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210 J. HJELMSLEV

pour copier une métaphore d'Olivier de Serres. En revanche, la
richesse des résultats abstraits des mathématiques alimente de

plus en plus efficacement l'étude des réalités physiques et
humaines, dans les domaines les plus variés des sciences vouées
à cette étude, et ce, en vue d'orienter l'activité humaine capable
s'agir sur ces réalités pour en faire les instruments de buts
humains.

LA GÉOMÉTRIE SENSIBLE

(3me article) 1

PAR

f Johannes Hjelmslev (Copenhague).

LA GÉOMÉTRIE DANS L'ESPACE

I. Les deux tableaux.

1. — L'enseignement préliminaire de la géométrie dans

l'espace s'effectue au moyen d'exercices pratiques. On emploie
deux tableaux, le tableau vertical et le tableau horizontal. Ils
se rencontrent le long d'une droite x. Nous nous servons de ces

tableaux pour l'orientation dans l'espace (le dièdre normal)
qu'ils limitent pour déterminer la position de points, de lignes
et de plans dans cet espace, et pour effectuer des constructions.
D'autre part on se sert, en plus des instruments habituels pour
dessiner, d'une brique normale, d'un triangle rectangle (triangle
normal), d'une planchette rectangulaire (planchette normale)
sur laquelle on peut dessiner et avec laquelle on peut dresser des

plans (et par là des figures planes) dans des positions différentes.

i Pour les deux premiers articles, voir L'Ens. math., t. 38, pp. 7-26 et pp. 294-322.
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On emploie de plus d'autres objets qui tous peuvent être fabriqués

comme modèles en carton par les élèves eux-mêmes.

L'important est qu'il soit toujours question de choses réelles que
l'on a sous les yeux et avec lesquelles on peut travailler.

2. — On place la brique normale de sorte qu'elle ait une face

dans chacun des tableaux. La face supérieure et le tableau
horizontal nous présentent deux plans parallèles; ils ont les

mêmes normales (lignes verticales) et découpent sur celles-ci un
segment de même grandeur qui est la distance entre les deux
plans, ou la hauteur de la brique. Deux segments quelconques
sont des côtés opposés d'un rectangle qui se trouve dans un plan
perpendiculaire au plan horizontal (plan vertical). La face la plus
avancée de la brique (plan frontal) et le tableau vertical sont de

même parallèles; la distance entre eux est la largeur de la brique.
Nous appelons dans la suite leurs normales communes des lignes
transversales; deux quelconques de celles-ci se trouvent dans un
plan perpendiculaire au tableau vertical (plan transversal). Les
deux faces de côté de la brique sont aussi parallèles ; leur distance
est égale à la longueur de la brique. La droite x est une normale
commune tandis que les autres normales communes y sont
parallèles.

3. — Soient A et B les deux sommets de la brique qui ne se

trouvent dans aucun des tableaux. L'arête AA' relie A à sa

projection A7 sur le tableau horizontal, tandis que l'arête
transversale AA" relie A à sa projection A" sur le tableau vertical.
Le plan de côté AA' A" coupe la droite x en A0 (projection
de A sur x). Le point B possède également les projections B'
et B" sur les deux tableaux et la projection B0 sur x.

Le quadrilatère ABB0A0 est un rectangle situé dans un plan
qui passe par x (perpendiculaire aux surfaces AA'A0A" et
BB'B0B"); il s'appelle plan diagonal de la brique. Ce plan divise
la brique en deux prismes triangulaires, droits et congruents.
Construire le modèle en carton d'un de ces prismes.

Les lignes qui joignent les sommets opposés s'appellent les
diagonales de la brique; elles sont égales et possèdent le même
milieu, le centre de la brique.
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On déduit du théorème de Pythagore que le carré de la
diagonale est égal à la somme des carrés des trois arêtes de la
brique.

La brique se divise en six pyramides à sommet commun au
centre de la brique et dont les bases sont formées par les six faces
de la brique. Construire le modèle en carton d'une de ces
pyramides.

Poser la planchette normale obliquement le long de x. Montrer

que dans cette position elle réalise le plan diagonal d'une
brique normale dont deux faces sont situées dans les tableaux.

