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210 J. HIELMSLEV

pour copler une métaphore d’Olivier de Serres. En revanche, la
richesse des résultats abstraits des mathématiques alimente de
plus en plus efficacement 1’étude des réalités physiques et
humaines, dans les domaines les plus variés des sciences vouées
a cette étude, et ce, en vue d’orienter I’activité humaine capable
s’agir sur ces réalités pour en faire les instruments de buts
humains.

LA GEOMETRIE SENSIBLE

(3me article) 1
PAR

T Johannes HieLmsLEv (Copenhague).

LA GEOMETRIE DANS L’ESPACE

I. LES DEUX TABLEAUX.

1. — L’enseignement préliminaire de la géométrie dans
I'espace s’effectue au moyen d’exercices pratiques. On emploie
deux tableaux, le tableau vertical et le tableau horizontal. Ils
se rencontrent le long d’une droite x. Nous nous servons de ces
tableaux pour l'orientation dans l’espace (le diédre normal)
qu’ils limitent pour déterminer la position de points, de lignes
et de plans dans cet espace, et pour effectuer des constructions.
D’autre part on se sert, en plus des instruments habituels pour
dessiner, d’une brique normale, d’un triangle rectangle (triangle
normal), d’une planchette rectangulaire (planchette normale)
sur laquelle on peut dessiner et avec laquelle on peut dresser des
plans (et par la des figures planes) dans des positions différentes.

1 Pour les deux premiers articles, voir L’Ens. math., t. 38, pp. 7-26 et pp. 294-322.




LA GEOMETRIE SENSIBLE 211

On emploie de plus d’autres objets qui tous peuvent étre fabri-
qués comme modeles en carton par les éléves eux-mémes.
L’important est qu’il soit toujours question de choses réelles que
I'on a sous les yeux et avec lesquelles on peut travailler.

2. — On place la brique normale de sorte qu’elle ait une face
dans chacun des tableaux. La face supérieure et le tableau
horizontal nous présentent deux plans paralléles; ils ont les
mémes normales (lignes verticales) et découpent sur celles-ci un
segment de méme grandeur qui est la distance entre les deux
plans, ou la hauteur de la brique. Deux segments quelconques
sont des cotés opposés d’un rectangle qui se trouve dans un plan
perpendiculaire au plan horizontal (plan vertical). La face la plus
avancée de la brique (plan frontal) et le tableau vertical sont de
meéme paralléles; la distance entre eux est la largeur de la brique.
Nous appelons dans la suite leurs normales communes des lignes
transversales; deux quelconques de celles-ci se trouvent dans un
plan perpendiculaire au tableau vertical (plan transversal). Les
deux faces de cOté de la brique sont aussi paralléles; leur distance
est égale & la longueur de la brique. La droite z est une normale
commune tandis que les autres normales communes y sont
paralléles.

3. — Sotent A et B les deux sommets de la brique qui ne se
trouvent dans aucun des tableaux. L’aréte AA’ relie A & sa
projection A’ sur le tableau horizontal, tandis que 1’aréte trans-
versale AA” relie A a sa projection A’ sur le tableau vertical.
Le plan de coté AA’ A" coupe la droite z en A, (projection
de A sur z). Le point B posséde également les projections B’
et B" sur les deux tableaux et la projection B, sur .

Le quadrilatére ABBjA, est un rectangle situé dans un plan
qui passe par z (perpendiculaire aux surfaces AA’A A" et
BB'B¢B"); il s’appelle plan diagonal de la brique. Ce plan divise
la brique en deux prismes triangulaires, droits et congruents.
Construire le modéle en carton d’un de ces prismes.

Les lignes qui joignent les sommets opposés s’appellent les
diagonales de la brique; elles sont égales et possédent le méme
milieu, le centre de la brique. |
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On déduit du théoréme de Pythagore que le carré de la
diagonale est égal & la somme des carrés des trois arétes de la
brique.

La brique se divise en six pyramides 4 sommet commun au
centre de la brique et dont les bases sont formées par les six faces
de la brique. Construire le modeéle en carton d’une de ces pyra-
mides.

Poser la planchette normale obliquement le long de z. Mon-
trer que dans cette position elle réalise le plan diagonal d’une
brique normale dont deux faces sont situées dans les tableaux.

Exercices divers avec la planchette normale, le triangle
normal et la brique pour représenter les plans horizontaux,
frontaux, verticaux et transversaux; des lignes droites ainsi que
des figures dans ces plans; représentation des plans par leurs
traces dans les tableaux. |

4. — Si Ton fait glisser la brique le long des deux tableaux,
elle exécute une translation. On mesure la grandeur de celle-ci
par le segment qu’a glissé la brique le long de la droite z. Si ce
segment est égal & A B, le rectangle AA’A A" sera arrivé &
BB'B,B”. La brique sera ainsi située en prolongement de sa
position initiale (que l'on peut marquer en dessinant ses deux
faces dans les tableaux ou en introduisant une brique identique)
et formera avec celle-ci une brique dont la longueur sera le
double. En continuant la translation le long de z la brique
décrit un tuyau dans lequel elle glisse pour ainsi dire; la position
de la brique est déterminée par celle du rectangle AA’AjA”. Ce
tuyau est limité par quatre bandes dont deux sont situées dans
les tableaux tandis que les deux autres y sont paralléles.

Ces considérations qui s’appuient directement sur les pro-
priétés fondamentales des diédres, triedres et briques normaux,
exposés dans l'introduction du premier article, établissent les
propriétés fondamentales de la translation.

En subissant la translation A B, le long de la droite = tous
les points décrivent des segments égaux et pareillement orientés
sur z ou parallelement a celui-ci. Un segment non paralléle & x
décrit un parallélogramme (c’est-a-dire un quadrilatere dont
chaque cOté peut étre déplacé sur le coté opposé par une trans-
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Jation). Une droite qui ne glisse pas sur elle-méme se déplace
donc sur une droite paralléle. Les plans passant par z ou par
des droites paralléles glissent sur eux-mémes, tandis que les
autres plans se déplacent sur des plans paralléles puisque leurs
normales conservent leur direction.

