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GEOMETRIE DES SOUS-VARIETES 41

de M au point z. On a évidemment 7(z) = [n/p (z)], le dernier
nombre étant le plus grand entier < n/p ().

Cela étant, on a le théoréme local suivant, qui est di a
M. ALLENDOERFER [1], [4]: Deux variétés isométriques, dont les
premiers espaces normaux sont de méme dimension, ne différent
que par un mouvement (propre ou impropre), si Pune d’entre
elles est de type > 3.

Ce théoréme peut étre considéré comme un théoréme de
rigidité locale. Bien entendu, la condition sur le type est tres
forte.

I

9. — Pour mieux comprendre la géométrie des sous-variétés,
il serait utile d’étudier avec plus de détails le cas d’une surface
dans E*(n = N = 2). Nous faisons une autre hypothése sim-
plificatrice en supposant que M est orientée. Alors I’application
tangentielle est T: M — é(2, 2). Dans ce cas on peut donner
de cette derniére variété une description simple. En effet, soient
Pup, 1 < @, B < 4, les coordonnées pliickeriennes dans G (2, 2).
Ce sont les coordonnées homogénes assujetties aux conditions

pocB + Ppy = 0, P12 Psa + P13 Pas + P1aPes = 0. (36)

Nous les normalisons par la condition

2
D\Pgg = 2 - (37)
o,

Alors les coordonnées p,p satisfaisant aux conditions (36), (37)
peuvent étre considérées des coordonnées dans G (2, 2), de sorte
que les deux plans orientés qui donnent le méme plan non
orienté aient des coordonnées différant par le signe. Introduisons
des coordonnées nouvelles dans G (2, 2) en posant
Xy = Pis + Paas T2 = Pas + P1a, Xs = Pa1 + Pas , (38)
Yr = P12 — Psa s Y2 = P2z — P1a> Yz = Par—— Paa -
Avec ces coordonnées zy, ¥, 1 < A < 3, les conditions (36) et
(37) sont équivalentes aux conditions

2 2 2 2 2 2 )
x1+x2—|—x3=y1+y2—]—y3=1. (39)
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Cect démontre que la variété é(Z, 2) est homéomorphe au pro-
duit cartésien de deux spheéres Sy et 5, ordinaires. Comme G (2, 2)
peut étre identifiée avec la variété des droites orientées de
Pespace elliptique & trois dimensions, ce fait est a la base d’une
représentation de Fubini et Study.

Fixons une orientation de Sy et S, et désignons par M, S, S,
les cycles fondamentaux de ces variétés. Les invariants homo-
logiques qu’on peut déduire de I'homomorphisme f* sont les
entiers dy, d, définis par la condition T (M) ~ dySy -+ dySy,
ou 7, désigne I’homomorphisme induit par 7. On peut démon-
trer que [7], s1 les orientations de S, et §, sont convenablement
choisies, on a d, = d; et que la valeur commune est la moitié
de la caractéristique d’Euler de M. La démonstration s’appuie
sur ’étude de I'homéomorphisme & introduit dans le no 5,
qui est dans notre cas un homéomorphisme de 6(2, 2) en
elle-méme. Son homomorphisme induit sur les cycles a 1'effet de
fixer un des cyeles Sy et S, et changer le signe de Pautre. Ce
fait et le résultat W2 = 0 (a coefficients entiers) conduisent
facilement a I’égalité d, = d,,.

Pour exprimer les relations de ces résultats avec les inva-
riants différentiels de M dans E4, il faut déterminer dans G(2,2)
des formes différentielles extérieures fermées ®,, ®, duales aux
cycles Sy et §y, c’est-a-dire telles que

A
ro

) AS‘] = Lg,\:, ng == AS‘,

Lo (50)

f(DB: 8, 1zZa, B

S

ou & est le symbole de Kronecker. Ces formes ®;, @, ne sont pas
univoquement déterminées. Cependant on peut démontrer que
les choix

1
Q, = 4_7_-5{‘913 A @3 T 01 A @pg — @13 A g — @3 A (’)24} ’

(41)

1
O, = Lt {")13 N 03 4 014 A 0gg 4 @33 N 014 + a3 A w24} ?
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satisfont aux conditions (40). On en déduit les formules intégrales
suitvantes

;);If f Kdl v (M) (42)
i o M
! (Agry Ayre — Aure Ayiy - Agoy Agoe — Agae Ayn) dV = 0.

M
Ces formules ont ¢été données pour la premiere fois par
M. Brascuxe [3].

[’étude de ia variété 6(2, 2) conduit aussi a un résultat, di a
M. Wu Wex-Tsux, qui a une conséquence géométrique intéres-
sante. Cest le probleme de considérer une courbe paramétrique
fermée simple dans G (2, 2) et de voir si elle est la projection
d'une telle courbe dans G (2, 2). Une telle courbe dans G (2, 2)
peut &tre donnée par (z(t), y (1), 0 <t <1, ou x(f) €Sy,
y()yedSy, et x(0) = + z(1), y(0) = £ y (1), en désignant par
— x {1), — y (1) respectivement les points antipodes de x (1),
y (1) dans Sy, §y. M. Wu Wex-Tsux a démontré que si, pour
deux valeurs différentes quelconques t', ¢ de ¢, (¢, t") = (0, 1),
les plans correspondants dans G (2, 2) n'ont que le pomnt O
en commun, alors la courbe est la projection d’une courbe fermée
simple dans G(2, 2). Interprété dans la géométrie elliptique
réglée, cela veut dire gqu'une surface réglée dans un espace
elliptique a trois dimensions est toujours orientable. Elle est done
homéomorphe & un tore 1.

10. — Je termine cette conférence par quelques questions
naturelles:

A) Trouvez des invariants des sous-variétés relatifs & I’homo-
topie réguliere définie dans le n® 1. En particulier, y a-t-il des
paires de sous-variétés homéomorphes a deux dimensions dans
un espace euclidien & quatre dimensions qui ne sont pas régu-
licrement homotopes ?

B) Y a-t-il d’autres conditions nécessaires que les condi-
tions déja connues pour que 'application 7': M — G (n, N) soit
une application tangentielle ?

C) Dans Uespace euclidien & quatre dimensions y a-t-il une
surface compacte a courbure gaussienne toujours négative ?

PN T Horr an’a fail remarquer que ce théoreéme est un corollaire d’un théoreme
plus geéncral, & savoir qu’il n’est pas possible de plonger topologiquement 1a bouteille
de Klein dans Pespace projectit reel 4 trois dimensions.
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