Exercices divers avec la planchette normale, le triangle
normal et la brique pour représenter les plans horizontaux,
frontaux, verticaux et transversaux; des lignes droites ainsi que
des figures dans ces plans; représentation des plans par leurs
traces dans les tableaux.

4. — Si l'on fait glisser la brique le long des deux tableaux,
elle exécute une translation. On mesure la grandeur de celle-ci

par le segment qu'a glissé la brique le long de la droite x. Si ce

segment est égal à A0B0 le rectangle AA'A0A" sera arrivé à

BB'B0B". La brique sera ainsi située en prolongement de sa

position initiale (que l'on peut marquer en dessinant ses deux
faces dans les tableaux ou en introduisant une brique identique)
et formera avec celle-ci une brique dont la longueur sera le

double. En continuant la translation le long de x la brique
décrit un tuyau dans lequel elle glisse pour ainsi dire ; la position
de la brique est déterminée par celle du rectangle AA'AoA". Ce

tuyau est limité par quatre bandes dont deux sont situées dans
les tableaux tandis que les deux autres y sont parallèles.

Ces considérations qui s'appuient directement sur les

propriétés fondamentales des dièdres, trièdres et briques normaux,
exposés dans l'introduction du premier article, établissent les

propriétés fondamentales de la translation.
En subissant la translation A0B0 le long de la droite x tous

les points décrivent des segments égaux et pareillement orientés

sur x ou parallèlement à celui-ci. Un segment non parallèle à x
décrit un parallélogramme (c'est-à-dire un quadrilatère dont
chaque côté peut être déplacé sur le côté opposé par une trans-
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lation). Une droite qui ne glisse pas sur elle-même se déplace
donc sur une droite parallèle. Les plans passant par x ou par
des droites parallèles glissent sur eux-mêmes, tandis que les

autres plans se déplacent sur des plans parallèles puisque leurs
normales conservent leur direction.

5. — On considère ensuite un prisme droit ou oblique (et

tuyau prismatique) créé par la translation d'un polygone plan;
le parallélépipède ordinaire spécialement. Puis on fera suivre
des exercices divers concernant la construction des modèles en
carton ainsi que des problèmes qui s'y rattachent, tels que
construction d'un prisme régulier hexagonal par le côté de la
base et la hauteur ou, en rapport avec ceci, détermination de

la section entre le prisme et un plan qui passe par deux arêtes

parallèles opposées des bases, ou détermination sur la surface
du prisme du chemin le plus court entre un sommet d'une base

et le sommet opposé de l'autre.

6. — D'un tuyau nous découpons un prisme par deux
sections parallèles A et Ax; on appelle longueur du prisme la
longueur des arêtes parallèles situées sur le tuyau. Du même tuyau
nous découpons par deux autres sections parallèles B et Bx un
nouveau prisme de même longueur. Ces deux prismes auront le
même volume. Pour s'en rendre compte, nous supposons — ce

qui peut s'obtenir par un glissement dans le tuyau — que les
deux prismes n'aient aucune partie commune. Considérons
maintenant les quatre sections A, A1? B, Br On peut par une translation

déplacer le polyèdre AB situé dans le tuyau entre A et B
sur celui situé entre Ax et Bx; ces deux polyèdres sont égaux
(ont le même volume). Si l'on soustrait le premier du polyèdre
AB1? il reste le prisme BB^ si au contraire l'on soustrait l'autre
du même polyèdre ABl5 il reste le prisme AAX; les deux prismes
ont donc le même volume.

Il s'ensuit:

1° Un prisme oblique a le même volume qu'un prisme droit de
même longueur et dont la base est la section normale du
prisme oblique;

L'Enseignement mathém., 39me année, 1942-1950. 14
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2° Le volume (Tun parallélépipède reste le même quand une face

latérale subit une translation dans une des deux bandes que
déterminent ses arêtes opposées, pendant que la face opposée
reste à sa place. En effectuant encore une translation le long
de l'autre paire d'arêtes opposées, on reconnaît que le volume
d'un parallélépipède reste le même quand une paire de faces

latérales opposées subit une translation quelconque dans
leurs plans respectifs. On en déduit facilement les théorèmes
habituels sur le volume du prisme.