5. — On considére ensuite un prisme droit ou oblique (et
tuyau prismatique) créé par la translation d’un polygone plan;
le parallélépipéde ordinaire spécialement. Puis on fera suivre
des exercices divers concernant la construction des modéles en
carton ainsi que des problémes qui s’y rattachent, tels que
construction d’un prisme régulier hexagonal par le coté de la
base et la hauteur ou, en rapport avec ceci, détermination de
la section entre le prisme et un plan qui passe par deux arétes
paralléles opposées des bases, ou détermination sur la surface
du prisme du chemin le plus court entre un sommet d’une base
et le sommet opposé de I'autre.

6. — D’un tuyau nous découpons un prisme par deux sec-
tions paralléles A et A;; on appelle longueur du prisme la lon-
gueur des arétes paralléles situées sur le tuyau. Du méme tuyau
nous découpons par deux autres sections paralléles B et B; un
nouveau prisme de méme longueur. Ces deux prismes auront le
méme volume. Pour s’en rendre compte, nous supposons — ce
qui peut s’obtenir par un glissement dans le tuyau — que les
deux prismes n’aient aucune partie commune. Considérons main-
tenant les quatre sections A, A;, B, B;. On peut par une transla-
tion déplacer le polyeédre AB situé dans le tuyau entre A et B
sur celui situé entre A, et B;; ces deux polyédres sont égaux
(ont le méme volume). Si I'on soustrait le premier du polyedre
AB;, 1l reste le prisme BB, ; si au contraire 'on soustrait autre
du méme polyedre ABy, il reste le prisme AA,; les deux prismes
ont donc le méme volume.

Il s’ensuit:

1o Un prisme oblique a le méme volume qu’un prisme droit de
méme longueur et dont la base est la section normale du
prisme oblique; |

L’Enseignement mathém., 39me année, 1942-1950. 14
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20 Le volume d’un parallélépipéde reste le méme quand une face
latérale subit une translation dans une des deux bandes que
déterminent ses arétes opposées, pendant que la face opposée
reste & sa place. En effectuant encore une translation le long
de ’autre paire d’arétes opposées, on reconnait que le volume
d’un parallélépipede reste le - méme quand une paire de faces
latérales opposées subit une translation quelconque dans
leurs plans respectifs. On en déduit facilement les théorémes
habituels sur le volume du prisme.

7. — Nous mentionnons dans ce qui suit un certain nombre
d’exercices, mais on peut, bien entendu, y suppléer et les varier
de bien des facons. |

‘Tracer une droite oblique dans le tableau vertical et indiquer
Pangle qu’elle forme avec le tableau horizontal.

Construire les traces d’un plan perpendiculaire a cette droite
et indiquer de méme I’angle de celui-ci avec le tableau horizontal.

Un point A est donné par sa projection A’ sur le tableau
horizontal (la projection horizontale du point) et sa hauteur
au-dessus de celui-ci. Déterminer sa projection A’ sur le tableau
vertical (projection verticale du point) et sa distance a celui-ci.

Figures symétriques par rapport & un plan perpendiculaire
a la droite .

Une droite est donnée par sa trace P dans le tableau hori-
zontal et sa trace Q dans le tableau vertical. Construire sa pro-
jection sur chacun des tableaux et déterminer ses angles avec
ceux-ci. Rabattre la droite sur le tableau horizontal en la tour-
nant autour de sa projection horizontale PQ’ (ou pareillement

~sur le tableau vertical). Rabattre aussi la droite sur le tableau

vertical autour d’une ligne verticale passant par ) (ou sur le
tableau horizontal autour de la ligne transversale passant par P).
Un point A sur la droite’ PQ est donné par sa projection

- horizontale A’. Déterminer la hauteur du point et sa projection

verticale A”.

Un plan oblique est donné par ses traces dans les tableaux.
Mener un plan vertical perpendiculairement a la trace horizon-
tale, et déterminer par 1a ’angle du plan avec le plan horizontal.
Déterminer de fagcon analogue son angle avec le plan vertical.
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Mener un plan perpendiculaire & une droite PQ. Trouver la
distance d’un point & un plan transversal; puis & un plan oblique
quelconque.

Trouver la distance d’un point & une droite oblique située
dans un des tableaux; puis & une droite quelconque.

Soit ABC un triangle dont A se trouve dans le tableau verti-
cal, B et C dans le tableau horizontal. Rabattre le triangle sur
le tableau horizontal en le tournant autour de BC.

Trouver la plus courte distance d’une droite verticale, située
dans le tableau vertical, a une droite oblique PQ.

On construit facilement un triedre dont deux faces sont
situées dans les tableaux, en posant le triangle normal de fagon
a avoir I’hypoténuse dans le tableau vertical et un autre coté
dans le tableau horizontal. La projection du triangle sur le tableau
horizontal est un triangle rectangle. En posant I'hypoténuse
égale & 1 'on déduit immédiatement les formules trigonomé-
triques principales du triedre. On vérifie ensuite que ces formules
restent valables au cas ou les angles en question ne sont plus
aigus.

Tracer deux plans obliques ainsi que leur ligne d’intersection ;
trouver leur angle par rabattement sur le tableau horizontal.

8. — Voici quelques exercices qui se rapportent & un seul
tableau (plan du dessin) en appliquant la projection et le rabat-
tement.

Construire une pyramide hexagonale réguliére quand I’aréte
de la base et la hauteur sont respectivement égales a a et A.
Déterminer I'angle plan & la base et aux faces latérales, par
construction et par calcul.

Déterminer toutes les pyramides dont les arétes (les arétes
de la base ainsi que les arétes latérales) sont toutes égales;
déterminer les angles plans. Application a la construction des
polyédres réguliers.

Exercices simples concernant l'application des deux pro-
jections (les représentations de Monge).

9. — Les cylindres et cOnes de révolution sont considérés
comme des prismes et des pyramides dont les faces latérales se
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confondent avec les plans tangents. On en déduit les théorémes
habituels: L’aire latérale du cdéne de révolution est égale au
demi-produit de la longueur d’une génératrice par la longueur
de la circonférence de base; 'aire latérale d’un tronc de céne de
révolution est égale au produit de la longueur de la génératrice
par la longueur de la circonférence médiane, ou le produit de
la hauteur par la longueur d’une circonférence dont le rayon
est égal & la normale médiane. La surface de la sphere se décom-
pose en zones coniques étroites dont les hauteurs ont une somme
égale au diametre de la sphere, tandis que leurs normales mé-
dianes sont toutes égales au rayon de la sphére. En faisant la
somme de ces zones on obtient le produit du diametre de la
sphere par la circonférence du grand cercle, ce qui équivaut a
quatre grands cercles. |

On n’applique jamais, bien entendu, les déterminations infi-
nitésimales a la géométrie empirique.

