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220 /. HJELMSLEV

II. La géométrie de la chambre.

17. — Une chambre a la forme d'un cube dont l'arête est
égale à 5 mètres. Par le milieu 0 du cube nous menons un plan
horizontal, le plan médian; il divise la chambre en deux espaces
symétriques, l'un supérieur, l'autre inférieur. Le plan médian
joint les parois le long d'un carré dont le côté est égal à 5 mètres.
Nous rapportons les points de ce carré à un système de
coordonnées dont les axes x et y partent du milieu 0 parallèlement
aux côtés du carré et munis de directions positives déterminées.
Chacun de ces points est déterminé par deux coordonnées.

L'on peut maintenant indiquer la position d'autres points P
dans la chambre, qu'ils appartiennent à l'espace supérieur ou
inférieur de celle-ci, par leur projection P' sur le plan médian et

par la distance P'P au-dessus ou au-dessous de celui-ci. Cette
distance est munie de signes, en effet + ou — selon qu'elle
pointe vers le haut ou vers le bas.

Chaque point de la chambre est ainsi déterminé par trois
coordonnées xx, x2, x3 (ou x, y, z) dont les deux premières x1 et x2

sont les coordonnées de P' dans le plan médian tandis que la
troisième x3 est la distance P'P orientée selon les indications
ci-dessus. Si la coordonnée x3 est égale à zéro, le point P est
situé dans le plan médian. Les deux axes x et y ainsi qu'un axe
vertical z par 0 orienté vers le haut, s'appellent les axes de

coordonnées et forment avec les plans yz, zx et xy (les plans de

coordonnées) un système de coordonnées.
Pour commencer nous ne considérons pas d'autres points

dans la chambre que ceux dont les coordonnées s'expriment en

un nombre entier de centimètres, de sorte que xXl x2, x3 ne

prennent que les valeurs entières de l'intervalle — 250 à + 250.

Mais il faut toujours conserver la possibilité d'introduire, par
fractionnement du centimètre, des nombres plus petits à mesure
qu'on en aura besoin, tout en appliquant notre interprétation
habituelle.

18. — Par une translation le long de l'axe Ox où l'origine 0
se déplace sur le point (a, 0, 0), l'ensemble des points se déplace
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sur d'autres points de telle sorte que les coordonnées y et z

restent les mêmes tandis que les coordonnées x s'augmentent
de a. Les translations le long des axes Oy et Oz sont caractérisées

d'une manière analogue. Il s'ensuit qu'une translation qui
déplace l'origine 0 sur le point (a, è, c) déplacera le point (#, ?/, z)

sur (x + a, y + 6, z + c).

Pour une symétrie par rapport au plan 0xy1 les coordonnées

x et y restent les mêmes, tandis que les coordonnées z changent
de signe. Il en est de même pour les symétries par rapport aux
autres plans de coordonnées.

Une rotation de 90° autour de l'axe Oz déplace l'axe Ox sur
Oy et le point (#, y, z) sur (— y, x, z). Des changements
analogues ont lieu pour les rotations autour des autres axes.

Considérons enfin une demi-rotation autour de l'axe Oz qui
déplacera le point (x, ?/, z) sur (— xf — y, z) ainsi que la symétrie
(le mirage) par rapport à l'origine 0 qui transforme (#, ?/, z) en
(— x, — y, — z). On peut décomposer la dernière transformation
en trois mirages consécutifs par rapport aux plans de coordonnées

ou en un seul mirage par rapport au plan xy suivi d'une
demi-rotation autour de l'axe Oz.

19. — Le carré de la distance de l'origine 0 à un point
P (x, ?/, z) est — comme nous le savons déjà — égal à x2 + y2 -j- z2,
d'où l'on conclut immédiatement que le carré de la distance
d'un point quelconque M (a, b, c) au point P {x, y, z) doit être

(* — «)2 + (y — b)2 + (z — c)2

On a seulement à effectuer une translation qui déplace M
sur 0, et à appliquer ensuite le résultat précédent.

