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RESOLUTION D’UN SYSTEME D’EQUATIONS
LINEAIRES ALGEBRIQUES PAR DIVISION

PAR

T. Banacuiewicz (Cracovie).

L’équation élémentaire du premier degré kx = | se résout,
quand k£ # 0, par la formule x = [ : k. Une solution pareille
peut-elle s’appliquer au systéme d’équations

k11x1+ a1 Ty T e +l‘m1m =1

k 2Lt k22 g T e T kmzacm = [ )

»

/fmxl - ]fzm o T e F ]f,mm m = L

m

que nous supposons avoir une solution unique ? La réponse a
cette question est affirmative, et nous allons voir qu’on obtient
méme de cette facon une solution du systéme (1) plus simple que
celle a I’aide de I’élimination successive ou des déterminants.
Nous résolvons ce probleme a I'aide de nombres tabulaires,
connus aux astronomes et aux géodésiens sous le nom de craco-
viens. Les cracoviens sont analogues aux nombres tabulaires

appelés matrices, mais ils différent de celles-ci par la définition
du produit et ce qui en découle 1.

1 Parmi les publications sur les cracoviens ou celles qui se servent effectivement de
cracoviens, nous citons les suivantes, disposées par pays des auteurs:

Allemagne. — K. ILLIGNER, Astron. Nachr., 253, n° 16 (1934).

Angleterre. — The Nautical Almanac, depuis 1931, par ex. 1940, p. 819.

Belgique. — S. AREND, Bull. Soc. Astr. Belge, 1933, n° 1; Bull. Astr. Brux., III,
1940, n° 3, 1941, no 4,

Chine. — E. VILLEMARQUY, Annales Observ. Zo-cé, 19, fasc. 3 (1936); aussi 19,
fasc. 1 (1934).

( Voir suite de la nole, page suivante.)
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$ 1. — Généralités sur les cracoviens. — 1. On désigne les
cracoviens par des lettres grasses et des accolades. Par exemple

Q31 Aoy Agy .

A9 Agg 39

L’élément du cracovien a dans la colonne © et la ligne j est
désigné a;;. La colonne 7 de a, envisagée comme cracovien, est
désignée par a,. Par exemple

5251 g

azz = p
Aas

2. Le produit a . b de deux cracoviens a et b, ayant chacun le
méme nombre de lignes, est un cracovien p ayant comme élément
général p; = a;. b;. On multiplie donc les cracoviens colonne
par colonne et non lignes par colonnes. En désignant la trans-
position des éléments par 7, on a la formule b.a = =< (a.bh).
Le produit a.b.ec signifie (a.b).e. Pour l'association des
facteurs dans le produit on a la formulea.b.e.=a.(e. 7h),
et pour la dissociation a.(b.e) = a.ve.h.

3. Le symbole = désigne aussi un cracovien carré, ayant des
unités sur la diagonale principale et des zéros partout ailleurs.
Ainsi

100
. T o= 010(, ete.
001 S

Etats-Unis. — EckKERT and BROUWER, Astr. Journ., n° 1069 (1937).
Italie. — F. ZAGAR, Mem. del R. Istit. Veneto, 29, n° 8 (1928).
Lettonie. — K. STEINS, Acta Astronomica, sér. a, 3 (1936).
Pologne. — A. CHroMINSKI (applications & 1’analyse pratique), Bull. Acad. Pol.
d. Sc., A, 1938.
F. KoepckE (monographie), Pozn. Tow. Przyj. Nauk, Kom. Mat., A, 4, 3
(1937).
. L. Ork1sz, Mém. Acad. Pol. d. Sc., A, 1933; Warsaw Obs. Repr., 21.
E. WarcHALOWSKI (monographie). Varsovie, 1939.
Nombreux travaux dans les Acta Astronomica. et Bull. Acad. Pol. ei Sc.,
A (L. STANKIEWICZ).
Russie. — I. BELKOVITSCH, Russ. Asir. Journal, 1931, VIII, 2 (article mono-
graphique).

Personne, a notre connaissance, n’a jusqu’a présent employé les malrices dans les
calculs astronomiques. )
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On prend dans t autant de lignes qu’il faut pour que ’expression
contenant = ait un sens. Le produit 7. a, qu'on écrit plus sim-
plement ta, désigne a transposé, comme on I'a déja dit.

On se sert parfois de v pour économiser la place. Par exemple

)

peut s’écrire
4. Le quotient

est un cracovien tel que
a=4¢q.b (3)

(a doit avoir autant de lignes que b a de colonnes).