7. — Nous mentionnons dans ce qui suit un certain nombre
d'exercices, mais on peut, bien entendu, y suppléer et les varier
de bien des façons.

Tracer une droite oblique dans le tableau vertical et indiquer
l'angle qu'elle forme avec le tableau horizontal.

Construire les traces d'un plan perpendiculaire à cette droite
et indiquer de même l'angle de celui-ci avec le tableau horizontal.

Un point A est donné par sa projection A' sur le tableau
horizontal (la projection horizontale du point) et sa hauteur
au-dessus de celui-ci. Déterminer sa projection A" sur le tableau
vertical (projection verticale du point) et sa distance à celui-ci.

Figures symétriques par rapport à un plan perpendiculaire
à la droite x.

Une droite est donnée par sa trace P dans le tableau
horizontal et sa trace Q dans le tableau vertical. Construire sa

projection sur chacun des tableaux et déterminer ses angles avec
ceux-ci. Rabattre la droite sur le tableau horizontal en la tournant

autour de sa projection horizontale PQ' (ou pareillement
sur le tableau vertical). Rabattre aussi la droite sur le tableau
vertical autour d'une ligne verticale passant par Q (ou sur le

tableau horizontal autour de la ligne transversale passant par P).
Un point A sur la droite PQ est donné par sa projection

horizontale A'. Déterminer la hauteur du point et sa projection
verticale A".

Un plan oblique est donné par ses traces dans les tableaux.
Mener un plan vertical perpendiculairement à la trace horizontale,

et déterminer par là l'angle du plan avec le plan horizontal.
Déterminer de façon analogue son angle avec le plan vertical.
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Mener un plan perpendiculaire à une droite PQ. Trouver la
distance d'un point à un plan transversal; puis à un plan oblique
quelconque.

Trouver la distance d'un point à une droite oblique située
dans un des tableaux; puis à une droite quelconque.

Soit ABC un triangle dont A se trouve dans le tableau vertical,

B et C dans le tableau horizontal. Rabattre le triangle sur
le tableau horizontal en le tournant autour de BC.

Trouver la plus courte distance d'une droite verticale, située
dans le tableau vertical, à une droite oblique PQ.

On construit facilement un trièdre dont deux faces sont
situées dans les tableaux, en posant le triangle normal de façon
à avoir l'hypoténuse dans le tableau vertical et un autre côté
dans le tableau horizontal. La projection du triangle sur le tableau
horizontal est un triangle rectangle. En posant l'hypoténuse
égale à 1 l'on déduit immédiatement les formules trigonomé-
triques principales du trièdre. On vérifie ensuite que ces formules
restent valables au cas où les angles en question ne sont plus
aigus.

Tracer deux plans obliques ainsi que leur ligne d'intersection;
trouver leur angle par rabattement sur le tableau horizontal.

8. — Voici quelques exercices qui se rapportent à un seul
tableau (plan du dessin) en appliquant la projection et le
rabattement.

Construire une pyramide hexagonale régulière quand l'arête
de la base et la hauteur sont respectivement égales à a et A.

Déterminer l'angle plan à la base et aux faces latérales, par
construction et par calcul.

Déterminer toutes les pyramides dont les arêtes (les arêtes
de la base ainsi que les arêtes latérales) sont toutes égales;
déterminer les angles plans. Application à la construction des
polyèdres réguliers.

Exercices simples concernant l'application des deux
projections (les représentations de Monge).