20. — Pour que les deux droites joignant 0 aux points
M (a, 6, c) et P (x, y, z) soient perpendiculaires l'une à l'autre,
il faut, selon le théorème de Pythagore, que le carré de MP soit
égal à la somme des carrés de OM et OP, donc

(x — a)2 + (y — b)2 + (z — c)2 [x2 + y2 + z2) + (a2„+ b2 + c2)

OU

ax + by -h cz 0 -.
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Il s'ensuit que les points (x, ?/, 2) situés dans un plan mené

par 0 perpendiculairement à la droite OM doivent satisfaire à

l'équation ax + by + cz 0. On appelle donc cette équation
l'équation du plan.

Si le plan ne passe pas par l'origine, mais par un autre point
(p, #, r) l'on reconnaît facilement par une translation que son
équation sera

a (x — p) + b (y — q) + c (z — r) 0

21. — Nous introduisons à présent les vecteurs dans l'espace
comme antérieurement nous l'avons fait dans le plan. La
lettre a doit premièrement signifier le point (%, a2, a3), mais
deuxièmement elle doit signifier une translation qui déplace
l'origine sur ce point; troisièmement elle signifie enfin un
vecteur, c'est-à-dire un chemin rectiligne qui va de l'origine au
point. On appelle aussi %, a2, a3 les coordonnées de la translation
ou du vecteur.

L'équation a + b c doit signifier que la composition des

translations a et b produit la translation c; ceci revient aux
relations ax + b± cv a2Jrb2 c2 et a3 + è3 c3.

On appelle vecteurs inverses deux vecteurs a et (— a) qui
se détruisent par addition, c'est-à-dire qui produisent le vecteur
zéro (0, 0, 0). Parfois on se sert aussi d'un vecteur du point a

au point b. Il est désigné par ab et signifie le vecteur correspondant

à la translation qui déplace le point a sur le point à, donc
ab b — a.

22. — On dit que le vecteur a est multiplié par le nombre
(le scalaire) X, quand ses coordonnées sont multipliées par X

et l'on écrit

Les vecteurs a et Xa sont situés sur la même droite et sont dits
linéairement dépendants (entre eux); ils ont la même direction
ou des directions opposées selon que X est positif ou négatif.

Si deux vecteurs a et b sont situés sur la même droite, il
existe entre eux un rapport a/b ou a: à, c'est-à-dire un scalaire X

tel que a Xè.
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23. — Pour une droite passant par le point a et dont la direction

est déterminée par le vecteur è, on a la représentation
paramétrique

x a -f- ~kb

Pour un plan passant par le point a et contenant des droites
dont les directions sont déterminées par les vecteurs b et c, on

a la représentation paramétrique

x a + Xb + \lc ;

ceci signifie que tout couple de valeurs des deux scalaires X et p.

détermine — en deçà de certaines limites — un point x dans le

plan.

24. — Le produit (scalaire) de deux vecteurs a et b est défini

par la relation
ab — a1b1 + a2 b2 + a3 bz

On reconnaît tout de suite les mêmes propriétés que pour
le plan:

ab ba a (b + c) ab -f olc

ab 0 signifie axb± + a2b2 + a3bs 0, donc (§ 20) que les

deux vecteurs sont perpendiculaires Tun à l'autre (à condition
bien entendu qu'aucun d'eux ne soit le vecteur zéro).

Le produit reste le même quand l'extrémité d'un des
vecteurs se déplace dans un plan perpendiculaire à l'autre, car
a(b + c) ab, quand ac 0.

La projection du vecteur a sur b est un vecteur ah dont le

rapport à b est le suivant

ab a}P ab -, ab

X ~ ~W ~ ~¥ ' c a*>~ ~V*h '

25. — Correspondant au nombre-mesure de longueur que
nous avons introduit dans le plan, nous choisissons dans l'espace
comme nombre-mesure pour la longueur du vecteur a

\a\ ^a2 (/% + al -f az
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A chaque vecteur a (différent de zéro) correspond ainsi un
vecteur d'unité a/Va2 (vecteur de longueur 1) dont les applications

sont analogues à celles dans le plan.
La distance de deux points a et ô, la longueur du vecteur ab,

possède le nombre-mesure

| ab | -y/(a — b)2 \/(ax — bx)2 -f (a2 — b2)2 + (a3 — b3)2

26. — Un plan mené par le point p perpendiculairement au
vecteur a est représenté par l'équation

a (x — p) 0

Si a est un vecteur-unité, on dit que l'équation est mise sous
la forme normale. La distance du plan à un point x0 calculée
conformément à l'orientation de a, sera égale à a (x0 — p). Ce

résultat est tout à fait pareil à celui du problème correspondant
dans le plan concernant la distance d'une droite à un point.