Si Pon designe par b™' (Pinverse de b) un cracovien tel que
b.b! =1 (oub?.b= 1), on trouve en multipliant les deux
membres de (3) par tb™

a.th ' = q . (&)

On peut donc remplacer la division par b par la multiplication
par tb' (si b a son inverse), mais un pareil procédé exige la
connaissance de I'inverse et n’est pas en général recommandable
au point de vue du calcul.

L’auteur préfére maintenant la définition du quotient a ’aide
de 'équation a =q . tb, au lieu de (3).

5. Le systeme (1) peut s’écrire

X.7k =1 (1 bis)
en posant

X1 Ty eer Ty | 121 i (

m* - —
{x1} =< Ll ol k=
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Nous supposons les équations (1) arrangées de facon que
ky 7% 0 et qu’en général chaques n premieéres équations (n = 1,
2, ... m) puissent étre résolues univoquement par rapport aux
n premiéres inconnues z, %,, ... Z,. Cette supposition générale
n’est point génante, parce qu’il serait superflu de chercher a la
satisfaire deés le début des calculs: le cas échéant on remarque-
rait qu’elle n’est pas satisfaite au cours des opérations et on y
remédierait en changeant ’ordre des inconnues (ou des équa-
tions) sans avoir a refaire les calculs déja effectués.

Il vient de (1 bis)
' Xx =1: k. (5)°

Cette formule est en principe bien connue. Mais nous allons
voir que loin d’étre, comme jusqu’a présent, un pur symbole, elle
permettra de déterminer X, et ceci sans calculer I'inverse k*
(ce qui présente un probléme numériquement plus difficile que
la solution cherchée).

§ 2. — Division par cracoviens triangulaires. — Soit b un cra-
covien (& m colonnes) triangulaire, c’est-a-dire tel que b;; = 0,
ou bien pour i < j (s'il est « supérieur ».de la forme <), ou bien
pour ¢ > j (s’il est «inférieur » de la forme [\), tandis que tous
les b;; #0 (1 =1, 2, ... m) .

On aura pour une colonne quelconque i de a et la colonne
correspondante de q = a : b

Pour un triangle « supérieur » posons successivement dans (6)
] =1,2, ... m. On aura les relations

ail:{qil}{bu}’ Qig = T{qilqiz}'T{b21b22}’
Aig = T{Fln qi2qi3} . T{bm by b33}

qui donneront successivement ¢, ¢, ... ¢im, @ €t b étant suppo-
ses connus.

Pour un triangle «inférieur » on poserait dans (6) successive-
ment j = m, m —1, ... 1, et on trouverait pareillement g, _,
Tiym—15 +++ it - |
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Dans I'un ou 'autre cas on obtient de cette maniére q; d’apres
a;, c’est-a-dire chaque colonne de q d’aprés chaque colonne de a,
c¢’est ce qui nous donne tout le quotient q.

§ 3. — Décomposition en un produit de deux cracoviens trian-
gulaires. — Si k était un cracovien triangulaire, nous saurions
déja appliquer (5). Dans le cas contraire, qui est le cas général,
nous décomposons k en un produit

k:g.h, d,Oﬁ klj:gl'hj7 (7>
de deux cracoviens triangulaires g et h «supérieurs », et nous

allons effectuer la division demandée par (5) en deux étapes.
La premiére équation (7) s’écrit d’une maniére plus explicite:

3 o o \
ku k21 ]‘m:[ 811 821 831 " Smy h h hsl hrm '
klz k22 kmg 0 822 832 " Sy 0 h h 32 " hmg /
X — o \ :
kig fpy - kmg =0 0 gy By ) - N0 O hyg - hm:: } 13 fis)
‘\ k1mk2m ]fmm 0 0 0 ... Emm. i (O 0o o0 .. hmmS

Le nombre d’éléments non zéros de g et h étant m?2 -+ m et le
nombre de conditions a satisfaire étant m2 on a un exces m de
quantités a déterminer dans la décomposition de k. On peut en
profiter en prenant par exemple pour les g;; (¢ = 1, 2, ... m) des
nombres arbitraires différents de zéro, par exemple des unités,
de sorte qu'on peut considérer les g, comme connus. Posons
maintenant dans (7) ¢ = 1, ;j = successivement 1, 2, ... m.