9- — Les cylindres et cônes de révolution sont considérés
comme des prismes et des pyramides dont les faces latérales se
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confondent avec les plans tangents. On en déduit les théorèmes |

habituels: L'aire latérale du cône de révolution est égale au jj

demi-produit de la longueur d'une génératrice par la longueur
de la circonférence de base; l'aire latérale d'un tronc de cône de

révolution est égale au produit de la longueur de la génératrice ji

par la longueur de la circonférence médiane, ou le produit de

la hauteur par la longueur d'une circonférence dont le rayon
est égal à la normale médiane. La surface de la sphère se décompose

en zones coniques étroites dont les hauteurs ont une somme ;

égale au diamètre de la sphère, tandis que leurs normales
médianes sont toutes égales au rayon de la sphère. En faisant la r

somme de ces zones on obtient le produit du diamètre de la
sphère par la circonférence du grand cercle, ce qui équivaut à

quatre grands cercles.
On n'applique jamais, bien entendu, les déterminations

infinitésimales à la géométrie empirique.

10. — Comme introduction à la géométrie sphérique, on peut
partir d'un trièdre OABC et construire son développement sur
le plan du tableau. En coupant la figure par une circonférence
de centre 0, on obtient trois secteurs circulaires AxOB, BOC,
COA2, dont le premier et le dernier doivent se plier respectivement

autour de OB et OC de telle façon que 0AX et 0A2 se

rencontrent le long de l'arête OA. Le point A est déterminé par
sa projection A' sur le plan du tableau et sa distance de celui-ci.
La construction fait ressortir le théorème sur les côtés d'un
simple triangle sphérique : la somme des côtés est inférieure à 360°

et chacun d'eux est plus petit que la somme des deux autres.
Au cas où les deux faces passant par OA sont plus petites

que 90° on a, dans le développement du trièdre, une construction
particulièrement simple pour déterminer l'angle plan le long de

OA. Menons, en effet, par Ax et A2 les perpendiculaires aux
droites OAx et OA2 et déterminons les points d'intersection Q

et R entre ces perpendiculaires et les droites OB et OC. Dans le

triangle PQR aux côtés AXQ, QR, A2R, l'angle de sommet P

sera égal à l'angle plan en question. En posant OAx et OA2

égaux à l'unité, on déduit directement du triangle PQR la
relation des cosinus pour le trièdre (le triangle sphérique). La '
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validité de la formule dans les autres cas se vérifie ensuite par
de simples considérations. La validité de la formule des sinus

ressort déjà de ce qui précède, et la base de la trigonométrie
sphérique est donc établie.

11. — Introduisons maintenant un tableau passant par un
point 0 de la droite x et perpendiculaire à celle-ci. Il coupe les

deux premiers tableaux suivant une droite horizontale y et
en une droite verticale z. Ces trois tableaux déterminent un
trièdre normal aux arêtes x, y et z, et nous employons ce trièdre
comme système de coordonnées de telle façon qu'un point A
dont les projections sur le tableau horizontal et sur l'axe O# se

trouvent respectivement en A' et A0 est caractérisé par les

coordonnées
a — OA0 b Aq A' c A' A

Le point se désigne alors par (a, 6, c). Les coordonnées sont
égales aux arêtes d'une brique normale dont les trois faces sont
situées dans les tableaux tandis qu'un sommet se trouve à A.

En projetant la droite OA sur les tableaux on reconnaît que
les points du segment OA seront représentés par les coordonnées

Aa, Aà, Ac, où A est une fraction proprement dite. On dit
que le point (Aa, A à, Ac) est dérivé du point (a, à, c) par une
multiplication par A par rapport à 0.

12. — De cette manière on peut multiplier un point ou une
figure quelconque par A. Une figure située dans un plan par 0
est transformée par là en une figure semblable dans le même plan,
et un segment se transforme en un autre segment parallèle dont
la longueur est A fois aussi grande. Une figure située dans un
plan oc qui ne passe pas par 0, se transforme en une figure
semblable située dans un plan parallèle à oc, car tout segment
entre- 0 et un point de oc est multiplié par A.

Deux figures dans l'espace qui se déduisent l'une de l'autre
de cette manière s'appellent semblables dans le rapport A

(homothétiques).

13. — Si un corps est composé de parties qui peuvent se

joindre à un cube à l'arête a cm (où a est un nombre entier ou



218 J. HJELMSLEV

fractionnaire) on attribue au volume de ce corps le même
nombre-mesure qu'au volume du cube, donc a3 cm3.