10. — Comme introduction a la géométrie sphérique, on peut
partir d’un triedre OABC et construire son développement sur
le plan du tableau. En coupant la figure par une circonférence
de centre O, on obtient trois secteurs circulaires A;OB, BOC,
COA,, dont le premier et le dernier doivent se plier respective-
ment autour de OB et OC de telle fagon que OA; et OA, se
rencontrent le long de I'aréte OA. Le point A est déterminé par
sa projection A’ sur le plan du tableau et sa distance de celui-ci.
La construction fait ressortir le théoréme sur les coOtés d’un
simple triangle sphérique: la somme des cotés est inférieure a 360°
et chacun d’eux est plus petit que la somme des deux autres.

Au cas ou les deux faces passant par OA sont plus petites
que 90° on a, dans le développement du triedre, une construction
particuliérement simple pour déterminer I’angle plan le long de
OA. Menons, en effet, par A; et A, les perpendiculaires aux
droites OA; et OA, et déterminons les points d’intersection Q
et R entre ces perpendiculaires et les droites OB et OC. Dans le
triangle PQR aux cotés A;Q, QR, A R, I'angle de sommet P
sera égal a l'angle plan en question. En posant OA; et OA,
égaux a l'unité, on déduit directement du triangle PQR la
relation des cosinus pour le triédre (le triangle sphérique). La
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validité de la formule dans les autres cas se vérifie ensuite par
de simples considérations. La validité de la formule des sinus
ressort déja de ce qui préceéde, et la base de la trigonométrie
sphérique est donc établie.-

11. — Introduisons maintenant un tableau passant par un
point O de la droite z et perpendiculaire & celle-ci. Il coupe les
deux premiers tableaux suivant une droite horizontale y et
en une droite verticale z. Ces trois tableaux déterminent un
triedre normal aux arétes z, y et z, et nous employons ce triedre
comme systéme de coordonnées de telle facon qu’un point A
dont les projections sur le tableau horizontal et sur 'axe Ox se
trouvent respectivement en A’ et A, est caractérisé par les

coordonnées
a=0A,, b=A A", c=AA .

Le point se désigne alors par (a, b, c¢). Les coordonnées sont
égales aux arétes d’une brique normale dont les trois faces sont
situées dans les tableaux tandis qu'un sommet se trouve a A.

En projetant la droite OA sur les tableaux on reconnait que
les points du segment OA seront représentés par les coordon-
nées Aa, Ab, Ac, ou A est une fraction proprement dite. On dit
que le point (Aa, Ab, Ac) est dérivé du point (e, b, ¢) par une
multiplication par A par rapport a O.

12. — De cette maniére on peut multiplier un point ou une
figure quelconque par A. Une figure située dans un plan par O
est transformée par 14 en une figure semblable dans le méme plan,
et un segment se transforme en un autre segment paralléle dont
la longueur est A fois aussi grande. Une figure située dans un
plan « qui ne passe pas par O, se transforme en une figure
semblable située dans un plan paralléle & «, car tout segment
entre- O et un point de o est multiplié par A.

Deux figures dans I'espace qui se déduisent Pune de autre
de cette maniére s’appellent semblables dans le rapport A
(homothétiques).

13. — Si un corps est composé de parties qui peuvent se
joindre & un cube a I'aréte a cm (ot @ est un nombre entier ou
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fractionnaire) on attribue au volume de ce corps le méme
nombre-mesure qu’au volume du cube, donc a3 cm?.

Une multiplication par A transforme le corps en un autre
corps composé de parties correspondantes qui, elles aussi,
peuvent se joindre & un cube. I[’aréte de celui-ci est égale a

R A e R P A e st

Aa cm et son volume est donc égal a 23a® cm3, c’est-a-dire le
volume du nouveau corps est A? fois celui du corps initial.

Il s’ensuit que pour deux corps semblables le rapport des
volumes est égal au cube du rapport linéaire.

On reconnait de facon analogue que les nombres-mesure de
deux corps symétriques doivent étre égaux. On sait d’ailleurs
qu’il est possible de diviser deux tétraédres symétriques en
douze paires de parties superposables.
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14. — Pour trouver le nombre-mesure V a4 employer pour
le volume d’une pyramide triangulaire A — BCD (fig. 1), ou
Iaréte AC = h est la hauteur de la pyramide et ou I'aire de la
base BCD est égale & G, nous menons par les milieux P, Q, N des
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arétes partant de A une section plane PQN paralléle & la base
BCD. Nous avons ainsi découpé une pyramide A — PQN sem-
blable a4 la pyramide initiale dans le rapport 1% et le nombre-
mesure de son volume est donc ¥4 V. D’une maniére analogue,
on découpe aux sommets B et D deux pyramides B — PRM et
D — NSM dont chacune a le volume 14 V. Les trois plans de
coupure PQN, PRM et NSM limitent — avec les trois faces y
paralléles de la pyramide donnée — un prisme quadrangulaire
droit dont la base est RMSC = 14 G et la hauteur CQ = 1 &
Le nombre-mesure pour le volume du prisme est donc ¥ AG.
Ce prisme se compose de deux parties, I'une & 'intérieur, 'autre
a Vextérieur de la pyramide; le volume de la premiére a le
nombre-mesure 5/, V. La seconde partie, le tétraédre M — TNP
est — comme on le voit — superposable au tétraédre C — QPN
qui, lui, est symétrique au tétraédre A — QPN, et son volume
est par conséquent %5 V. Le nombre-mesure du prisme s’exprime
donc par3/, V 4+ 14 V = 3/ Vet par ¥, hG, donc 34 V = ¥, hG
ou V = 15 hG. |

15. — Ce résultat est cependant valable aussi pour une
pyramide quelconque A — BCDE... Si le pied de la hauteur AO
est situé & Pintérieur de la base (ou sur le périmetre de celle-ci)
on peut, pourvu que la base soit convexe, diviser la pyramide en
tétraédres qui tous contiennent AO comme aréte commune;
dans les autres cas, on peut toujours déduire la pyramide initiale
par addition, ou soustraction, d’un ensemble de tétraedres
ayant Iaréte commune AO. Dans tous les cas, on arrive a la
nécessité de mesurer le volume de la pyramide par V5 du produit
de la hauteur par la base.