11 vient
{611} {ku o = 1m}“‘ T{kn 12 }’

et il en ressort la premieére ligne de h. En posant dans (7) 1 = 2,
3,...met j=1on trouve

{gzl g31’ bml} {hlll o {]‘21 21 " kml} ’

ce qui donne a son tour la premiére ligne de g, pourvu que
hy; # 0. On pourra continuer en supposant successivement
n=2,3,..m,et en posant dans (7)

I =n Jj=n,n+1,.m
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d’ou ressort la ligne n de h;
i:'n—l—l,n—{—2,...m j=n

d’ou ressort la ligne n de g, pourvu que £, 7% 0.

On obtiendra ainsi la décomposition cherchée 1, pourvu qu’on
ne rencontre pas un élément h,, = 0, ce qui arréterait les
opérations.

Or il est facile & voir que tous les £, sont = 0. En effet, tout
d’abord

Supposons maintenant que k,, = 0 est le premier coeflicient
de la diagonale principale de £ égal & zéro. Les n expressions

kn x, + ky xy o+ lfm x
klz Zy T Hy &, + we -+ kn2 x

1n1+k2n2+ +k

seralent alors des fonctions linéaires de n — 1 seulement formes
linéaires
gllxl Jr— g21x2 g31 3 + ] gnlxn
g22x2 + g32x3 + + gngxn

o
on--1, n—1 xn—l + gn, n—1 Ly

comme on le voit d’apreés (7 bis), et ’on ne pourrait pas résoudre
les n premiéres équations (1) par rapport aux n inconnues z;, .,
. Z,, ce qui est contraire & notre supposition.

§ 4. — Solution du probléme. — L’équation (1 bis) s’écrit
maintenant

x.h.g =1, ou X.7g.h =1,

1 Le lecteur qui s’intéresserait aux formules plus développées les trouverait dans
notre travail: Etudes &’ analyse pratique, Bull. Acad. Pol. d. Sc., A, 1938, pp. 393-404;
Crac. Obs. Repr., 22; mais tout le procédé est extrémement sunple et élémentaire.
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d’ou, en divisant, d’abord par h et ensuite par tg,
x ={l:h}:g. (8)

Cette équation permet de calculer x et donne ainsi la solution
du probléme. La clef de la méthode est donc la décomposition
du diviseur en deux facteurs simples, par lesquels on sait diviser
directement.

Exemple numériqgue. — Soit a résoudre le systéme

2z, + 6xy + 14z3 + 1024 = 60 ,
Tz, + 262, + 3925 + 85z, = 310 ,
6z, + 14z, + S1lz; — 8zy = 105 ,
Sz + 13%y 4+ 4225 + 122, = 127 .

On effectue d’abord la décomposition (7 bis), en prenant
arbitrairement g;; = gop = g33 = gy = 1:

/

12 L 6 114 10} (41 43 47 F 5) (4247 46 L5

y+7+26+39+85 \ 0-+1—4-+m)g 0 +5 —4& —2

}+6414+5L—85_/() 0+1+2§) 0 0+1+3S

L5 13 42 412 0 0 o0+ 1)1 0o o o+1
k g h

et on a ensuite, d’apres (8):

- 60 V+2+7—+6+5‘

\ + 310 0 +5 —4 —2
Xx =1 I T
/+105 ( 0 0 +1 +3§

127 0 0 0 41

I

"+ 30 g+1 0 0 0) 4 7 |,
+3 4+ 1 0 o( s

-+ 20 . 4+ 2 |z,
~)+ 5( ]4+7 —2 41 0o |41 wP%
42 (+5—+w-+2+1 42 24

En comparaison avec la résolution usuelle par la méthode
d’élimination (ou son équivalent dans le langage des matrices ')

1 FraZER, Duncaw and CoLLAR, Elementary matrices. Cambridge, 1938, p. 125.
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la méthode nouvelle offre 'avantage d’étre plus simple en prin-
cipe, comme généralisation immédiate de la solution de I’équa-
tion du premier degré & une inconnue. Elle est plus simple aussi
que la méthode d’élimination parce qu’elle opére avec des
nombres tabulaires (cracoviens), tandis que la méthode usuelle
s’occupe d’équations, conception mathématique logiquement
plus composée. Enfin, au point de vue de I'exécution numérique,
il est important que la méthode de division ne demande que
m? + m quantités auxiliaires & déterminer pour m inconnues,

tandis que la méthode usuelle en emploie % 2m -+ 1) (m + 1) m.