Une multiplication par X transforme le corps en un autre
corps composé de parties correspondantes qui, elles aussi,
peuvent se joindre à un cube. L'arête de celui-ci est égale à

Xa cm et son volume est donc égal à X3a3 cm3, c'est-à-dire le g

volume du nouveau corps est X3 fois celui du corps initial. jj

Il s'ensuit que pour deux corps semblables le rapport des g

volumes est égal au cube du rapport linéaire.
On reconnaît de façon analogue que les nombres-mesure de

deux corps symétriques doivent être égaux. On sait d'ailleurs f

qu'il est possible de diviser deux tétraèdres symétriques en jj

douze paires de parties superposables. 1

14. — Pour trouver le nombre-mesure V à employer pour £

le volume d'une pyramide triangulaire A — BCD (fig. 1), où |
l'arête AG h est la hauteur de la pyramide et où l'aire de la f
base BCD est égale à G, nous menons par les milieux P, Q, N des

D

6
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arêtes partant de A une section plane PQN parallèle à la base

BCD. Nous avons ainsi découpé une pyramide A — PQN
semblable à la pyramide initiale dans le rapport % et le nombre-

mesure de son volume est donc % V. D'une manière analogue,

on découpe aux sommets B et D deux pyramides B — PRM et

D — NSM dont chacune a le volume % V. Les trois plans de

coupure PQN, PRM et NSM limitent — avec les trois faces y
parallèles de la pyramide donnée — un prisme quadrangulaire
droit dont la base est RMSC % G et la hauteur CQ % A.

Le nombre-mesure pour le volume du prisme est donc % AG.

Ce prisme se compose de deux parties, l'une à l'intérieur, l'autre
à l'extérieur de la pyramide; le volume de la première a le

nombre-mesure 5/8 V. La seconde partie, le tétraèdre M — TNP
est —•' comme on le voit — superposable au tétraèdre C — QPN
qui, lui, est symétrique au tétraèdre A — QPN, et son volume
est par conséquent % V. Le nombre-mesure du prisme s'exprime
donc par 5/8 V + Ys V % V et par % AG, donc % V % AG

ou V i/3 AG.

15. — Ce résultat est cependant valable aussi pour une

pyramide quelconque A — BCDE... Si le pied de la hauteur AO
est situé à l'intérieur de la base (ou sur le périmètre de celle-ci)
on peut, pourvu que la base soit convexe, diviser la pyramide en
tétraèdres qui tous contiennent AO comme arête commune;
dans les autres cas, on peut toujours déduire la pyramide initiale
par addition, ou soustraction, d'un ensemble de tétraèdres

ayant l'arête commune AO. Dans tous les cas, on arrive à la
nécessité de mesurer le volume de la pyramide par y3 du produit
de la hauteur par la base.

16. — On réalise ensuite sans difficulté la détermination de

tous les volumes simples, entre autres le volume de la sphère.
Celle-ci se décompose en effet en petites pyramides dont le
sommet est au centre de la sphère et dont les bases se confondent
avec les plans tangents de celle-ci. Le volume devient donc égal
à % du produit du rayon par la surface de la sphère. Comme il a
été mentionné plus haut, les considérations infinitésimales ne
relèvent pas de cette géométrie.
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II. La géométrie de la chambre.

17. — Une chambre a la forme d'un cube dont l'arête est
égale à 5 mètres. Par le milieu 0 du cube nous menons un plan
horizontal, le plan médian; il divise la chambre en deux espaces
symétriques, l'un supérieur, l'autre inférieur. Le plan médian
joint les parois le long d'un carré dont le côté est égal à 5 mètres.
Nous rapportons les points de ce carré à un système de
coordonnées dont les axes x et y partent du milieu 0 parallèlement
aux côtés du carré et munis de directions positives déterminées.
Chacun de ces points est déterminé par deux coordonnées.

L'on peut maintenant indiquer la position d'autres points P
dans la chambre, qu'ils appartiennent à l'espace supérieur ou
inférieur de celle-ci, par leur projection P' sur le plan médian et

par la distance P'P au-dessus ou au-dessous de celui-ci. Cette
distance est munie de signes, en effet + ou — selon qu'elle
pointe vers le haut ou vers le bas.

