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GEOMETRIE DES SOUS-VARIETIES 37

Pour justifier I'étude des classes caractéristiques, il seratl
important de démontrer qu’elles ne sont pas triviales. On doit &
M. Wu Wen-Tsux plusieurs exemples ot des classes caractéristi-
ques ne s’annulent pas [22]. D’autre part, on a des théoremes
sur la trivialité de certaines classes caractéristiques. En particu-
lier, d’apres MM. Serrert, Whrrsey et Tuow, la classe W est
toujours nulle [16], [18], [21]. De plus, si M est orientable, la
classe 1N, qui peut étre définie avec les coeflicients entiers,
est nulle. Cela signifie géométriquement qu’il est possible de
délinir sur une variété orientable un champ continu de vecteurs
normaux non nuls.

I

—

5. — J’ai beaucoup insisté sur les propriétés tovologiques de
Papplication tangentielle. 11 y a des questions plus géométriques
qui seraient aussi intéressantes. L’une des plus naturelles est la
condition sur Uapplication 7 : M — G(n, N) pour qu’elle soit
une application tangentielle.

On peut donner immédiatement une condition nécessaire.
Sott en effet b un vecteur unitaire fixe. Le produit scalaire
[(x) = bx, we M, délinit une fonction continue sur 3. I/ étant
compacte, cette fonetion posséde un maximum et un minimum,
otton a bdr = 0. Cela veut dire que les éléments 77 () correspon-
dants sont situés dans ’hyperplan passant par O ct perpendicu-
laire & 0. Par conséquent, pour chaque 4 il y a au moins deux
points de 37 dont les images par 7" sont dans hyperplan per-
pendiculaire & 0. Pour n = 1 cette condition est sullisante pour
que Papplication 7" soit application tangentielle d'une courbe
close. Jlignore st ce résultat s’étend pour n quelconque.

Néanmoins on déduit de cette condition des conséquences
imtéressantes. Pour simplifier supposons que 3 soit orientée,
de sorte que application a considérer soit 77: 3 — é(f’l, N).
livaluons le volume de Pensemble des points de I'hypersphére
de rayon unité de /"N, chaque point étant compté un nombre
de Tois égal au nombre des 7'(x) contenu dans son hyperplan
perpendiculaire. Par la méthode de la géométrie intégrale ce
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volume peut étre exprimé par une formule du type de Crofton.
Avec les notations du paragraphe 4, on pose
CT?.

K* (x) = Q—C—V—I /ﬂlG(I,V)’dCSArﬂlio 3 (30)
N+iN—1 o

ou la fonction sous I'intégrale est la valeur absolue de G(x, ¢).
Alors on trouve que le volume considéré est égal a

20/ L N
I s /K*(x)dV.
Cn
M

Parce que chaque hyperplan contient au moins deux T(x), zeM,
ce volume est > 2¢,,.n-1, et on a I'inégalité

fK* (x)dV = ¢, , (31)
M

ou 'on fait la convention que ¢; = 2. Pour une courbe fermée
dans ’espace euclidien ordinaire I'intégrale du premier membre
de (31) est égale a I'intégrale de la valeur absolue de la courbure
de M, divisée par =, et la formule (31) se réduit au théoreme bien
connu de M. FencuEL. Il est clair que 'invariant K* (x) dépend
de la position de M dans E"*N et on a K*(x) > K(x), pour
tout z € M.

Dans le cas d’une courbe de I’espace ordinaire ces considéra-
tions conduisent au théoréme intéressant de MM. Fary et
MiLnor [9], [12]. Ce théoréme se rapporte a une courbe satis-
faisant a 'inégalité

f K*(z)dV < 2¢, . (32)
M

Sous 1’hypothése (32) on voit qu’il y a un vecteur unitaire b
de sorte que la fonction f (z) = bz, x ¢ M, n’a qu’un maximum
et un minimum. On voit facilement qu’alors la courbe M est
isotope a un cercle et n’est pas un nceud.

Ce résultat peut étre étendu au cas général, de la maniére sui-
vante 1: Supposons que la condition (32) soit satisfaite. Alors
la variété M a ses nombres de Betti modulo 2 nuls pour les dimen-

1 Pour les détails analytiques voir Pappendice & la fin de cet article.
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sions 1, 2, ..., n — 1. Cela tient au fait que la fonction f (v) = bz,
we M, pour un certain b, n’a qu'un maximum et un minimum
ot ne se réduit pas & une constante. Alors ses nombres de type
ko1 <k <n—1, au sens de M. Morsk sont tous nuls. L’énoncé
st ainst une conséquence immédiate des inégalités de M. Morse,
qui affirment que le nombre de type £ d’une fonction continue
sur M oest au moins égal au nombre de Betti modulo deux pour
la dimension k. Cette généralisation est aussi connue a M. MrLNoOR.
Il est peut-étre justifié d’appeler courbure totale I'intégrale
du premier membre de (31), contrairement & 'usage qui remonte
a Gavuss. Les résultats ci-dessus montrent que c’est une notion
féconde de laquelle on peut faire des applications simples.

7. — lLa question des implications giobales de la métrique
rieinannienne d’une surface dans I'espace ordinaire a été beau-
coup étudiée; deux des problemes les plus importants sont ceux
de réalisation et de rigidité. Quand n > 3, la métrique rieman-
nienne a des conséquences trés fortes, méme localement. St M
est de plus compacte, elle contient un point x, & une distance
maximum d’un pomnt fixe O de £n+N. L’étude de la géométrie
locale en ce point conduil aux résultats dont je vais parler [6].