Pour m = 10 cela donne

110 auxiliaires poﬁr la méthode de division.
385 » » oy » usuelle.

Un cas particulier, trés important dans les applications, est
celui du systéme symétrique, c’est-a-dire quand

k = 7k .

On pourra alors poser g = h et la décomposition de k en deux
facteurs se fait par I’extraction de la racine carrée de k. C’est le
cas des équations normales de la méthode des moindres carrés
que nous traitons ailleurs.

En pratique, les calculs jusqu’a présent souvent longs et
pénibles, se font rapidement, et, avec des controles convenables,
forment une source d’un vrai plaisir pour quiconque les exécute
avec un arithmometre.

§ 5. — Résolution indéterminée. — Dans ce qui précéde on
supposait que 1 consiste en une seule colonne, mais la formule (8)
est de méme juste pour un cracovien 1 & un nombre de colonnes
quelconque.

Le cas particulier trés important est celui de I’équation

Q.k-——r (9)

ou l'on cherche @ = k™!, qui est appelé solution indéterminée
de I’équation (1 bis). En effet, en multipliant les deux membres
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de (1 bis) par @ et en tenant compte de (9) on obtient pour
chaque 1

x —1.Q (10)
D’aprés (9) et (7) il vient

Q= {-:g}:7h. ‘ (11)
Pour notre exemple numérique on a

1000 g-u 183 47 4+ 5
\0100 0 +1 —29 +108
. ) \ zh
001082 0 0+1+2S
000 1, 0 0 0 -+ 1

745 0 0
16 —4 10
L5 —2 +3 +1S
1 766.5 —201.3 —32.8 4 13.5

—113.0 + 29.8 + 48 — 208

—166.0 + 44.0 + 7.0 — 3.0

8+ 51.0 — 14.0 — 2.0 + 1.08

0 0) (+2 0 0 0
—~3+1oozs

o ‘ ]
(—~13+2+1 OS
|

151 —1h =l -1

On retrouve le tableau de notre travail antérieur !, ou Q était calculé
par la formule @ = g™' . h™!, demandant la détermination non seulement
de g1, comme (11), mais aussi de h!. Aux dépens de la simplicité du pro-
cédé on peut méme calculer Q d’aprés g et h sans aucune auxiliaire
excepté les g‘f qui ne comptent pas d’ailleurs, si 'on prend les g;; = 1.

En effet la formule (11) donne

Q.th = g‘i (11 a)
et ’on tire de I’équation vQ = ht. g™
~Q.7g = h'. (11 b)

Contrairement a ce qui pourrait paraitre & premiére vue, g‘1 et h™! ne
sont point nécessaires pour utiliser ces formules, les éléments zéros et les

1 Loc. cit.
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éléments de la diagonale principale du cracovien g étant suffisants. En
effet on voit facilement que d’abord (11a) donne la derniére colonne m
de Q en donction de g,_nlm, ensuite (115) la ligne m de Q. Aprés ceci (11 a)
donne la colonne m — 1 de Q, et (11 b) la ligne m — 1 de Q, etc. De proche
en proche on calcule ainsi Q tout entier.

- § 6. — Relation entre la solution nouvelle et celle de Cramer.
Calcul des déterminants. — D’aprés (8) on a x.7g = {l:h}
ou, ce qui revient au méme, x = {1: h}.g™", ou encore

zo={L:h}. {g't={l:n} . {lglg;' }:1g]l (=12 ..m.

: Mais [g [ g{l peut étre considéré comme la colonne i des
~mineurs du premier ordre du déterminant |g l et, en supposant
dans ]gl la colonne i remplacée par 1 : h, la formule qui donne
la valeur d’un déterminant en fonction de cette colonne et de ses
cofacteurs permet d’écrire

x, =818 - 8 11, g0 8,118 .

En multipliant toutes les colonnes du premier déterminant
par h, ce qui fait augmenter sa valeur |h | fois, et en tenant
compte de ce que \

{k}={g}.{h}, dou |kl =]gllh],
il vient

xXr. = Ikl ey k

(4

k| (t=1,2,...m), (12)

i—l P l: ! 1 3 oo

c’est-a-dire la solution de Cramer. |

Inversement on passerait pareillement de (12) a (8), ce qui
mene d’ailleurs & la facon la plus avantageuse connue du calcul
de (12). 11 est done confirmé ainsi qu’on peut utiliser numérique-
ment, dans un sens assez borné, les formules de Cramer, comme
nous I'avons indiqué dans notre travail antérieur !, mais on est
conduit alors & la transformation des déterminants en expressions
trés élémentaires, qui peuvent étre obtenues beaucoup plus
rapidement par la voie directe, sans I'intermédiaire des déter-
minants.

