas; mais le point, selon Euclide, est sans étendue2,
d'où une triple cause d'approximation. Si P est très loin, un
petit arc de circonférence marqué par le crayon ne se distingue
pas d'un petit segment du dessin, d'une largeur sensible, de la
droite XY; de P très éloigné, le dessin se présente tel que le
dessinateur peut choisir parmi un ensemble continu de droites
issues de P, cet ensemble contenu d'ailleurs dans un angle très
petit.

Si nous considérons une sphère et nous proposons de mener
d'un pôle P un arc de grand cercle perpendiculaire à l'équateur,
tout arc de grand cercle ayant pour diamètre celui qui part de P
répond à la question.

Pour le dessinateur, les choses se présentent comme s'il était
possible, d un point extérieur à une droite, d1 abaisser sur celle-ci
un ensemble de, perpendiculaires ayant la puissance du continu.

1 Nie. Lobatchewsky, géomètre russe (1703-1850).
" Jl > <l 'm'-s (Je deux siècles, des traducteurs d'Euclide observèrent déjà que le

dessin d'un point a. une étendue, qu'une ligne dessinée n'est pas une longueur sans
largeur. Voir Koenio et A. Kuypeiis, Eléments de Géométrie contenant les six premierslivres tVEucliêkf p. 1 (La Haye, 1758).
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Ceci est le postulat de Riemann 1, remplaçant celui d'Euclide
dans une géométrie non euclidienne appelée « riemannienne ».

6. — Les géométries non euclidiennes ne répondent-elles à

aucune réalité dans l'espace euclidien
Rappelons que l'on nomme géodésiques d'une surface des

lignes tracées sur cette surface et telles que tout segment en soit
la plus courte distance sur la surface.

Les géodésiques du plan sont les droites ; le plan a une courbure

nulle. Celles de la sphère sont les grands cercles, la sphère
a une courbure positive constante (le plan tangent en un de ses

points ne coupant pas sa surface).
Beltrami 2 a signalé l'existence d'une surface à courbure

négative, qu'il a nommée pseudosphère; c'est une surface en
forme de selle de cheval prolongée en tous sens. Si, en l'un de

ses points situés sur l'épine dorsale du cheval, on la coupe par
un plan vertical contenant l'épine dorsale et par un autre
perpendiculaire au premier, ces deux sections sont des courbes

hyperboliques (à asymptotes) qui ont en ce point des rayons de

courbure de sens contraires (le premier au-dessus de la selle, le

second au-dessous).
La pseudosphère est dite de courbure négative.
La géométrie euclidienne est donc celle de figures dont les

lignes sont des géodésiques du plan, d'où son nom géométrie

plane.
La géométrie lobatchewskienne est celle de figures dont les

lignes sont des géodésiques d'une pseudosphère, ces géodésiques
étant des courbes hyperboliques; d'où son nom géométrie
hyperbolique.

La géométrie riemannienne est celle de figures dont les lignes
sont des géodésiques d'une sphère ou d'un ellipsoïde de révolution;

c'est pourquoi on la nomme géométrie elliptique.
Si notre dessinateur travaille sur une planche rigoureusement

plane, il est euclidien. Si sa planche est légèrement sphérique, il
est riemannien. Si sa planche est légèrement pseudosphérique,

1 B. Riemann, géomètre allemand (1826-1866). Voir, d'un de nos compatriotes:
A. Macleod, Introduction à la géométrie non-euclidienne (Paris, Hermann, 1922).

2 E. Beltrami, géomètre italien (1835-1900).
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il est lobatchevskien. Mais dans les deux derniers cas, il ne le

restera que dans la mesure où sa règle — dont F arête est une

géodésique du plan — lui permet de tracer celles de la sphère
ou de la pseudosphère avec une approximation tolérable. Il ne
s'en accommodera d'ailleurs que si ses dessins, ses i plans» cotés

permettent au travailleur qui les exécute un résultat suffisant ;

dans la mécanique de précision, par exemple, une tolérance de

1/100 millimètre constitue une erreur mathématique avec un
résultat satisfaisant pour le praticien.

