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Pour justifier l'étude des classes caractéristiques, il serait

important de démontrer qu'elles ne sont pas triviales. On doit a

M. Wu Wen-Tsun plusieurs exemples où des classes caractéristiques

ne s'annulent pas [22]. D'autre part, on a des théorèmes

sur la trivialité de certaines classes caractéristiques. En particulier,

d'après MM. Seifert, Whitney et Thom, la classe H'A est

toujours nulle [16], [18], [21J. De plus, si M est orientable, la
classe I DE qui peut être définie avec les coellicients entiers,
est nulle. Cela signifie géométriquement qu'il est possible de

définir sur une variété orientable un champ continu de vecteurs

normaux non nuls.

II

5. — J'ai beaucoup insisté sur les propriétés topologiques de

l'application tangentielle. Il y a des questions plus géométriques
qui seraient aussi intéressantes. L'une des plus naturelles est la
condition sur l'application T : M —> G- (/g N) pour qu'elle soit
une application tangentielle.

On peut donner immédiatement une condition nécessaire.
Soit en eilet h un vecteur unitaire fixe. Le produit scalaire

j (xJ — bx1 x e i/, dé huit une fonction continue sur M. M étant
compacte, cette fonction possède un maximum et un minimum,
où on a bdx — 0. Cela veut dire que les éléments T (x) correspondants

sont situés dans I'hyperplan passant par 0 et perpendiculaire

à b. Par conséquent, pour chaque b il y a au moins deux
points de M dont les images par T sont dans l'hyperplaii
perpendiculaire à b. Pour n t cette condition est suffisante pour
que l'application 77 soit l'application tangentielle d'une courbe
close. J'ignore si ce résultat s'étend pour n quelconque.

Néanmoins on déduit de cette condition des conséquences
intéressantes. Pour simplifier supposons que M soit orientée,
de sorte que l'application à considérer soit T : 1/—» L(v, N).
Evaluons le volume de l'ensemble des points de fhypersphère
de rayon unité de IG1

:

Y, chaque point étant compté un nombre
de fois égal au nombre des T (x) contenu dans son hyperplan
perpendiculaire. Par la méthode de la géométrie intégrale ce
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volume peut être exprimé par une formule du type de Crofton.
Avec les notations du paragraphe 4, on pose

£*(*) 9/n f \G(x,v)\dcN_{>Q (30)
zcnrN-iJ —

où la fonction sous l'intégrale est la valeur absolue de G(x, v).
Alors on trouve que le volume considéré est égal à

Parce que chaque hyperplan contient au moins deux f (x), x G M,
ce volume est > 2cn+IV_ll et on a l'inégalité

jK*(x)dV^cn,(31)
M

où l'on fait la convention que c1 2. Pour une courbe fermée
dans l'espace euclidien ordinaire l'intégrale du premier membre
de (31) est égale à l'intégrale de la valeur absolue de la courbure
de M1 divisée par 7r, et la formule (31) se réduit au théorème bien

connu de M. Fenchel. Il est clair que l'invariant K* (x) dépend
de la position de M dans En+N, et on a K*(x) > K(x), pour
tout x e M.

Dans le cas d'une courbe de l'espace ordinaire ces considérations

conduisent au théorème intéressant de MM. Fary et

Milnor [9], [12]. Ce théorème se rapporte à une courbe
satisfaisant à l'inégalité

J X* (x) dV < 2 cn (32)

M

Sous l'hypothèse (32) on voit qu'il y a un vecteur unitaire b

de sorte que la fonction / (x) bx, x z M, n'a qu'un maximum
et un minimum. On voit facilement qu'alors la courbe M est

isotope à un cercle et n'est pas un nœud.
Ce résultat peut être étendu au cas général, de la manière

suivante1: Supposons que la condition (32) soit satisfaite. Alors
la variété M a ses nombres de Betti modulo 2 nuls pour les dimen-

1 Pour les détails analytiques voir l'appendice à la fin de cet article.
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sions 1, 2, n — 1. Cela tient au fait que la fonction / (x) a» bx,

.r s M\ pour un certain n'a qu'un maximum et un minimum
et ne se réduit pas à une constante. Alors ses nombres de type
k\ î < k < n -— 1, au sens de M. Morse sont tous nuls. L'énoncé
est amsi une conséquence immédiate des inégalités de M. Morse,
qui affirment que le nombre de type k d'une fonction continue
sur M est au moins égal au nombre de Betti modulo deux pour
la dimension k. Cette généralisation est aussi connue à M. Milnor.

Il est peut-être justifié d'appeler courbure totale l'intégrale
du premier membre de (31), contrairement à l'usage qui remonte
à Gauss. Les résultats ci-dessus montrent que c'est une notion
féconde de laquelle on peut faire des applications simples.

7. — La question des implications globales de la métrique
riemannienne d'une surface dans l'espace ordinaire a été beaucoup

étudiée; deux des problèmes les plus importants sont ceux
de réalisation et de rigidité. Quand n > 3, la métrique riemannienne

a des conséquences très fortes, même localement. Si M
est de plus compacte, elle contient un point x0 à une distance
maximum d'un point fixe 0 de En • v. L'étude de la géométrie
locale en ce point conduit aux résultats dont je vais parler [6].