1 Zur Berechnung der Delerminanten, etc. Acta Aslron., sér. ¢, 3, 41-72 (1937).
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St 'on veut calculer |k [, la méthode de décomposition s’y
préte parfaitement, parce que

‘k} = (gu 8o --- gmm) (huhzz hmm) . (13)

§ 7. — Remarque finale. — Le lecteur demandera peut-étre
pourquoil nous n’avons pas employé les matrices dont algébre
est pourtant plus simple. Ce n’est pas ici le lieu de discuter les
différents avantages et désavantages relatifs des matrices et des
cracoviens, mais l'essentiel c’est la grande facilité des calculs
effectifs, tant numériques que littéraux, des produits des craco-
viens, grace a la conformité de ces opérations fondamentales au
principe de la juxtaposition des éléments correspondants. La
difficulté presque prohibitive de pareils calculs avec les matrices
semble avoir retardé sensiblement ’emploi tellement utile des
nombres tabulaires dans les différents domaines des Mathéma-
tiques.

Cracovie, mars 1941.

ADDENDA

Dans le laps du temps de sept années qui durent s’écouler,
par suite de la guerre, entre la composition et I'impression de
cet article, ’auteur a développé différents résultats ci-dessus.

La supposition (p. 4) que les équations soient spécialement
arrangées et puissent étre résolues univoquement n’est point
nécessaire, parce que la solution s’applique dans le cas le plus
général de n équations & m inconnues. Il suffit de chercher la
décomposition du k en un produit de deux facteurs « élémen-
taires ». Un cracovien est élémentaire si dans chacune de ses
lignes « 8’éteint » au moins un colonne, et I’on dit qu’une colonne
d’un cracovien s’éternt dans la ligne s, si ’élément de cette
colonne dans la ligne s est différent de zéro, les éléments suivants
dans cette colonne étant zéros ou n’existant pas (si la ligne est la
derniére).

On démontre facilement le théoreme (fondamental) que
chaque cracovien Kk (carré ou non) non zéro peut étre décomposé
en un produit kK = g. h de deux cracoviens élémentaires g et h.
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Le nombre de pareilles décompositions peut étre trés grand
(sans compter le facteur banal de proportionnalité), mais le
nombre r de lignes du g et h est le méme pour toutes ces décom-
positions: c’est le rang du k. On a dés lors une méthode tres
simple de la détermination de ce qu’on appelle le rang d’une
matrice.

Avec la nouvelle définition du quotient (§ 1, fin du passage 4),
en posant

{kl}= g'.hi, X = ‘r{xl, Ty, -«- T, —1},

la solution (8) se simplifie encore et devient
X =0:¢g (8%)

x’ existe si g et g’ sont du méme rang, c’est-a-dire ont le méms
nombre de lignes, et n’existe pas dans le cas contraire. La solu-
tion, quand elle existe, a m — r -~ 1 degrés de liberté.

On évite ainsi complétement 'emploi des déterminants dans
la résolution numérique d’équations linéaires arbitraires, ainsi
que dans la détermination du rang d’un tableau.

Quant & la propagation non astronomique des cracoviens,
notons que le Conseil national de I’Office central des mesures du
pays en Pologne les a recommandés, en 1946 et 1947, pour les
calculs géodésiques, et ils sont enseignés maintenant brievement
dans les principales écoles polytechniques de Pologne. Dans
son Algébre nucléaire (non publiée), M. T. Kocamaxskr (Cra-
covie) donne une application importante des cracoviens aux
calculs des séries; le méme auteur publia entre autres plusieurs
exposés didactiques. A Varsovie, M. S. HusBranpT, de la Poly-
technique, les applique aux divers problémes du calcul numé-
rique (nombreux manusecrits photocopiés). Le livre Scienza delle
Costruzioni, vol. 2, Bologne 1946, de M. Odone BEeLLuzzI,
pp. 287-298, enseigne ’emploi des cracoviens dans la résolution
des équations linéaires. M. W. SIERPINSKI en parle dans plusieurs
endroits de ses Fondements d’Algébre supérieure, Varsovie 1946
(en polonais).

Cracovie, juillet 1948. 'T. BANACHIEWICZ.
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