Si a n'est pas un vecteur-unité, il suffit de diviser par ± \fa2

pour mettre l'équation sous la forme normale.

27. — Vecteur perpendiculaire de deux vecteurs a et b. — Nous
cherchons un vecteur x qui soit perpendiculaire à a et J, ces
derniers étant linéairement indépendants. Les coordonnées
(x1: #2, x3) sont déterminées par les deux équations

ax xx + a2 x2 + a3 x3 0 (1)

bx xx + b2 x2 + b3 x3 0 (2)

Parmi les trois déterminants

a2 a3 ax «3 «1 a2

b2 h h h 5 h

qu'on déduit de la matrice

dx <z2 3 |

b\ b% b% I

en supprimant respectivement la première, la seconde ou la
troisième colonne, il doit en exister au moins un qui soit diffé-
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rent de zéro, puisque nous avons supposé que a et b ne sont pas
contenus dans la même droite.

Si, par exemple, le dernier des trois déterminants est différent

de zéro, les équations (1) et (2) déterminent xx et x2 en
fonction de x3; Ton reconnaît que le groupe (xl7 x2, x3) doit être
proportionnel aux trois déterminants, celui du milieu étant
multiplié d'abord par — 1.

On peut donc choisir le vecteur cherché x de telle façon que
ses coordonnées soient égales aux trois valeurs proportionnelles
multipliées par un nombre arbitraire X. Si, en particulier, on
pose X 1, nous appelons le vecteur ainsi défini, vecteur viré1

/\de a et b. Il est désigné par ab, donc

/\db ($2 ^3 #3 è2 CL3 bi (Il 63 Cil ^2 ^2 ^l) • 0)

/\ /\On a immédiatement ab — ba.

/\Le vecteur viré ab s'appelle aussi le produit vectoriel de a et b

(par opposition au produit scalaire ab).
Si a et b sont contenus dans la même droite, on définit

/\
toujours ab par l'expression (3); il en résulte directement
/\ /\
ab ba 0.

En multipliant un des vecteurs a ou b par le scalaire X, on
multiplie aussi le produit vectoriel par X.

/\28. — Le produit vectoriel ab est distributif par rapport
aux deux vecteurs a et à, c'est-à-dire

/s)1 /\ /\ /\ /\ /\a \b + c) — ab + ac (b + c) a ba + ca

n - /\Ceci résulte directement du fait que ab est représenté par
des expressions linéaires et homogènes des deux groupes de
coordonnées de a et b.

Le produit vectoriel reste invariable quand l'extrémité de
l'un des vecteurs se déplace parallèlement à l'autre. Car

/\ /\ /\a [b -f- \a) — ab dr \aa ab

1 Voir deuxième article, p. 303.
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/\

Gomme ab est perpendiculaire et à a et à à, on a

/\ /\ab - a — 0 ab - b 0

29. — Considérons trois vecteurs a, à, c et formons le produit

^ -S /\abc ab • c

Ce produit à trois est un scalaire dont la valeur exprimée
par les coordonnées des vecteurs, est égale à

abc (a2 bz — az b2) c1 -f- (a3 bx — % b3) c2 -f (a± b2 — a2 bx) c3

Il s'ensuit immédiatement de la définition que le produit à

trois est égal à zéro quand les trois vecteurs sont situés dans le même

plan (sont linéairement dépendants), car le vecteur c est alors
/\

perpendiculaire à ab. De ceci résulte encore: Le produit à trois
reste invariable si Vextrémité de l'un des vecteurs se déplace dans

un plan parallèle aux deux autres.
A l'aide de cette proposition on peut transformer de plusieurs

façons un groupe de trois vecteurs (a, 6, c) en un autre dont le

produit à trois est le même, car Ton peut successivement faire
varier les vecteurs. Pendant toutes ces transformations l'orientation