Appelons d'abord une direction tangentielle direction asymp-
totique si elle annule toutes les formes XVS :

Ts= V Asi]- üij 0 (33)
ci

M est facile de voir qu'au point x0 il n'y a pas de directions
asymptotiques réelles. M. T. Otsuki a démontré le lemme
suivant 1

: Si le second membre de (17) est yt 0 pour tous
les éléments plans déterminés par le système d'équations (33)
a des solutions réelles non-triviales w,-, si < — 1. Ce lemme
a été conjecturé par M. Kuiper et moi et démontré dans des
cas simples. 11 a comme conséquence le théorème géométrique
suivant: Si 1 espace tangent à chaque point de M contient un
espace linéaire à q dimensions tel que la courbure riemannienne
soil < 0 pour tous ses éléments plans, alors N > q. Il est clair
que ce théorème n'est pas vrai localement.

1 11 s I. t ne ;iulri! (Iriiionsl radon a à là donnée liai' M. T. Smixiim à l.eiden, Hollande.
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Une autre question de ce genre concerne l'entier \l{x) tel que
n — ii(x) soit le nombre minimum de formes de Pfafï linéairement

indépendantes au moyen desquelles les formes Q^ dans (14)

peuvent être exprimées. Soit n — v (x) le nombre minimum de

formes de Pfafî linéairement indépendantes au moyen desquelles
les formes différentielles ordinaires Ts peuvent être exprimées.
M. Kuiper et moi avons démontré les inégalités

On en déduit la conséquence géométrique suivante : Si

(jl0 inf (x(#), alors N > p.0. En particulier, si la métrique

riemannienne induite de M est euclidienne, on a fji0 n et,

par suite, N > n. Ce résultat est dû à M. Tompkins; il généralise
le fait bien connu qu'une surface développable dans l'espace
ordinaire n'est pas close.

8. — A côté des invariants arithmétiques introduits ci-dessus,

on en a d'autres qui jouent un rôle important dans la géométrie
de M dans EnfiV. Nous avons vu, dans la formule (13), qu'il y a

une forme différentielle quadratique ordinaire (la seconde forme
fondamentale) associée à chaque vecteur unitaire normal. Les

vecteurs normaux, dont la seconde forme fondamentale est nulle,
appartiennent à un sous-espace linéaire de l'espace normal.
Son espace perpendiculaire dans l'espace normal de M est

appelé le premier espace normal. Sa dimension p(x) est égale

au nombre des formes linéairement indépendantes parmi les

Ts, d'où p(x) < n(n + l)/2,
Un autre invariant arithmétique de M peut être introduit

comme il suit. Choisissons les vecteurs es dans l'espace normal
tels que en+i, • en+p soient dans le premier espace normal.
Alors xFn.: i, xFn : p sont linéairement indépendantes et

xFn+p+1, en sonb des combinaisons linéaires. On

considère les lignes de formes de Pfafî:

V (x) < [JL (x) < N + V (x) (34)

n + i ' * * * ' °*i} n+p ' 1 < i < n (35)

Le plus grand entier t (x), tel qu'il existe t (x) lignes dont les

px (x) formes sont linéairement indépendantes s'appelle le type
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de M au point x. On a évidemment t(x) < \jijp (#)], le dernier

nombre étant le plus grand entier < n/p {x).

Cela étant, on a le théorème local suivant, qui est dû à

M. Allendoerfer [1], [4]: Deux variétés isométriques, dont les

premiers espaces normaux sont de même dimension, ne diffèrent

que par un mouvement (propre ou impropre), si l'une d entre

elles est de type > 3.

Ce théorème peut être considéré comme un théorème de

rigidité locale. Bien entendu, la condition sur le type est très

forte.

III

9. — Pour mieux comprendre la géométrie des sous-variétés,

il serait utile d'étudier avec plus de détails le cas d'une surface

dans E*(n N 2). Nous faisons une autre hypothèse

simplificatrice en supposant que M est orientée. Alors l'application

tangentielle est T : M—> G(2,2). Dans ce cas on peut donner

de cette dernière variété une description simple. En effet, soient

paß, 1 < a, ß < 4, les coordonnées plückeriennes dans G (2, 2).

Ce sont les coordonnées homogènes assujetties aux conditions

Pa$ + PÇta. 0 ' PizPzi + Pis P&2 + PuPïs 0 (36)

Nous les normalisons par la condition

S riß ^ 2 • (37)

«,ß

Alors les coordonnées paß satisfaisant aux conditions (36), (37)

peuvent être considérées des coordonnées dans G{2, 2), de sorte

que les deux plans orientés qui donnent le même plan non
orienté aient des coordonnées différant par le signe. Introduisons
des coordonnées nouvelles dans G (2, 2) en posant

«1 Pl2 + Psi ^2 P23 + Pu ^3 Psi + P24
(38)

Vi — p 12 p34 2/2 — P23 P14 i Vs — Psi P24 •

Avec ces coordonnées 1 < X < 3, les conditions (36) et
(37) sont équivalentes aux conditions

2 - 2
-

2 ^ i ^ i ^ a /f)A\
X1 + x^ + xa yi+ y^ + y3 1 (39)
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