16. — On réalise ensuite sans difficulté la détermination de
tous les volumes simples, entre autres le volume de la sphére.
Celle-ci se décompose en effet en petites pyramides dont le
sommet est au centre de la sphére et dont les bases se confondent
avec les plans tangents de celle-ci. Le volume devient donc égal
a 145 du produit du rayon par la surface de la sphére. Comme il a
été mentionné plus haut, les considérations infinitésimales ne
relévent pas de cette géométrie.
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II. LA GEOMETRIE DE LA CHAMBRE.

17. — Une chambre a la forme d’un cube dont I'aréte est
égale & 5 metres. Par le milieu O du cube nous menons un plan
horizontal, le plan médian; il divise la chambre en deux espaces
symétriques, 'un supérieur, autre inférieur. Le plan médian
joint les parois le long d’un carré dont le coté est égal & 5 métres.
Nous rapportons les points de ce carré & un systéme de coor-
données dont les axes x et y partent du milieu O parallélement
aux cOtés du carré et munis de directions positives déterminées.
Chacun de ces points est déterminé par deux coordonnées.

L’on peut maintenant indiquer la position d’autres points P
dans la chambre, qu’ils appartiennent & Pespace supérieur ou
inférieur de celle-ci, par leur projection P’ sur le plan médian et
par la distance P'P au-dessus ou au-dessous de celui-ci. Cette
distance est munie de signes, en effet + ou — selon qu’elle
pointe vers le haut ou vers le bas. ‘

Chaque point de la chambre est ainsi déterminé par trois
coordonnées x;, &y, Z5 (0u z, ¥, z) dont les deux premieres z; et x,
sont les coordonnées de P’ dans le plan médian tandis que la
troisiéme xz; est la distance P’P orientée selon les indications
ci-dessus. Si la coordonnée z; est égale a zéro, le point P est
situé dans le plan médian. Les deux axes x et y ainsi qu'un axe
vertical z par O orienté vers le haut, s’appellent les axes de
coordonnées et forment avec les plans yz, zz et xy (les plans de
coordonnées) un systéme de coordonnées.

Pour commencer nous ne considérons pas d’autres points
dans la chambre que ceux dont les coordonnées s’expriment en
un nombre entier de centimétres, de sorte que x;, T, 3 ne
prennent que les valeurs entiéres de I'intervalle — 250 a -+ 250.
Mais il faut toujours conserver la possibilité d’introduire, par
fractionnement du centimetre, des nombres plus petits a mesure
qu'on en aura besoin, tout en appliquant notre interprétation
habituelle.

18. — Par une translation le long de I’axe Ox ou I'origine O
se déplace sur le point (a, 0, 0), 'ensemble des points se déplace
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sur d’autres points de telle sorte que les coordonnées y et z
restent les mémes tandis que les coordonnées x s’augmentent
de a. Les translations le long des axes Oy et Oz sont caractérisées
d'une maniére analogue. Il s’ensuit qu’une translation qui
déplace Porigine O sur le point (a, b, ¢) déplacera le point (z, y, 2)
sur (x + a, y + b, z + o).

Pour une symétrie par rapport au plan Ozy, les coordonnées
z et y restent les mémes, tandis que les coordonnées z changent
de signe. Il en est de méme pour les symétries par rapport aux
autres plans de coordonnées.

Une rotation de 90° autour de I'axe Oz déplace 'axe Oz sur
Oy et le point (z, y, z) sur (— y, %, z). Des changements ana-
logues ont lieu pour les rotations autour des autres axes.

Considérons enfin une demi-rotation autour de 'axe Oz qui
déplacera le point (z, y, z) sur (— x, — ¥, z) ainsi que la symétrie
(le mirage) par rapport & I'origine O qui transforme (z, y, 2) en
(— z, — y, — 2). On peut décomposer la derniére transformation
en trois mirages consécutifs par rapport aux plans de coordon-
nées ou en un seul mirage par rapport au plan zy suivi d’une
demi-rotation autour de 'axe Oz.

19. — Le carré de la distance de lorigine O & un point
P (z,y, z) est — comme nous le savons déja — égal & 22 4 y2 4 22,
d’ou I'on conclut immédiatement que le carré de la distance
d’un point quelconque M (a, b, ¢) au point P (z, y, z) doit &tre

(€ —a)® + (y —b)* + (2 —¢)?
On a seulement a effectuer une translation qui déplace M

sur O, et & appliquer ensuite le résultat précédent.

20. — Pour que les deux droites joignant O aux points
M (a, b, ¢) et P (z, y, z) soient perpendiculaires I'une & Pautre,
1l faut, selon le théoréme de Pythagore, que le carré de MP soit
égal & la somme des carrés de OM et OP, donc

(z—a)? + {y —b)* + (6 —c)* = (& + y? + 22) + (a® + b2 + &)

ou
ar + by + ¢z =
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Il s’ensuit que les points (z, y, z) situés dans un plan mené
par O perpendiculairement & la droite OM doivent satisfaire a
Iéquation axr + by + cz = 0. On appelle donc cette équation
I’équation du plan.

Si le plan ne passe pas par l’origine, mais par un autre point
(p, g, r) on reconnait facilement par une translation que son
équation sera

a{fx—p)+bly—q) +clz—r)=0.

21. — Nous introduisons & présent les vecteurs dans I'espace
comme antérieurement nous l'avons fait dans le plan. La
lettre a doit premiérement signifier le point (a,, a@,, a3), mais
deuxiémement elle doit signifier une translation qui déplace
I'origine sur ce point; troisitmement elle signifie enfin un vec-
teur, c’est-a-dire un chemin rectiligne qui va de l'origine au
point. On appelle aussi a,, a,, a; les coordonnées de la translation
ou du vecteur.

- L’équation a 4 b = c doit signifier que la composition des
translations @ et b produit la translation c¢; ceci revient aux
relations @, + b; = ¢, ay + by = ¢, et az + by = c;.

On appelle vecteurs inverses deux vecteurs a et (— a) qui
se détruisent par addition, c’est-a-dire qui produisent le vecteur
zéro (0, 0, 0). Parfois on se sert aussi d’un vecteur du point a
au point b. Il est désigné par ¢b et signifie le vecteur correspon-
dant & la translation qui déplace le point @ sur le point b, donc
ab = b — a.

22. — On dit que le vecteur a est multiplié par le nombre
(le scalaire) A, quand ses coordonnées sont multipliées par A
et I'on écrit
ra = (Aa;, Ay, Aag) .