Concluons cette première partie de notre note par quelques
lignes de Riemann: 1

«... On peut indiquer plusieurs systèmes de faits simples,
suffisants pour la détermination des rapports métriques de

l'espace. Le plus important, pour notre but actuel, est celui
qu'Euclide a pris pour hase. Ces faits, comme tous les faits
possibles, ne sont pas nécessaires; ils n'ont qu'une certitude
empirique, ce sont des hypothèses. On peut donc étudier leur
probabilité, qui est certainement très considérable dans les
limites de l'observation, et juger d'après cela du degré de
1 extension de ces faits en dehors de ces mêmes limites, tant dans
le sens des immensurablement grands que dans celui des mimen-
siirablement petits. » 2

II

7, — Passons à un autre ordre d'idées; nous retrouvons
indéfiniment en calcul intégral, en mesurant les lignes et les surfaces
courbes 3.

1 r>. Pii.-Maav aur les hifpalhesas tyii servent de i<>n<,h nitnl ci to géométrie, m 0 i ïl oirO
publie par Dedekind dans le lome XIII des Mémoireè de la Société renale des Sciences de
<i Oellingen (1*67). 1 radii il par J. Houëi. p. 1 du tiré-a-part: ou Œu'rre$ nia thématiques
trad. Laueier. p. X81 (Paris. Oauthier-Villars. 1898).

- Ou lira avec intérêt la brochure de M. P. Barbarie; Pour le centetudut de la
Géométrie non tairlidienne (Buenos-Aires. Editions Coni. 1931). On y trouvera les portraits
des géomètres (dont deux Belges: .T. de Tilly et P. Mansion) qui mî marqué dans
l'etude de cette géométrie; du même auteur: La Géométrie non euclidienne. Ie èflit.
(Edit. Selentia. Paris. 0autliier-Villars. 1918).

1 ne première rédaction de ce § II a paru dans le Bulletin, de la Société royale des
s,dinners de Liège (numéro de mars 1910) sous le titre: - Un postulat" implicite de la
I benne des ensembles
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Prenons pour exemple Faire plane OABC, de mesure S, dans
le plan d'axes rectangulaires; aire ayant sa base OA a sur
OX, limitée aux ordonnées OC et AB — Z2 et à l'arc CB
d'une courbe uniformément continue. Cette aire est l'ensemble,
de la puissance du continu, des ordonnées des points de son arc.

La solution classique du problème est la suivante: partageons

la base OA en un certain nombre de segments Ax; sur
les ordonnées initiale et finale de chaque Ax, construisons un
rectangle ayant pour hauteur la plus petite ordonnée y1 de

ce Ax, et un autre dont la hauteur est l'ordonnée la plus grande
y2 du même intervalle. La somme Sx des premiers de ces

rectangles est une partie de l'aire S, la somme S2 des seconds
déborde l'aire S; donc:

Sx < S < S2, avec S2 — S3 | | l2 — lx j Ax

Puis répétons ces constructions en augmentant le nombre
des intervalles Ax, et ce indéfiniment ; les sommes Si augmentent,
les sommes S2 diminuent, leur différence ayant une limite nulle
lorsque Ax décroît indéfiniment; on en conclut que:

a a
S lim S yx Ax lim S y2 Ax

0 0

a

ce que l'on écrit S ~ j ydx.
o

On a donc conclu, de la connaissance d'ensembles dénom-
brables d'ordonnées, à un ensemble d'ordonnées ayant la
puissance du continu; à chaque état de Si et de S2, on a pris en
considération deux ordonnées fixes l± et Z2 et un nombre fini
d'ordonnées variables égal à celui des intervalles Ax diminué
d'une unité.

Déjà, avant la théorie des ensembles, des esprits rigoureux
s'étaient demandé: la conclusion quant à S ne dépend-elle pas
du mode de multiplication du nombre des intervalles x 1

Un premier mode est tel qu'à chaque multiplication les

ordonnées en cause à la précédente soient conservées; par

1 Voir par exemple E. Goursat, Cours d'analyse mathématique, '3e édit., t. I, p. 172;
ou S. Carrus, Cours de calcul différentiel et intégral, livre I, p. 270.
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exemple ces nombres sont 2, 4, 8, 16, 2'1, etc. Notre maître
P. Mansion, dans son cours oral, dénommait ce mode concordant

avec soi-même.

Un second mode de multiplication ne conserve aucune des

ordonnées en cause à chaque étape; ces nombres seraient, par
exemple, les nombres premiers successifs 2, 3, 5, 7, 11, 13, 17

formant un ensemble dénombrable, comme on le sait depuis
Euclide.

Enfin, un troisième mode de multiplication conserverait une
partie seulement des ordonnées de chaque étape.

On peut concevoir des multiplications successives en nombre
aussi grand qu'on le veut, indéfiniment, toutes mettant en cause

un ensemble fini d'ordonnées de l'aire S.