de a, b par rapport à c (c'est-à-dire le sens de rotation
que représente le mouvement de a à b dans le plan de ces vecteurs

pour un spectateur placé du même côté du plan que le vecteur c)

reste invariable; ensuite le volume contenu dans un parallélépipède

aux arêtes a, à, c restera invariable aussi, d'après les

règles élémentaires mentionnées plus haut (n° 6).
Pour examiner le rapport entre le produit à trois et ce

volume nous choisissons d'abord le cas spécial où a, à, c sont
les vecteurs-unité sur les axes de coordonnées, donc (1, 0, 0),

(0, 1, 0) et (0, 0, 1). On en déduit ab c, donc abc c2 1,

c'est-à-dire le produit à trois est exactement égal au nombre-
mesure pour le volume du cube formé par les trois vecteurs-
unité.

Si au lieu des vecteurs-unité nous considérons trois vecteurs
sur les axes de coordonnées aux longueurs a, ß et y, ces nombres
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étant positifs, le produit à trois sera égal à aßy, c'est-à-dire au
volume de la brique formée par les trois vecteurs.

Si l'un des vecteurs est remplacé par le vecteur opposé, le

produit à trois change de signe.
Comme on peut toujours transformer un groupe à trois

vecteurs (a, è, c) en un autre dont les vecteurs sont contenus
dans les axes de coordonnées tout en se bornant aux changements

décrits plus haut, il en résulte que le produit à trois abc

représente toujours le volume du parallélépipède aux arêtes

a, à, c, muni de signe plus ou minus selon que l'orientation (abc)
est conforme ou non à l'orientation du système des coordonnées

xyz, c'est-à-dire l'orientation des trois vecteurs (1, 0, 0),
(0, 1, 0) et (0, 0, 1).

On voit que le produit à trois change ' de signe quand on
permute deux vecteurs voisins, car ceci est évident quand les

vecteurs sont situés sur les axes de coordonnées. Il en résulte
ensuite que le produit à trois change de signe quand deux
vecteurs quelconques sont permutés, d'où le résultat final:

Les trois permutations abc, bca et cab ont le même produit
à trois; les trois permutations cba, bac et acb ont le produit
opposé.

La valeur abc représente le nombre-mesure pour le volume
du vecteur à trois a, à, c, muni de signe conformément à l'orientation

(abc).
Pour le volume du tétraèdre orienté aux arêtes a, 6, c nous

serons ainsi obligés de fixer le nombre-mesure 1/6 abc (d'après
les raisonnements établis aux nos 14 et 15).

30. — L'expression abc dépend de trois groupes de nombres
(%, a2, %), (&!, &2, b3) et (clr c2, cz). On la désigne directement en
les inscrivant dans un schéma (une matrice) de la façon suivante

abc

% ^2 ^3

bx b2 è3

C9. c«

Ce schéma s'appelle déterminant de troisième ordre. Son
calcul et les règles pour sa transformation et pour le calcul avec
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les compléments découlent très simplement de ce qui précède,
et c'est pourquoi nous n'entrerons pas dans plus de détails.

Nous mentionnons seulement la résolution des trois équations
scalaires :

ax x1 4 bxx2 + cx x3 dx

a2 x1 4 b2x2 + c2 x3 d2 (1)

^3 ^3 *^2 ~i" C3 ^3 ~ ^3

aux inconnues x2 et xz. En introduisant les vecteurs

a (ax a2 a3) b (bx b2 b3) c (cx c2 c3) d (4 d2 rf3)

on peut réunir les trois équations scalaires en une équation
vectorielle

axx 4 bx2 4 cx3 d

A condition que abc soit différent de zéro, on résout facile-
x\ /\

ment cette équation en multipliant successivement par bc1 ca

/\
et ab: ce qui donne

dbc adc
^

abd

abc abc abc

/\
31. — Longueur du vecteur viré ab. — Le carré du vecteur

/\
perpendiculaire ab est égal à

(ab)2 (a2 b3 — a3 b2)2 4 (a3 bx — ax b3)2 4 (<h b2 — a2 bx)2

d'où l'on déduit

(ab)2 (ax 4 a2 4 <h) (b± 4 b2 4 b3) — (ax bx 4 ^2 b2 4 b3)2

OU

(ab)2 a2 b2~ (ab)2

/\
Le nombre-mesure du vecteur viré ab s'exprime donc par

\db\ \/a2 b2 — (ab)2



LA GÉOMÉTRIE SENSIBLE 229

Au cas où les deux vecteurs a et b sont perpendiculaires
Fun à l'autre, on a ab o et, par conséquent,

