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RÉSOLUTION D'UN SYSTÈME D'ÉQUATIONS
LINÉAIRES ALGÉRRIQUES PAR DIVISION

PAR

T. Banachiewicz (Cracovie).

L'équation élémentaire du premier degré kx — l se résout,
quand k 0, par la formule x l : k. Une solution pareille
peut-elle s'appliquer au système d'équations

knxi + k2ix2 + ••• + kmixm K

ki2x i k22X2 + + km2Xm l2

^
kim XL "L k2m X2 kmm xm Ui

que nous supposons avoir une solution unique La réponse à

cette question est affirmative, et nous allons voir qu'on obtient
même de cette façon une solution du système (1) plus simple que
celle à l'aide de l'élimination successive ou des déterminants.

Nous résolvons ce problème à l'aide de nombres tabulaires,
connus aux astronomes et aux géodésiens sous le nom de cracoviens.

Les cracoviens sont analogues aux nombres tabulaires
appelés matrices, mais ils diffèrent de celles-ci par la définition
du produit et ce qui en découle L

i Parmi les publications sur les cracoviens ou celles qui se servent effectivement de
cracoviens, nous citons les suivantes, disposées par pays des auteurs:

Allemagne. — K. Illigner, Astron. Nachr., 253, n° 16 (1934).
Angleterre. — The Nautical Almanac, depuis 1931, par ex. 1940, p. 819.
Belgique. — S. Arend, Bull. Soc. Astr. Belge, 1933, n° 1; Bull. Aslr. Brüx., III,

1940, n° 3, 1941, n° 4.
Chine. -— E. Villemarqué, Annales Observ. Zo-cé, 19, fasc. 3 (1936); aussi 19,

fasc. 1 (1934).
(Voir suite de.la note, page suivante.)



RÉSOLUTION D'UN SYSTÈME D'ÉQUATIONS 35

§ 1. — Généralités sur les cracoviens. — 1. On désigne les

cracoviens par des lettres grasses et des accolades. Par exemple

\ «11 a2l «31
a <

I $12 0^22 «32

L'élément du cracovien a dans la colonne i et la ligne / est

désigné ai3. La colonne i de a, envisagée comme cracovien, est

désignée par at. Par exemple

(«21
a2 >

I a22

2. Le produit a b de deux cracoviens a et b, ayant chacun le

même nombre de lignes, est un cracovien p ayant comme élément

général pi3 a^ b?. On multiplie donc les cracoviens colonne

par colonne et non lignes par colonnes. En désignant la
transposition des éléments par t, on a la formule b a t (a b).
Le produit a b c signifie (a b) c. Pour l'association des

facteurs dans le produit on a la formule a b c a (c Tb),
et pour la dissociation a (b c) a tc b.

3. Le symbole t désigne aussi un cracovien carré, avant des

unités sur la diagonale principale et des zéros partout ailleurs.
Ainsi

[10 0](10)
t» 010 etc.

0 1

0 0 1

Etats-Unis. — Eckert and Brouwer, Astr. Journ., n° 1069 (1937).
Italie. — F. Zagar, Mem. del R. Istit. Veneto, 29, n° 8 (1928).
Lettonie. — K. Steins, Acta Astronomica, sér. a, 3 (1936).
Pologne. — A. Chrominski (applications à l'analyse pratique), Ball. Acad. Pol.

d. Sc., A, 1938.
F. Koebcke (monographie), Pozn. Tow. Przyj. Nauk, ICom. Mat., A, 4, 3

(1937).
L. 0rkisz, Mém. Acad. Pol. d. Sc., A, 1933; Warsaw Obs. Repr., 21.
E. Warchalowski (monographie). Varsovie, 1939.
Nombreux travaux dans les Acta Astronomica. et Bull. Acad. Pol. et Sc.,

A (L. Staniciewicz).
Russie. — I. Belkovitsch, Russ. Astr. Journal, 1931, VIII, 2 (article mono¬

graphique).
Personne, à notre connaissance, n'a jusqu'à présent employé les matrices dans les

calculs astronomiques.
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On prend dans x autant de lignes qu'il faut pour que l'expression
contenant x ait un sens. Le produit r a, qu'on écrit plus
simplement xa, désigne a transposé, comme on l'a déjà dit.