Si l'on opérait de même sur l'ensemble continu des segments
d'une droite OX, en en retranchant des segments successifs

jusqu'à un point P, il subsisterait une demi-droite PX, c'est-
à-dire que la puissance du résidu serait celle de la demi-droite
OX tout entière. Généralisant ce fait, la théorie des ensembles
démontre que la somme (Tum infinité dénombrable d'ensembles
dénombrables est dénombrable, et que d'un ensemble ayant la
puissance du continu, on peut enlever un ensemble dénombrable
d'éléments sans qu'il cesse d'avoir la puissance dru continu K

La théorie classique de l'intégrale S fait mieux; d'un
ensemble ayant la puissance du continu elle enlève un ensemble
dénombrable d'ensembles finis d'ordonnées, négligeant un résidu
qui conserve la puissance du continu.

Pareil saut n'est assuré de réussir que parce qu'un jugement
intuitif fondé sur la vue d'une figure, est admis comme vrai —
tel que fut le postulatum d'Euclide. La formule pourrait en être
un postulat à introduire dans la théorie des ensembles, postulat
formulé comme suit: soit un ensemble dénombrable d'ensembles
finis dénombrables (Ej) extraits d'un ensemble (E) qui a la
puissance du continu; si tous les ensembles (Ej) ont une propriété
commune, cette propriété appartient aussi à l'ensemble (E).

Dans notre exemple de l'aire S, la propriété commune est
relie qui permet le passage à la limite.

1 Voir M lionne, ElCmenls de la théorie des ensembles, pp. 15 cl 58 (Paris, Editions
Alfdn .M iclo'], 1940) cl la note à la fin du lexl e.
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Le postulat impliquerait que, dans le cas de l'aire S et les

cas analogues, tout élément de l'ensemble continu (E) peut être
atteint par des sous-ensembles (Ex), quel que soit le mode de

prélèvement de ces sous-ensembles.
Dans son livre cité (p. 232-235), E. Borel témoigne d'une

certaine inquiétude quant à la validité des raisonnements par
lesquels on cherche à mesurer un ensemble qui a la puissance du
continu. Le postulat ci-dessus est-il de nature à formuler cette
inquiétude, et, peut-être à exprimer un caractère hypothétique
ou empirique (aurait peut-être dit Riemann) de l'état actuel de

la théorie des ensembles

NOTE AU N° 7

Peut-on épuiser l'ensemble dénombrable des nombres entiers en en
détachant des sous-ensembles dénombrables Son dédoublement en
termes pairs et termes impairs, en termes multiples de n et termes non
multiples de n semble justifier une réponse affirmative; mais le second
sous-ensemble est défini par un caractère négatif. Procédons par un mode
positif de formation des sous-ensembles dénombrables.

Formons les, sous-ensembles de multiples des nombres premiers (ceux-ci
termes d'un ensemble transfini). Nous aurons successivement le sous-
ensemble des nombres pairs: 2, 4, 6, 8, ...; celui des multiples de 3 non
multiples de 2: 3, 9, 15, 21, ...; celui des multiples de 5 non multiples ni
de 2, ni de 3: 25, 35, 55, 65, ...; et ainsi de suite.

Le sous-ensemble des multiples de n premier non multiples des nombres
premiers moindres que n commence par n2; on voit que, quel que soit le
nombre premier auquel on est arrivé, le sous-ensemble correspondant reste
dénombrable. Pour ce mode de formation des sous-ensembles, la réponse
à notre question est donc négative.

Mais cette réponse est positive pour un autre mode de formation de
ces sous-ensembles: car l'ensemble des nombres entiers dont l'expression
chiffrée est terminée par 1 est transfini dénombrable; de même celui des
nombres terminés par 2, 3, 9, 0, et ces dix sous-ensembles épuisent
l'ensemble des nombres entiers. Ils seraient douze si l'on écrivait les entiers
dans la numération à base 12.

Les considérations précédentes donneraient-elles à un jeune lecteur une
première idée de la richesse de la notion d'ensemble transfini dénombrable
Nous l'espérons. Exprimons les faits exemplaires que nous venons de
constater: un ensemble dénombrable peut n'être pas épuisé par Vextraction d'un
ensemble dénombrable de ses sous-ensembles dénombrables, tandis qu'il peut
l'être par un nombre fini de pareils sous-ensembles. Enoncé à rapprocher
de celui du n° 7 emprunté à E. Borel.
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