Les vecteurs a et Aa sont situés sur la méme droite et sont dits
linéairement dépendants (entre eux); ils ont la méme direction
ou des directions opposées selon que A est positif ou négatif.

Si deux vecteurs @ et b sont situés sur la méme droite, il
existe entre eux un rapport a/b ou a: b, ¢’est-a-dire un scalaire A
tel que a = Ab.




LA GEOMETRIE SENSIBLE 223

23. — Pour une droite passant par le point @ et dont la direc-
tion est déterminée par le vecteur b, on a la représentation para-
métrique

z=a-+ Ab.

Pour un plan passant par le point a et contenant des droites
dont les directions sont déterminées par les vecteurs b et ¢, on
a la représentation paramétrique

z=a-+ Ab 4 pc;

ceci signifie que tout couple de valeurs des deux scalaires A et p
détermine — en dega de certaines limites — un point z dans le
plan.

24, — Le produit (scalaire) de deux vecteurs a et b est défini
par la relation

ab = a, by + a, by + a5 by .

On reconnait tout de suite les mémes propriétés que pour
le plan:

ab =ba, a(b-+ ¢ = ab + ac .

ab = 0 signifie a,b, 4+ a,b, + azb; = 0, donc (§ 20) que les
deux vecteurs sont perpendiculaires 'un & I'autre (& condition
bien entendu qu’aucun d’eux ne soit le vecteur zéro).

Le produit reste le méme quand I'extrémité d’'un des vec-
teurs se déplace dans un plan perpendiculaire a lautre, car
a (b 4+ ¢) = ab, quand ac = 0.

La projection du vecteur a sur b est un vecteur a, dont le
rapport a b est le suivant

a, apb ab ab
3w dme e =gpb.
25. — Correspondant au nombre-mesure de longueur que

nous avons introduit dans le plan, nous choisissons dans I'espace
comme nombre-mesure pour la longueur du vecteur a

la| = '\/Zt?=‘/af+a2 -+ ag.
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A chaque vecteur a (différent de zéro) correspond ainsi un
vecteur d’unité a/4/q2 (vecteur de longueur 1) dont les applica-
tions sont analogues a celles dans le plan.

La distance de deux points a et b, la longueur du vecteur ¢,
possede le nombre-mesure

| ab | = v/ {a — 82 = VV{a,— b))% + (a5 — by)® + (a5 — bg)? .

26. — Un plan mené par le point p perpendiculairement au
vecteur a est représenté par I’équation

alx—p) =0.

Si a est un vecteur-unité, on dit que I'équation est mise sous
la forme normale. La distance du plan a un point z, calculée
conformément a l'orientation de a, sera égale a a (xy, — p). Ce

résultat est tout a fait pareil & celui du probléme correspondant -

dans le plan concernant la distance d’une droite & un point.
p P _
Si @ n’est pas un vecteur-unité, il suffit de diviser par + +/¢2
pour mettre I’équation sous la forme normale.

27. — Vecteur perpendiculaire de deux vecteurs a et b. — Nous
cherchons un vecteur z qui soit perpendiculaire & a et b, ces
derniers étant linéairement indépendants. Les coordonnées
(21, Ty, z3) sont déterminées par les deux équations

a, 2, + agxy + azxg = 0 ‘ (1)

b1x1+b2x2+b3x3:0. (2)

Parmi les trois déterminants

as ag a, as a; a,
b2 b3 ’ bl b3 ’ bl b2 ?
qu’on déduit de la matrice
a, ag Az
by by by

en supprimant respectivement la premiére, la seconde ou la
troisieme colonne, il doit en exister au moins un qui soit diffé-
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rent de zéro, puisque nous avons suppose que @ et b ne sont pas
contenus dans la méme droite.

Si, par exemple, le dernier des trois déterminants est diffé-
rent de zéro, les équations (1) et (2) déterminent x, et z, en
fonction de z;; I'on reconnait que le groupe (2, ,, ;) doit étre
proportionnel aux trois déterminants, celui du milieu étant mul-
tiplié d’abord par — 1. ‘

On peut donc choisir le vecteur cherché x de telle facon que
ses coordonnées soient égales aux trois valeurs proportionnelles
multipliées par un nombre arbitraire A. Si, en particulier, on
pose A = 1, nous appelons le vecteur ainsi défini, vecteur ¢iré 1

A\
de a et b. Il est désigné par ab, donc

2\
“b:(azbs““aabz, as by — ay by, %bz_azbﬂ- (3)
_ . AN AN
On a immeédiatement ab = — ba.
VAN

Le vecteur viré ab s’appelle aussi le produit vectoriel de a et b
(par opposition au produit scalaire ab).

St a et b sont contenus dans la méme droite, on définit
N\

toujours ab par lexpression (3); il en résulte directement

N\ N\

ab = ba = 0.
En multipliant un des vecteurs a ou b par le scalaire A, on

multiplie aussi le produit vectoriel par A. |

VAN
28. — Le produit vectoriel ab est distributif par rapport
aux deux vecteurs g et b, c’est-a-dire

A\ NN A\ 2 AN
a{b+c) =ab+ac, (b+c)la = ba+ ca.

A .
Cect résulte directement du fait que ab est représenté par

des expressions linéaires et homogénes des deux groupes de

coordonnées de a et b. A
Le produit vectoriel reste invariable quand l'extrémité de
I'un des vecteurs se déplace parallélement a Iautre. Car

N\ \ N\ N\
a(b+ ra) = ab + raa = ab .

1 Voir deuxiéme article, p. 303.
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N\
Comme ab est perpendiculaire et & a et & b, on a

A\ N\
ab - a=10, ab-b=0.

~ 29. — Considérons trois vecteurs a, b, ¢ et formons le produit

~~ O

abc = ab - c .
- Ce produit & trois est un scalaire dont la valeur exprimée
par les coordonnées des vecteurs, est égale a

N
abe = (ay by — a3 by) ¢; + (a3 by — a3 by) ¢; + (ag by — ap by) c5 .

Il s’ensuit immeédiatement de la définition que le produit a
trots est égal a zéro quand les trois vecteurs sont situés dans le méme

plan (sont linéairement dépendants), car le vecteur ¢ est alors
VAN

perpendiculaire & ab. De ceci résulte encore: Le produit a trois

- reste invariable sv Uextrémité de U'un des vecteurs se déplace dans

un plan paralléle aux deux autres.