| ab | \/a2 -\/b2

Le nombre-mesure pour la longueur du vecteur viré est donc

égal au produit des nombres-mesure pour les longueurs des deux

vecteurs, c'est-à-dire égal au nombre-mesure pour l'aire du
rectangle formé par a et b.

Dans le cas général on peut — en déplaçant l'extrémité de

l'un des vecteurs parallèlement à l'autre — transformer le

parallélogramme des vecteurs en un rectangle qui — selon les

règles élémentaires pour les aires planes — possède la même
aire que le parallélogramme. Cette transformation laisse inva-

/\riable le vecteur viré ab, d'où il s'ensuit dans tous les cas que le
nombre-mesure pour la longueur du vecteur viré est égal au
nombre-mesure pour l'aire du parallélogramme formé par les

deux vecteurs. Dans ce qui précède nous avons déjà rendu compte
/\

de l'orientation du vecteur viré ab par rapport à l'orientation
des deux vecteurs a et b dans leur plan.

Ce résultat s'accorde avec la règle élémentaire selon laquelle
le volume d'un parallélépipède est égal au produit de la hauteur

par l'aire de la base. Car si abc ab-c doit représenter le
nombre-mesure pour le volume du parallélépipède, il faut que/\le nombre-mesure pour la longueur de ab soit égal au nombre-
mesure pour l'aire du parallélogramme a, à.

Donc, si nous introduisons dans la géométrie analytique de

l'espace les deux conditions que voici:

1° Le nombre-mesure pour le volume d'un parallélépipède
orienté, formé par trois vecteurs a, à, c est représenté par
abc\ et de même, le nombre-mesure pour un tétraèdre'
orienté abc — O dont les arêtes sont les vecteurs a, b, c

est représenté par x/6 abc,

2° Le nombre-mesure pour l'aire d'un parallélogramme
formé de deux vecteurs a et b est représenté par

\/a2b2 — (ab)2

L'Enseignement mathémat. 39me année, 1942-1950. 15
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toutes les règles pour les déterminations de mesure seront
satisfaites.

32. — La dernière condition mentionnée est une condition
numérique car elle ne tient pas compte de l'orientation (l'ordre)
des deux vecteurs a et b. Nous voulons cependant fixer aussi

une condition concernant le signe du parallélogramme formé

par a et b. Elle correspond au choix d'un vecteur normal positif n

pour le plan dans lequel sont situés le parallélogramme et les

autres figures dont nous voulons déterminer l'aire. Nous posons,
en effet, l'aire du parallélogramme formé par a et b égale à

/\
ab/n. Pour l'aire d'un triangle 0ab, dont les deux côtés sont a

/\
et b, nous fixons le nombre-mesure à % ab/n, et pour l'aire d'un
polygone abc ik dans le plan le nombre-mesure sera

/\ /\ /\ /\1 /ab ,bc |
ik

^
ka\

2 \ n n n n

On vérifie que cette détermination renferme comme cas

particulier la stipulation antérieurement introduite dans le

plan Oxy.

33. — Déplacements dans Vespace. — Un déplacement qui
laisse fixe le point 0 est déterminé par la position du trièdre
normal sur lequel est placé le trièdre de coordonnées. Cette

position est déterminée par les trois vecteurs-unité e, / et g qui
correspondent aux vecteurs (1, 0, 0) (0, 1, 0) et (0, 0, 1).