On se sert parfois de t pour économiser la place. Par exemple

x

peut s'écrire

X T |X1X2 Xm ;

4. Le quotient

q a : b (2)

est un cracovien tel que

a q b (3)

(a doit avoir autant de lignes que b a de colonnes).
Si l'on désigné par b-1 (l'inverse de b) un cracovien tel que

b b-1 t (ou b~4 b t), on trouve en multipliant les deux
membres de (3) par xb1

a Tb"1 q (4)

On peut donc remplacer la division par b par la multiplication
par xb1 (si b a son inverse), mais un pareil procédé exige la
connaissance de l'inverse et n'est pas en général recommandable
au point de vue du calcul.

L'auteur préfère maintenant la définition du quotient à l'aide
de l'équation a — q xb, au lieu de (3).

5. Le système (1) peut s'écrire

X xk 1 (1 bis)

en posant

{xl} T
x1x2... Xm

hh ...i

*11*« -*«1

k k k
im 2771 mm
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Nous supposons les équations (1) arrangées de façon que
kn 7^ 0 et qu'en général chaques n premières, équations (n 1,

2, m) puissent être résolues univoquement par rapport aux
n premières inconnues #2, xn. Cette supposition générale
n'est point gênante, parce qu'il serait superflu de chercher à la

satisfaire dès le début des calculs: le cas échéant on remarquerait

qu'elle n'est pas satisfaite au cours des opérations et on y
remédierait en changeant l'ordre des inconnues (ou des

équations) sans avoir à refaire les calculs déjà effectués.

Il vient de (1 bis)
x 1 : Tk (5) '

Cette formule est en principe bien connue. Mais nous allons
voir que loin d'être, comme jusqu'à présent, un pur symbole, elle

permettra de déterminer x, et ceci sans calculer l'inverse k"1

(ce qui présente un problème numériquement plus difficile que
la solution cherchée).

§ 2. — Division par cracoviens triangulaires. — Soit b un cra-
covien (à m colonnes) triangulaire, c'est-à-dire tel que 0,
ou bien pour i < j (s'il est « supérieur ».de la forme \]), ou bien
pour i > / (s'il est « inférieur » de la forme [\), tandis que tous
les bu 7^ 0 (i 1, 2, m)

On aura pour une colonne quelconque i de a et la colonne
correspondante de q a : b

qi b d'où afj q. b, (6)

Pour un triangle « supérieur » posons successivement dans (6)
/ 1, 2, m. On aura les relations

""Il {?ù}{èll} > ah T{?il T{b21b22Ï >

ah

qui donneront successivement qa,qrm, a et b étant supposés

connus.
Pour un triangle « inférieur » on poserait dans (6) successivement

/ m,m— 1, 1, et on trouverait pareillement
••• Iii •
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Dans l'un ou l'autre cas on obtient de cette manière q{ d'après
a?:, c'est-à-dire chaque colonne de q d'après chaque colonne de a,
c'est ce qui nous donne tout le quotient q.

§ 3. — Décomposition en un produit de deux cracoviens
triangulaires. — Si k était un cracovien triangulaire, nous saurions

déjà appliquer (5). Dans le cas contraire, qui est le cas général,
nous décomposons k en un produit

g.h d'où «i • h;

de deux cracoviens triangulaires g et h « supérieurs », et nous
allons effectuer la division demandée par (5) en deux étapes.
La première équation (7) s'écrit d'une manière plus explicite:

On *.1 - j

\ ^12 *22 - 1712

j*13 *2. - h \
m 3

h
1 1m

k
2m mm J

8il £21 b31
ft 1

ömi j K K
0 0 22 £32 81112 [

\° h22 K
0 0 £33 8m 2 i •

\

0 K

0 0 0 " 8mm i 0 0 0

h
rn î

'm 2

(7 bis)

Le nombre d'éléments non zéros de g et h étant m2, + m et le

nombre de conditions à satisfaire étant m2, on a un excès m de

quantités à déterminer dans la décomposition de k. On peut en

profiter en prenant par exemple pour les gü (i — 1, 2, m) des

nombres arbitraires différents de zéro, par exemple des unités,
de sorte qu'on peut considérer les gu comme connus. Posons

maintenant dans (7) i 1, / successivement 1, 2, m.