A Vaide de cette proposition on peut transformer de plusieurs
facons un groupe de trois vecteurs (a, b, ¢) en un autre dont le
produit & trois est le méme, car 'on peut successivement faire
varier les vecteurs. Pendant toutes ces transformations l’orien-
tation de a, b par rapport a c¢ (c’est-a-dire le sens de rotation
que représente le mouvement de a a b dans le plan de ces vecteurs
pour un spectateur placé du méme c6té du plan que le vecteur c)
reste invariable; ensuite le volume contenu dans un parallélé-
pipéde aux arétes a, b, ¢ restera invariable aussi, d’aprés les
régles élémentaires mentionnées plus haut (n° 6).

Pour examiner le rapport entre le produit & trois et ce
volume nous choisissons d’abord le cas spécial ou a, b, ¢ sont
les vecteurs-unité sur les axes de coordonnées, donc (1, 0, 0),

AN

(0, 1, 0) et (0, 0, 1). On en déduit Zz\b = ¢, donc abc = ¢* = 1,
¢’est-a-dire le produit a trois est exactement égal au nombre-
mesure pour le volume du cube formé par les trois vecteurs-
unité.

Si au lieu des vecteurs-unité nous considérons trois vecteurs
sur les axes de coordonnées aux longueurs «, 8 et v, ces nombres




LA GEOMETRIE SENSIBLE 227

étant positifs, le produit & trois sera égal & afy, c’est-a-dire au
volume de la brique formée par les trois vecteurs.

Si I'un des vecteurs est remplacé par le vecteur opposé, le
produit & trois change de signe.

Comme on peut toujours transformer un groupe a trois
vecteurs (a, b, ¢) en un autre dont les vecteurs sont contenus
dans les axes de coordonnées tout en se bornant aux change-

e

ments décrits plus haut, il en résulte que le produit a trois abe
représente toujours le volume du parallélépipéede aux arétes
a, b, ¢, muni de signe plus ou minus selon que I'orientation (abc)
est conforme ou non a lorientation du systéme des coordon-
nées xyz, c’est-a-dire l'orientation des trois vecteurs (1, 0, 0),
(0, 1, 0) et (0, 0, 1).

On voit que le produit a trois change de signe quand on
permute deux vecteurs voisins, car ceci est évident quand les
vecteurs sont situés sur les axes de coordonnées. Il en résulte
ensuite que le produit a trois change de signe quand deux vec-
teurs quelconques sont permutés, d’ou le résultat final:

Les trois permutations abe, bca et cab ont le méme produit
a trois; les trois permutations cba, bac et achb ont le produit
OppOseé. . |

La valeur abc représente le nombre-mesure pour le volume
du vecteur a trois a, b, ¢, muni de signe conformément & 1’orien-
tation (abc).

Pour le volume du tétraédre orienté aux arétes a, b, ¢ nous

—~

serons ainsi obligés de fixer le nembre-mesure !/, abc (d’apres
les raisonnements établis aux no 14 et 15).

N

30. — L’expression abc dépend de trois groupes de nombres

(ay, as, ag), (by, by, bs) et (cy, ¢y, c3). On la désigne directement en
les mmscrivant dans un schéma (une matrice) de la facon suivante

a; Qg Qg
~~
€ C2 C

Ce schéma s’appelle déterminant de troisiéme ordre. Son
calcul et les régles pour sa transformation et pour le calcul avec
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les compléments découlent tres simplement de ce qui précede,
et c’est pourguoi nous n’entrerons pas dans plus de détails.
Nous mentionnons seulement la résolution des trois équations
scalaires:
a Ty + by xy + 02y = dy
Gy Ty + by s + Cy x5 = dy (1)

a3 2y + byxy + cga3 = dy
aux inconnues &, &, et z3. En introduisant les vecteurs
a:(a'15a2,a3), b:(blab2ab3)7 C:(Clacz’c?.), d:(d1>d2,d3)7

on peut réunir les trois équations scalaires en une équation

vectorielle
ar, + bxy + cx3 = d .

~
A condition que abc soit différent de zéro, on résout facile-
A
ment cette équation en multipliant successivement par be, ca
A
et ab, ce qui donne
N N TN
dbe - adc ' abd
Ty = = Ly = = T3 = 7=
abe abc abe
. » /\
31. — Longueur du vecteur viré ab. — Le carré du vecteur
A
perpendiculaire ab est égal a
A\
(@b)? = (ag by — a3 by)* + (ag by — ay b3)® + (ay by — ap by)?,

d’ou I'on déduit

N 2‘ 2 2 2 2 2
(ab)? = (a; + a; 4 ag) (by + by -+ bs) — (ag by + ap by + a3 by)?

ou

A\
(ab)? = a? b%2 — (ab)? .

A\
Le nombre-mesure du vecteur viré ab s’exprime donc par

A|@] = 1/ a2 b* — (ab)? .
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Au cas ou les deux vecteurs a et b sont perpendiculaires
I'un & Pautre, on a ab = o et, par conséquent,
@b = Ve VL

Le nombre-mesure pour la longueur du vecteur viré est done
égal au produit des nombres-mesure pour les longueurs des deux
vecteurs, c¢’est-d-dire égal au nombre-mesure pour l'aire du
| rectangle formé par a et b.
Dans le cas général on peut — en déplacant 'extrémité de
un des vecteurs parallelement a l'autre — transformer le
parallélogramme des vecteurs en un rectangle qui — selon les

regles élémentaires pour les aires planes — posséde la méme

aire que le parallélogramme. Cette transformation laisse inva-
Py , _

riable le vecteur viré ab, d’otu il s’ensuit dans tous les cas que le
nombre-mesure pour la longueur du vecteur viré est égal au
nombre-mesure pour l'aire du parallélogramme formé par les

deux vecteurs. Dans ce qui précéde nous avons déja rendu compte
"\

de Porientation du vecteur viré ab par rapport a l'orientation
des deux vecteurs a et b dans leur plan.

| Ce résultat s’accorde avec la régle élémentaire selon laquelle
le volume d’un parallélépipéde est égal au produit de la hauteur

N AN

par l'aire de la base. Car si abc = ab-c doit représenter le
nombre-mesure pour le volume du parallélépipeéde, il faut que

le nombre-mesure pour la longueur de U/Lz soit égal au nombre-
mesure pour l'aire du parallélogramme a, b. .