Chaque point de la chambre est ainsi déterminé par trois
coordonnées xx, x2, x3 (ou x, y, z) dont les deux premières x1 et x2

sont les coordonnées de P' dans le plan médian tandis que la
troisième x3 est la distance P'P orientée selon les indications
ci-dessus. Si la coordonnée x3 est égale à zéro, le point P est
situé dans le plan médian. Les deux axes x et y ainsi qu'un axe
vertical z par 0 orienté vers le haut, s'appellent les axes de

coordonnées et forment avec les plans yz, zx et xy (les plans de

coordonnées) un système de coordonnées.
Pour commencer nous ne considérons pas d'autres points

dans la chambre que ceux dont les coordonnées s'expriment en

un nombre entier de centimètres, de sorte que xXl x2, x3 ne

prennent que les valeurs entières de l'intervalle — 250 à + 250.

Mais il faut toujours conserver la possibilité d'introduire, par
fractionnement du centimètre, des nombres plus petits à mesure
qu'on en aura besoin, tout en appliquant notre interprétation
habituelle.

18. — Par une translation le long de l'axe Ox où l'origine 0
se déplace sur le point (a, 0, 0), l'ensemble des points se déplace
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sur d'autres points de telle sorte que les coordonnées y et z

restent les mêmes tandis que les coordonnées x s'augmentent
de a. Les translations le long des axes Oy et Oz sont caractérisées

d'une manière analogue. Il s'ensuit qu'une translation qui
déplace l'origine 0 sur le point (a, è, c) déplacera le point (#, ?/, z)

sur (x + a, y + 6, z + c).

Pour une symétrie par rapport au plan 0xy1 les coordonnées

x et y restent les mêmes, tandis que les coordonnées z changent
de signe. Il en est de même pour les symétries par rapport aux
autres plans de coordonnées.

Une rotation de 90° autour de l'axe Oz déplace l'axe Ox sur
Oy et le point (#, y, z) sur (— y, x, z). Des changements
analogues ont lieu pour les rotations autour des autres axes.

Considérons enfin une demi-rotation autour de l'axe Oz qui
déplacera le point (x, ?/, z) sur (— xf — y, z) ainsi que la symétrie
(le mirage) par rapport à l'origine 0 qui transforme (#, ?/, z) en
(— x, — y, — z). On peut décomposer la dernière transformation
en trois mirages consécutifs par rapport aux plans de coordonnées

ou en un seul mirage par rapport au plan xy suivi d'une
demi-rotation autour de l'axe Oz.

19. — Le carré de la distance de l'origine 0 à un point
P (x, ?/, z) est — comme nous le savons déjà — égal à x2 + y2 -j- z2,
d'où l'on conclut immédiatement que le carré de la distance
d'un point quelconque M (a, b, c) au point P {x, y, z) doit être

(* — «)2 + (y — b)2 + (z — c)2

On a seulement à effectuer une translation qui déplace M
sur 0, et à appliquer ensuite le résultat précédent.

20. — Pour que les deux droites joignant 0 aux points
M (a, 6, c) et P (x, y, z) soient perpendiculaires l'une à l'autre,
il faut, selon le théorème de Pythagore, que le carré de MP soit
égal à la somme des carrés de OM et OP, donc

(x — a)2 + (y — b)2 + (z — c)2 [x2 + y2 + z2) + (a2„+ b2 + c2)

OU

ax + by -h cz 0 -.
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Il s'ensuit que les points (x, ?/, 2) situés dans un plan mené

par 0 perpendiculairement à la droite OM doivent satisfaire à

l'équation ax + by + cz 0. On appelle donc cette équation
l'équation du plan.

Si le plan ne passe pas par l'origine, mais par un autre point
(p, #, r) l'on reconnaît facilement par une translation que son
équation sera

a (x — p) + b (y — q) + c (z — r) 0

21. — Nous introduisons à présent les vecteurs dans l'espace
comme antérieurement nous l'avons fait dans le plan. La
lettre a doit premièrement signifier le point (%, a2, a3), mais
deuxièmement elle doit signifier une translation qui déplace
l'origine sur ce point; troisièmement elle signifie enfin un
vecteur, c'est-à-dire un chemin rectiligne qui va de l'origine au
point. On appelle aussi %, a2, a3 les coordonnées de la translation
ou du vecteur.