On a pour ces vecteurs

/\ /\ /\# f «p g2 fg ^ ge ef 0 ; fg e ge ^ / ef — g

Pour déterminer le point x' (x'u xz) qui correspond au

point x (#!, x2l x3) nous avons

x' Xl e + X2 f + x3 g '

Les points y' et z' qui correspondent aux deux points y et z

sont déterminés par
y' Vi e + y2 f + yz g

z' zxe + z2f + % g
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On vérifie maintenant par de simples calculs que

x'2 — x2 [xf — y')2 (x — y)2 xf y' xy

puis

/x /\ /
x y («2 2/3 ^3 2/2) ^ "t" (^3 2/i *^12/3) / [xi 2/2 *^2 2/1) § (xy) •>

et

y' z' x'y', z' ** (x2 yz — î/2) % + (x3 yx — xx y3) z2 + (xx y2 — x2 y±) z3

OU

x/ y' z' xyz

34.— Il ressort de ces équations que tous les nombres-
mesure pour les longueurs, les aires et les volumes restent
invariables pourvu que le déplacement laisse fixe le point
0. Il importe donc maintenant de vérifier qu'ils restent
invariables pendant une translation, car leur invariabilité serait
alors assurée quel que soit le déplacement. Ceci se vérifie
immédiatement pour le nombre-mesure pour la longueur; pour
le nombre-mesure de l'aire le fait se déduit de la formule du
n° 32. Par contre le problème concernant le nombre-mesure

pour le volume nécessite un examen un peu plus détaillé, joint
à une extension finale des nombres-mesure déjà introduits pour
le volume.

35. — Au n° 29 nous avons fixé le nombre-mesure pour le
volume du tétraèdre orienté abc — 0 à

1 ^ 1 T— ab c » — abc
6 6

Nous généralisons maintenant cette condition en fixant le
nombre-mesure pour le volume du tétraèdre abcp à

1 / \ 1 /\ /\ /\— b — a c — a (p — a) — (bc + ca + ab) (p — a)

qui — comme on le voit immédiatement — satisfait à la condition

concernant l'invariabilité du nombre-mesure pendant une
translation.
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D'après ceci la différence entre les deux tétraèdres abcp et
abcq sera la suivante

1
' /\ /\ /\abcp — abcq — — (bc -f ca + ab) (p — q)

d'où l'on reconnaît que pour un polyèdre quelconque limité
entièrement par des triangles abc, cbd, — ceux-ci étant
parcourus selon une orientation fixe sur la surface du polyèdre telle
que les parcours de deux triangles voisins soient opposés sur
le côté commun (comme plus haut abc et cbd) — la somme de

tous les tétraèdres au sommet commun p et avec bases dans les
faces du polyèdre sera indépendante de la position de p. Si, en

effet, on déplace p sur un autre point q, la différence entre les
deux sommes correspondantes sera la suivante

l /\ /\ /\ /\ /\ /\— [bc + ca + ab + cb + bd + de + •••) (p — q)

où les termes dans la parenthèse s'annullent deux à deux de

sorte que la somme est égale à zéro.

Il sera donc naturel de définir le nombre-mesure pour le
volume du polyèdre conformément au parcours choisi sur la
surface, c'est-à-dire comme la somme des tétraèdres énumérés

abcp, cbdp, ...; ici on peut, bien entendu, choisir p à l'origine
aussi bien qu'en n'importe quel autre point.

Il en résulte que les nombres-mesure ainsi définis sont
invariables pendant tout déplacement.

36. — Si les faces du polyèdre ne sont pas des triangles mais
des polygones, on peut diviser chacun de ces polygones abede

en un système de triangles abs, bcs, cds, des, eas, s étant un
point quelconque dans le plan du polygone. On reconnaît que
la position de s dans le plan n'influencera aucunement le nombre-
mesure pour le volume.

Finalement on vérifie sans difficulté que le nombre-mesure

pour le volume d'un polyèdre composé de deux autres est égal-
à la somme 'des nombres-mesure pour les volumes de ces deux
polyèdres.
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37. — Formules contenant 3 ou 4 vecteurs, — Nous cherchons

d'abord une formule pour abc. Si b et c sont sur la même droite,
/\

l'expression est égale à zéro; si a et bc sont sur la même droite,
l'expression est aussi égale à zéro. Dans les autres cas on obtient
un vecteur situé dans le plan de b et c de sorte qu'on peut poser

a bc Xb \lc

En multipliant par a on aura

0 \ab + [Aac >

d'où l'on reconnaît que X et p. sont proportionnels à ac et
On peut donc poser X aac et p — — aaô, c'est-à-dire

ab.

a bc öl ((ac) b — (ab) c)

Reste à trouver le scalaire a; on trouve par un calcul direct
a — 1.