Donge, si nous introduisons dans la géométrie analytique de
Iespace les deux conditions que voici:

1o Le nombre-mesure pour le volume d’un parallélépipéde
orienté, formé par trois vecteurs a, b, ¢ est représenté par

N

abc; et de méme, le nombre-mesure pour un tétraédre’
orienté abc — O dont les arétes sont les vecteurs a, b, ¢

AN

est représenté par !/, abc;

20 Le nombre-mesure pour laire d’un parallélogramme
formé de deux vecteurs a et b est représenté par

1V a2b? — (ab)? ,

L’ Enseignement mathémat. 39m¢ année, 1942-1950. 15
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toutes les regles pour les déterminations de mesure seront
satisfaites.

32. — La derniére condition mentionnée est une condition
numeérique car elle ne tient pas compte de I'orientation (I’ordre)
des deux vecteurs a et b. Nous voulons cependant fixer aussi
une condition concernant le signe du parallélogramme formé
par a et b. Elle correspond au choix d’un vecteur normal positif n
pour le plan dans lequel sont situés le parallélogramme et les
autres figures dont-nous voulons déterminer I'aire. Nous posons,

en effet, 'aire du parallélogramme formé par a et b égale a
AN

ab/n. Pour I'aire d’un triangle Oab, dont les deux cotés sont a
VAN

et b, nous fixons le nombre-mesure a % ab/n, et pour 'aire d’un

polygone abc ... ik dans le plan le nombre-mesure sera

1 (ab | be * |
c
_<&+M+ +£+_a>.
2 \n n n n

On vérifie que cette détermination renferme comme cas

particulier la stipulation antérieurement introduite dans le
plan Ozxy.

33. — Déplacements dans l'espace. — Un déplacement qui
laisse fixe le point O est déterminé par la position du triédre
normal sur lequel est placé le triedre de coordonnées. Cette
position est déterminée par les trois vecteurs-unité e, f et g qui
correspondent aux vecteurs (1, 0, 0) (0, 1, 0) et (0, O, 1).

On a pour ces vecteurs |

AN A A\
=f=g=1; fg=ge=ef=0; fg=ec,ge=1,ef=¢g.

, . . ’ ’ ’ .
Pour déterminer le point 2’ (z,, z,, 25) qui correspond au
point z (2, x,, x3) nous avons

=z + 2 f + 258 .

Les points ¥ et z’ qui correspondent aux deux points ¥y et z
sont déterminés par
Y =wye+ Ysf + Ysg
7 =z e+ 3, f + 258 .
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On vérifie maintenant par de simples calculs que
2% =a, (@ —y)P=(—y?, 27y =ay,
puis

N\

7

ry = (5({23/3_‘953?!2) e+ (xgyy — 2, 95) f + (xlyz—‘xzyl) g = (zy),

ou
PR ~~
2y 3 = xyz
34. — 1l ressort de ces équations que tous les nombres-

mesure p'our les longueurs, les aires et les volumes restent
invariables pourvu que le déplacement laisse fixe le point
O. II importe donc maintenant de vérifier qu’ils restent inva-
riables pendant une translation, car leur invariabilité serait
alors assurée quel que soit le déplacement. Ceci se vérifie
immédiatement pour le nombre-mesure pour la longueur; pour
le nombre-mesure de l'aire le fait se déduit de la formule du
n® 32. Par contre le probléme concernant le nombre-mesure
pour le volume nécessite un examen un peu plus détaillé, joint

a une extension finale des nombres-mesure déja introduits pour
le volume.

35. — Au n° 29 nous avons fixé le nombre-mesure pour le
volume du tétraedre orienté abec — 0 &

17 1
'6—0,1?62%—@

Nous généralisons maintenant cette condition en fixant le
nombre-mesure pour le volume du tétraédre abep a

1./ N 17N /N N\
gb—a,c-a.(p——a):a(bc—l—ca—i—‘ab)(p——a).

qui — comme on le voit immédiatement — satisfait a la condi-

tion concernant I'invariabilité du nombre-mesure pendant une
translation.
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D’apreés ceci la différence entre les deux tétraédres abep et
abcq sera la suivante

AN

ab

1 /N
abcp — abeq = — (be + ca +

d’ou I'on reconnait que pour un polyédre quelconque limité
entierement par des triangles abe, cbd, ... — ceux-ci étant par-
courus selon une orientation fixe sur la surface du polyédre telle
que les parcours de deux triangles voisins soient opposés sur
le c6té commun (comme plus haut abc et cbd) — la somme de
tous les tétraédres au sommet commun p et avec bases dans les
faces du polyeédre sera indépendante de la position de p. Si, en
effet, on déplace p sur un autre point ¢, la différence entre les
deux sommes correspondantes sera la suivante

1 7\ N\ A\ ”\ N\ AN
—(}—(bc—}—ca—l—ab—{—Cb—deerC—F---)(P‘*“Q)’

ou les termes dans la parenthése s’annullent deux & deux de
sorte que la somme est égale a zéro.

Il sera donc naturel de définir le nombre-mesure pour le
volume du polyédre conformément au parcours choisi sur la
surface, c¢’est-a-dire comme la somme des tétraédres énumeérés
abep, cbdp, ...; ici on peut, bien entendu, choisir p a I'origine
aussl bien qu’en n’importe quel autre point.

Il en résulte que les nombres-mesure ainsi définis sont inva-
riables pendant tout déplacement.

36. — Si les faces du polyedre ne sont pas des triangles mais
des polygones, on peut diviser chacun de ces polygones abcde
en un systéeme de triangles abs, bes, cds, des, eas, s étant un
point quelconque dans le plan du polygone. On reconnait que
la position de s dans le plan n’influencera aucunement le nombre-
mesure pour le volume.

Finalement on vérifie sans difficulté que le nombre-mesure
pour le volume d’un polyedre composé de deux autres est égal
a la somme des nombres-mesure pour les volumes de ces deux
polyédres.




LA GEOMETRIE SENSIBLE 233

37. — Formules contenant 3 ou 4 vecteurs. — Nous cherchons
SN A |
d’abord une formule pour abe. Si b et ¢ sont sur la méme droite,

I'expression est égale & zéro; si a et bc sont sur la méme droite,
Iexpression est aussi égale a zéro. Dans les autres cas on obtient
un vecteur situé dans le plan de b et ¢ de sorte qu’on peut poser

A
abc = Ab + pe .