Il vient
On} {KK- Km]T{/fn/ti"12 }

et il en ressort la première ligne de h. En posant dans (7) i — 2,

3, m et / 1 on trouve

{ ^21 £31 8mi } * { ^11 } { ^21 ^31 •" 'lmi } '

ce qui donne à son tour la première ligne de g, pourvu que
hn ^ 0. On pourra continuer en supposant successivement

n — 2, 3, m, et en posant dans (7)

i — n j n n -j- 1 m
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d'où ressort la ligne ndeh,

l 71 ~f~ 1 71 "I- 2 171 ] 71

d'où ressort la ligne n de g, pourvu que hnn ^ 0.

On obtiendra ainsi la décomposition cherchée pourvu qu'on
ne rencontre pas un élément hnn 0, ce qui arrêterait les

opérations.
Or il est facile à voir que tous les hnn sont ^ 0. En effet, tout

d'abord

Ki Ki : ^ii ^ 0 parce que k1± ^ 0

Supposons maintenant que hnn 0 est le premier coefficient
de la diagonale principale de h égal à zéro. Les n expressions

*11 xi + Kl X2 + - + km xn

*12 X1 + *22 X2 + + *712 XU

kmxi k2nX2 "h "• knnxn

seraient aiors des fonctions linéaires de n — 1 seulement formes
linéaires

#11^1 &21X2 ^31^3 ••• H~ §niXn

$22X2 + ^32 *3 + - + ëu2XU

&n~i, Ti-ixn-i £n,n-ixn

comme on le voit d'après (7 bis), et l'on ne pourrait pas résoudre
les n premières équations (1) par rapport aux n inconnues xly x2,

xn, ce qui est contraire à notre supposition.

§ 4. — Solution du problème. — L'équation (1 bis) s'écrit
maintenant

x (h g) 1 ou x xg h I

i Le lecteur qui s'intéresserait aux formules plus développées les trouverait dans
notre travail: Etudes d'analyse pratique, Bull. Acad. Pol. d. Sc., A, 1938, pp. 393-404;
Crac. Obs. Repr., 22; mais tout le procédé est extrêmement simple et élémentaire.
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d'où, en divisant, d'abord par h et ensuite par tg,

x {l : h} : Tg

Cette équation permet de calculer x et donne ainsi la solution
du problème. La clef de la méthode est donc la décomposition
du diviseur en deux facteurs simples, par lesquels on sait diviser
directement.

Exemple numérique. Soit à résoudre le svstème

+ 6^2 + 14^3 -j~

7-f- 26x2 + 39^3 + 85^4

6^ + 14^2 -f- 51x3 — 8.^4

5 ON \^x9 42^o \2xx

60

310

105

127

On effectue d'abord la décomposition (7 bis), en prenant
arbitrairement gn g22 gm g44 1 :

+ 2 +, 6 +14+10
J + 7 + 26 + 39 + 85

J + 6 + 14 + 51 — 8

' + 5 + 13 + 42 + 12

Ü + 1 + 3 + 7 + 5

0+1—2+10
0 0+1+2
0 0 0 +1

g

+ 2 + 7 + 6 + 5

0+5—4 —2

0 0 + 1 + 3 j

0 0 0 +1
h

et on a ensuite, d'après (8):

+ 60

310 /

105

127
j +105 \ j

JL 1 9 11 f

+ 2+7 +6 + 5

0+5—4—2
0 0+1+3
0 0

: ^g

30

20

5

2
)+ 5w

+ 2 J [

0+1
+ 1 0 0

+ 3+1 0

+ 7 — 2+1
+ 5+10+2+1

0 \ [ + 7

0
; + 2

0 f +1
1 +2

En comparaison avec la résolution usuelle par la méthode
d'élimination (ou son équivalent dans le langage des matrices x)

i Frazer, Duncan and Collar, Elementary matrices. Cambridge, 1938, p. 125.
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la méthode nouvelle offre l'avantage d'être plus simple en principe,

comme généralisation immédiate de la solution de l'équation

du premier degré à une inconnue. Elle est plus simple aussi

que la méthode d'élimination parce qu'elle opère avec des

nombres tabulaires (cracoviens), tandis que la méthode usuelle

s'occupe d'équations, conception mathématique logiquement
plus composée. Enfin, au point de vue de l'exécution numérique,
il est important que la méthode de division ne demande que
m2 + m quantités auxiliaires à déterminer pour m inconnues,

tandis que la méthode usuelle en emploie -g (2m + 1) 1) m.