Appelons d’abord une direction tangentielle direction asymp-

totique si elle annule toutes les formes Wy:

o= M dgio e = 0. (33)
i,

lIest Tacile de voir qu’au point x, il n’y a pas de directions
asymptotiques réelles. M. T. Orsukr a démontré le lemme
swivant ': S1 le second membre de (17) est < 0 pour tous
les éléments plans déterminés par £, 7, le systéme d’équations (33)
a des solutions réelles non-triviales wi, 81 N <n—1. Ce lemme
a cté conjecturé par M. Kurper et moi et démontré dans des
cas simples. THa comme conséquence le théoreme géométrique
suivant: Si Pespace tangent & chaque point de M contient un
espace linéaire & ¢ dimensions tel que la courbure riemannienne
sotl = 0 pour tous ses éléments plans, alors V > q. Il est clair
que ce théoreme n'est pas vrai localement.

PHSL Uneautre démonsiration a ¢le donnee par M. T.Srrizcer & Leiden, 1Tollande.
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Une autre question de ce genre concerne I'entier w(x) tel que
n — wp(z) soit le nombre minimum de formes de Pfaff linéaire-
ment indépendantes au moyen desquelles les formes €2;; dans (14)
peuvent, étre exprimées. Soit n — v(z) le nombre minimum de
formes de Pfaff linéairement indépendantes au moyen desquelles
les formes différentielles ordinaires Vs peuvent étre exprimées.
M. Kuirer et mol avons démontré les inégalités

viz) S ule) SN 4 vz . (34)

On en déduit la conséquence géométrique suivante: Si
by == mf w(z), alors N > u,. En particulier, si la métrique

rlemanmenne induite de M est euclidienne, on a p, = n et,
par suite, V > n. Ce résultat est dit & M. Tompkins; 1l généralise
le fait bien connu qu’une surface développable dans l’espace
ordinaire n’est pas close.

8. — A coté des invariants arithmétiques introdutts ci-dessus,
on en a d’autres qui jouent un role important dans la géométrie
de M dans E*+*N, Nous avons vu, dans la formule (13), qu’il y a
une forme différentielle quadratique ordinaire (la seconde forme
fondamentale) associée a chaque vecteur unitaire normal. Les
vecteurs normaux, dont la seconde forme fondamentale est nulle,
appartiennent a un sous-espace linéaire de I’espace normal.
Son espace perpendiculaire dans I’espace normal de M est
appelé le premier espace normal. Sa dimension p(x) est égale
au nombre des formes linéairement indépendantes parmi les
Y, d’ot p(z) < n(n + 1)/2.

Un autre invariant arithmétique de M peut étre introduit
comme il suit. Choisissons les vecteurs e; dans l’espace normal
tels que ey.q, ..., en:p solent dans le premier espace normal.
Alors YW,.4, ..., Yusp sont linéairement indépendantes et
Wripity oy Yooy en sont des combinaisons linéaires. On
considére les lignes de formes de Pfaff:

I © 1<i1=n. (35)

A

L,nm+l? 2 i n+p?

Le plus grand entier 7 (x), tel qu’il existe t (x) lignes dont les
pt (z) formes sont linéairement indépendantes s’appelle le type
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de M au point z. On a évidemment 7(z) = [n/p (z)], le dernier
nombre étant le plus grand entier < n/p ().

Cela étant, on a le théoréme local suivant, qui est di a
M. ALLENDOERFER [1], [4]: Deux variétés isométriques, dont les
premiers espaces normaux sont de méme dimension, ne différent
que par un mouvement (propre ou impropre), si Pune d’entre
elles est de type > 3.

Ce théoréme peut étre considéré comme un théoréme de
rigidité locale. Bien entendu, la condition sur le type est tres
forte.

I

9. — Pour mieux comprendre la géométrie des sous-variétés,
il serait utile d’étudier avec plus de détails le cas d’une surface
dans E*(n = N = 2). Nous faisons une autre hypothése sim-
plificatrice en supposant que M est orientée. Alors I’application
tangentielle est T: M — é(2, 2). Dans ce cas on peut donner
de cette derniére variété une description simple. En effet, soient
Pup, 1 < @, B < 4, les coordonnées pliickeriennes dans G (2, 2).
Ce sont les coordonnées homogénes assujetties aux conditions

pocB + Ppy = 0, P12 Psa + P13 Pas + P1aPes = 0. (36)

Nous les normalisons par la condition

2
D\Pgg = 2 - (37)
o,

Alors les coordonnées p,p satisfaisant aux conditions (36), (37)
peuvent étre considérées des coordonnées dans G (2, 2), de sorte
que les deux plans orientés qui donnent le méme plan non
orienté aient des coordonnées différant par le signe. Introduisons
des coordonnées nouvelles dans G (2, 2) en posant
Xy = Pis + Paas T2 = Pas + P1a, Xs = Pa1 + Pas , (38)
Yr = P12 — Psa s Y2 = P2z — P1a> Yz = Par—— Paa -
Avec ces coordonnées zy, ¥, 1 < A < 3, les conditions (36) et
(37) sont équivalentes aux conditions

2 2 2 2 2 2 )
x1+x2—|—x3=y1+y2—]—y3=1. (39)
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