Nous avons donc trouvé cette formule

ou
a bc (ac) b — (ab) c

b c
ab aca bc (i)

qui — comme on le reconnaît sans difficulté — est valable aussi
pour les cas spéciaux mentionnés plus haut.

On en déduit

/> /> /\ /\ / XN

ab - ca — ab cd — cd ab — c • d ab.

d'où à l'aide de (I)
/\ /\ab ' cd —

ac bc

ad bd

Nous trouvons finalement à l'aide de (I)

ab cd ~
d c d

/\ r.—N ^ N
c ab • d abc abd

(ii)

(m)
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38. — Deux droites orientées suivant les vecteurs-unité a

et b déterminent — comme dans le plan — un angle (a, b) dont
le cosinus est défini par la relation

cos (a b) ab

Le sinus de Tangle dépend du vecteur normal n pour le plan
dans lequel est situé Tangle; il est défini par la relation

/\
7, ab

sin (a b) —
n

La dernière définition renferme comme cas particulier
celle qui a été donnée pour le plan xy\ car pour n (0, 0, 1),
a (a±J a2, 0) et b (b±, b2, 0), la formule devient

/\
sin (a b) — a1b2 a2 bx

Soient deux plans orientés, leur intersection étant dirigée
suivant le vecteur-unité e. L'angle que forment ces deux plans
est défini par Tangle que forme le vecteur normal au premier
plan avec le vecteur normal au second plan, le plan de cet angle
étant orienté conformément au vecteur e. Le cosinus et le sinus
de Tangle en question sont donc complètement déterminés.

39. — Un trièdre dont les arêtes sont des vecteurs-unité
A, B, C détermine un triangle sphérique ABC dont les côtés

sont (B, C) a, (C, A) b et (A, B) — c. Ils correspondent à

des orientations données dans les plans, donc à des vecteurs
normaux. Les angles A, B, C du triangle sphérique sont les

angles entre les plans de façon que

180° — A est l'angle de GA à AB
180° — B « » » AB )> BG
180° — G » » » BG » GA

ces angles étant orientés conformément aux vecteurs A, B, C

comme il a été mentionné ci-dessus. On a maintenant (n° 37, II)

/\ /\BG • GA
BG BA

G2 GA
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donc

ou

— sin a sin b cos C
cos a cos c

1 cos b

cos c cos a cos b -j- sin a sin b cos C

c'est-à-dire la formule générale des cosinus.

En appliquant la formule III, n° 37, nous avons

G A
BG CA

0 BGA
G • BGA

ou
G (sin a sin b sin C) G ABC

sin a sin b sin G ABC

ce qui constitue la formule des sinus dans l'espace. En exécutant

un mouvement circulaire en A, B, C on obtient

sin b sin c sin A sin c sin a sin B sin a sin b sin G

ou par division par sin a sin b sin c

sin A sin B sin G

sm a sin b sm c

ce qui représente la formule des sinus pour le triangle sphérique.
Ces deux formules constituent la base de la trigonométrie

sphérique.

III. L'espace arithmétique.

40. — Dans ce qui précède nous avons introduit toute l'analyse

calculatoire pour étudier la géométrie de la chambre;
maintenant nous allons élargir cette analyse de façon à y
renfermer tous les nombres réels, qu'ils soient grands ou petits,
rationnels ou irrationnels. Nous définissons en effet comme suit:

Un point arithmétique est un ensemble de nombres (al7 a2, a3)

où %, a2 et az sont des nombres réels arbitraires (les coordonnées
du point). Le point 0 (0, 0, 0) s'appelle l'origine. Un ensemble
de deux points arithmétiques a et à pris dans cet ordre, s'appelle
un vecteur ab ; le vecteur 0a est cependant désigné par la lettre a
seule. Chaque vecteur a détermine une translation, c'est-à-dire
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