En multipliant par ¢ on aura
0 = Aab + pac ,

d’ou I'on reconnait que A et w sont proportionnels & ac et — ab.
On peut donc poser A = aac et u = — aab, c’est-a-dire
S
a b>\= o ((ac) b — (ab) ¢) .
Reste a trouver le scalaire «; on trouve par un calcul direct
x == 1.
Nous avons donc trouvé cette formule

AN »
a bc = (ac) b — (ab)c ,
ou
AN e b ¢ (I)
a be ab ac |’

qui — comme on le reconnait sans difficulté — est valable aussi
pour les cas spéciaux mentionnés plus haut.
On en déduit '

AN T TR /AN
ab-cd = abed = cdab = ¢ -'dab. ,

d’ou & l'aide de (I)

NN ac be
ab - cd = : (II)
ad bd
Nous trouvons finalement & Paide de (I)
AN ¢ d c d
=1 AN A = 1
o o ab ¢ ab - d abe abd i
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38. — Deux droites orientées suivant les vecteurs-unité a
et b déterminent — comme dans le plan — un angle (a, ) dont
le cosinus est défini par la relation

cos (@, b) = ab .

Le sinus de ’angle dépend du vecteur normal n pour le plan
dans lequel est situé angle; il est défini par la relation
ab
. . a
sin (a, b) = —
La derniere définition renferme comme cas particulier
celle qui a été donnée pour le plan xy; car pour n = (0, 0, 1),
a = (a, ay, 0) et b = (by, by, 0), la formule devient

™\
sin (a, b) = Eln«b = a, by — ay by .

Soient deux plans orientés, leur intersection étant dirigée
suivant le vecteur-unité e. L’angle que forment ces deux plans
est défin1 par 'angle que forme le vecteur normal au premier
plan avec le vecteur normal au second plan, le plan de cet angle
étant orienté conformément au vecteur e. Le cosinus et le sinus
de 'angle en question sont donc completement déterminés.

39. — Un triédre dont les arétes sont des vecteurs-unité
A, B, C détermine un triangle sphérique ABC dont les cotés
sont (B, C) = a, (G, A) = b et (A, B) = c. Ils correspondent a
des orientations données dans les plans, donc a des vecteurs
normaux. Les angles A, B, G du triangle sphérique sont les
angles entre les plans de facon que

180° — A est I’angle de CA a AB
180° — B » » » AB » BC
180° — G » » » BC » CA |

ces angles étant orientés conformément aux vecteurs A, B, C
comme il a été mentionné ci-dessus. On a maintenant (n° 37, II)

/\ BC BA
BC - CA = ,
C2 CA
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done
| cos a cosc
— sin a sin b cos G =
\ , 1 cosb

ou .
CoS ¢ = ¢0S @ cos b -+ sin a sin b cos G,

¢’est-a-dire la formule générale des cosinus.
En appliquant la formule III, n® 37, nous avons

C A

7NN TN
@ == — | = G+ BCA ,
0 BCA

ou
SN
C (sin a sin b sin C) = G . ABG

TN

sin a sin b‘sin C = ABC ,
ce qui constitue la formule des sinus dans l’espace. En exécutant
un mouvement circulaire en A, B, C on obtient
“sin b sin ¢ sin A = sin ¢ sin @ sin B = sin a sin b sin G
ou par division par sin @ sin b sin ¢

sin A sin B sin G

sina  sinb  sine

?

ce qui représente la formule des sinus pour le triangle sphérique.
Ces deux formules constituent la base de la trigonométrie
sphérique.

ITI. I’ESPACE ARITHMETIQUE.

40. — Dans ce qui précede nous avons introduit toute I’ana-
lyse calculatoire pour étudier la géométrie de la chambre;
maintenant nous allons élargir cette analyse de fagon & y ren-
fermer tous les nombres réels, qu’ils soient grands ou petits,
rationnels ou irrationnels. Nous définissons en effet comme suit:

Un point arithmétique est un ensemble de nombres (a,, a,, as)
ou @y, ay et az sont des nombres réels arbitraires (les coordonnées
du point). Le point O (0, 0, 0) s’appelle 1'origine. Un ensemble
de deux points arithmétiques a et b pris dans cet ordre, s’appelle
un vecteur gb; le vecteur Qg est cependant désigné par la lettre a

- seule. Chaque vecteur a détermine une translation, c¢’est-a-dire
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une transformation qui déplace le point (x;, z,, x;) sur le point
correspondant (x; + a;, Z, + a5, %3 + a3). La somme et la
différence de deux vecteurs se définissent comme plus haut,
d’ou résulte gp = b — a. On multiplie un vecteur a par un
scalaire A en multipliant ses coordonnées par A. Une droite est
définie par le point variable = a 4+ Ab, ou a et b sont deux
vecteurs fixes tandis que A est un parametre arbitrairement
variable. On définit le produit ab par la relation

ab = a; by + a, by + a; by

et des vecteurs perpendiculaires 'un 4 Pautre par la condition
ab = 0. Un plan est défini par la représentation paramétrique

= a-+ A+ uc, ou a, b et ¢ sont des vecteurs fixes, A et
N

sont des parameétres. Le vecteur viré ab de deux vecteurs a et b
est défini par

A |
ab = (ag by — a3 by, agby—a; by, a;b,— ayby) .

La distance entre deux points a et b est définie par 1/(a — b)2,
les aires et les volumes comme précédemment ainsi que les
notions trigonométriques. |

Il est immédiatement évident que tous les résultats et locu-
tions antérieurs sont applicables dans notre domaine élargi
(Pespace arithmétique).

41. — Nous ferons, en dernier lieu, encore cette remarque
que la transition au domaine encore plus général qu’est le
domaine complexe est fort simple. Toutes les définitions et
locutions s’appliquent directement avec la réserve qu’il faut
prendre, comme dans le plan (voir article 2) pour les vecteurs a
longueur zéro, c’est-a-dire tous les vecteurs (k;, ks, k3) ou
k; 4 k; -+ k; = 0. Les droites qui contiennent de tels vecteurs
g’appellent des lignes isotropes; elles n’ont pas de vecteur
d’orientation et doivent donc étre exclues des recherches dans
lesquelles celui-ci est indispensable, telles que les recherches sur
les relations trigonométriques qui d’ailleurs, a part cette excep-
tion, s’appliquent au domaine complexe sans aucune modi-
fication.
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