Pour m —10 cela donne

110 auxiliaires pour la méthode de division.
385 » » » » usuelle.

Un cas particulier, très important dans les applications, est

celui du système symétrique, c'est-à-dire quand

k xk

On pourra alors poser g h et la décomposition de k en deux
facteurs se fait par l'extraction de la racine carrée de k. C'est le

cas des équations normales de la méthode des moindres carrés

que nous traitons ailleurs.
En pratique, les calculs jusqu'à présent souvent longs et

pénibles, se font rapidement, et, avec des contrôles convenables,
forment une source d'un vrai plaisir pour quiconque les exécute
avec un arithmomètre.

§ 5. — Résolution indéterminée. — Dans ce qui précède on
supposait que 1 consiste en une seule colonne, mais la formule (8)
est de même juste pour un cracovien 1 à un nombre de colonnes
quelconque.

Le cas particulier très important est celui de l'équation

Q.k - t (9)

où l'on cherche Q k-1, qui est appelé solution indéterminée
de l'équation (1 bis). En effet, en multipliant les deux membres
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de (1 bis) par Q et en tenant compte de (9) on obtient pour
chaque 1

x 1. Q (10)

D'après (9) et (7) il vient

Q {t : g} : Th " (il)

Pour notre exemple numérique on a

1 0 0 0] / + 1 4- 3 + 7 + 5

loioo 0+1 —2 + 10
Q - : : rh0010 0 0+1+2

o o o i M o o o+i
0 ] / + 2 0 0 0

of + 7 + 5 0 0 i

o
'

+ 6 —4 +1 0

+ 51 —14 — 2 + 1 (+5—2+3+1
+ 766.5 —201.3 —32.8 + 13.5 ]

— 113.0 + 29.8 + 4.8 — 2.0 f

j—166.0 + 44.0 + 7.0 — 3.0
'

+ 51.0 — 14.0 — 2.0 + 1.0

On retrouve le tableau de notre travail antérieur 1, où Q était calculé

par la formule Q =« g"1 .h-1, demandant la détermination non seulement
de g-1, comme (11), mais aussi de h-1. Aux dépens de la simplicité du
procédé on peut même calculer Q d'après g et h sans aucune auxiliaire
excepté les +* qui ne comptent pas d'ailleurs, si l'on prend les gü 1.

En effet la formule (11) donne

Q vh g""1 (lia)
et l'on tire de l'équation tQ h-1 g-1

tQ tg h-1 • (11 b)

Contrairement à ce qui pourrait paraître à première vue, g"1 et h"1 ne
sont point nécessaires pour utiliser ces formules, les éléments zéros et les

i Loc. cit.
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éléments de la diagonale principale du cracovien g étant suffisants. En
effet on voit facilement que d'abord (11 a) donne la dernière colonne m
de Q en donction de g^m, ensuite (11 b) la ligne m de Q. Après ceci (11 a)

donne la colonne m — 1 de Q, et (11 b) la ligne m — 1 de Q, etc. De proche
en proche on calcule ainsi Q tout entier.

§ 6. — Relation entre la solution nouvelle et celle de Cramer.
Calcul des déterminants. — D'après (8) on a x rg (l : h}
ou, ce qui revient au même, x {l : h} g"1, ou encore

xt {1 : h } {} {l:h}.{|g| g^1 } : |g| (i 1, 2, m)

Mais | g [ g^"1 peut être considéré comme la colonne i des

mineurs du premier ordre du déterminant | g | et, en supposant
dans |g | la colonne i remplacée par 1 : h, la formule qui donne
la valeur d'un déterminant en fonction de cette colonne et de ses

cofacteurs permet d'écrire

% =-|gig« gi_;p Dh, gi+1 gj : |g| •

En multipliant toutes les colonnes du premier déterminant
par h, ce qui fait augmenter sa valeur | h [ fois, et en tenant
compte de ce que

| {k} {g} {h[ d'où |k| |g11h|
l] il vient

j. Xt « |kx kMi 1, ki+1, km| : k| (i 1,2, ...m) # (12)

!i c'est-à-dire la solution de Cramer.
M

S1 Inversement on passerait pareillement de (12) à (8), ce qui
: mène d'ailleurs à la façon la plus avantageuse connue du calcul

de (12). liest donc confirmé ainsi qu'on peut utiliser numérique-
I ment, dans un sens assez borné, les formules de Cramer, comme
{ nous l'avons indiqué dans notre travail antérieur 1, mais on est
j conduit alors à la transformation des déterminants en expressions

très élémentaires, qui peuvent être obtenues beaucoup plus
rapidement par la voie directe, sans l'intermédiaire des
déterminants.

i Zur Berechnung der Determinanten, etc. Acta Aslron., sér. c, 3, 41-72 (1937).
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Si l'on veut calculer j k j, la méthode de décomposition s'y
prête parfaitement, parce que

|k j {§1182,2 8mm) (^11^22 ••• • (t$)

§ 7. — Remarque finale. — Le lecteur demandera peut-être
pourquoi nous n'avons pas employé les matrices dont l'algèbre
est pourtant plus simple. Ce n'est pas ici le lieu de discuter les

différents avantages et désavantages relatifs des matrices et des

cracoviens, mais l'essentiel c'est la grande facilité des calculs
effectifs, tant numériques que littéraux, des produits des cracoviens,

grâce à la conformité de ces opérations fondamentales au
principe de la juxtaposition des éléments correspondants. La
difficulté presque prohibitive de pareils calculs avec les matrices
semble avoir retardé sensiblement l'emploi tellement utile des

nombres tabulaires dans les différents domaines des Mathématiques.

Cracovie, mars 1941.

ADDENDA

Dans le laps du temps de sept années qui durent s'écouler,

par suite de la guerre, entre la composition et l'impression de

cet article, l'auteur a développé différents résultats ci-dessus.
La supposition (p. 4) que les équations soient spécialement

arrangées et puissent être résolues univoquement n'est point
nécessaire, parce que la solution s'applique dans le cas le plus
général de n équations à m inconnues. Il suffît de chercher la
décomposition du k en un produit de deux facteurs « élémentaires

». Un cracovien est élémentaire si dans chacune de ses

lignes « s'éteint » au moins un colonne, et l'on dit qu'une colonne
d'un cracovien s'éteint dans la ligne s, si l'élément de cette
colonne dans la ligne s est différent de zéro, les éléments suivants
dans cette colonne étant zéros ou n'existant pas (si la ligne est la
dernière).

On démontre facilement le théorème (fondamental) que
chaque cracovien k (carré ou non) non zéro peut être décomposé
en un produit k g. h de deux cracoviens élémentaires g et h.
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Le nombre de pareilles décompositions peut être très grand

(sans compter le facteur banal de proportionnalité), mais le

nombre r de lignes du g et h est le même pour toutes ces

décompositions: c'est le rang du k. On a dès lors une méthode très

simple de la détermination de ce qu'on appelle le rang d'une

matrice.
Avec la nouvelle définition du quotient § 1, fin du passage 4),

en posant

{k l} g', h x' ;r2 xm } — 1 }

la solution (8) se simplifie encore et devient

x' 0 : g' (8*)

x' existe si g et g' sont du même rang, c'est-à-dire ont le même
nombre de lignes, et n'existe pas dans le cas contraire. La solution,

quand elle existe, a m — r + i degrés de liberté.
On évite ainsi complètement l'emploi des déterminants dans

la résolution numérique d'équations linéaires arbitraires, ainsi

que dans la détermination du rang d'un tableau.
Quant à la propagation non astronomique des cracoviens,

notons que le Conseil national de l'Office central des mesures du

pays en Pologne les a recommandés, en 1946 et 1947, pour les

calculs géodésiques, et ils sont enseignés maintenant brièvement
dans les principales écoles polytechniques de Pologne. Dans
son Algèbre nucléaire (non publiée), M. T. Kochmanski (Cra-
covie) donne une application importante des cracoviens aux
calculs des séries; le même auteur publia entre autres plusieurs
exposés didactiques. A Varsovie, M. S. Husbrandt, de la
Polytechnique, les applique aux divers problèmes du calcul numérique

(nombreux manuscrits photocopiés). Le livre Scienza délie

Costruzioni, vol. 2, Bologne 1946, de M. Odone Belluzzi,
pp. 287-298, enseigne l'emploi des cracoviens dans la résolution
des équations linéaires. M. W. Sierpinski en parle dans plusieurs
endroits de ses Fondements d'Algèbre supérieure, Varsovie 1946
(en polonais).

Cracovie, juillet 1948. T. Banachiewicz.
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