L'équation a + b c doit signifier que la composition des

translations a et b produit la translation c; ceci revient aux
relations ax + b± cv a2Jrb2 c2 et a3 + è3 c3.

On appelle vecteurs inverses deux vecteurs a et (— a) qui
se détruisent par addition, c'est-à-dire qui produisent le vecteur
zéro (0, 0, 0). Parfois on se sert aussi d'un vecteur du point a

au point b. Il est désigné par ab et signifie le vecteur correspondant

à la translation qui déplace le point a sur le point à, donc
ab b — a.

22. — On dit que le vecteur a est multiplié par le nombre
(le scalaire) X, quand ses coordonnées sont multipliées par X

et l'on écrit

Les vecteurs a et Xa sont situés sur la même droite et sont dits
linéairement dépendants (entre eux); ils ont la même direction
ou des directions opposées selon que X est positif ou négatif.

Si deux vecteurs a et b sont situés sur la même droite, il
existe entre eux un rapport a/b ou a: à, c'est-à-dire un scalaire X

tel que a Xè.
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23. — Pour une droite passant par le point a et dont la direction

est déterminée par le vecteur è, on a la représentation
paramétrique

x a -f- ~kb

Pour un plan passant par le point a et contenant des droites
dont les directions sont déterminées par les vecteurs b et c, on

a la représentation paramétrique

x a + Xb + \lc ;

ceci signifie que tout couple de valeurs des deux scalaires X et p.

détermine — en deçà de certaines limites — un point x dans le

plan.

24. — Le produit (scalaire) de deux vecteurs a et b est défini

par la relation
ab — a1b1 + a2 b2 + a3 bz

On reconnaît tout de suite les mêmes propriétés que pour
le plan:

ab ba a (b + c) ab -f olc

ab 0 signifie axb± + a2b2 + a3bs 0, donc (§ 20) que les

deux vecteurs sont perpendiculaires Tun à l'autre (à condition
bien entendu qu'aucun d'eux ne soit le vecteur zéro).

Le produit reste le même quand l'extrémité d'un des
vecteurs se déplace dans un plan perpendiculaire à l'autre, car
a(b + c) ab, quand ac 0.

La projection du vecteur a sur b est un vecteur ah dont le

rapport à b est le suivant

ab a}P ab -, ab

X ~ ~W ~ ~¥ ' c a*>~ ~V*h '

25. — Correspondant au nombre-mesure de longueur que
nous avons introduit dans le plan, nous choisissons dans l'espace
comme nombre-mesure pour la longueur du vecteur a

\a\ ^a2 (/% + al -f az
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A chaque vecteur a (différent de zéro) correspond ainsi un
vecteur d'unité a/Va2 (vecteur de longueur 1) dont les applications

sont analogues à celles dans le plan.
La distance de deux points a et ô, la longueur du vecteur ab,

possède le nombre-mesure

| ab | -y/(a — b)2 \/(ax — bx)2 -f (a2 — b2)2 + (a3 — b3)2

26. — Un plan mené par le point p perpendiculairement au
vecteur a est représenté par l'équation

a (x — p) 0

Si a est un vecteur-unité, on dit que l'équation est mise sous
la forme normale. La distance du plan à un point x0 calculée
conformément à l'orientation de a, sera égale à a (x0 — p). Ce

résultat est tout à fait pareil à celui du problème correspondant
dans le plan concernant la distance d'une droite à un point.

Si a n'est pas un vecteur-unité, il suffit de diviser par ± \fa2

pour mettre l'équation sous la forme normale.

27. — Vecteur perpendiculaire de deux vecteurs a et b. — Nous
cherchons un vecteur x qui soit perpendiculaire à a et J, ces
derniers étant linéairement indépendants. Les coordonnées
(x1: #2, x3) sont déterminées par les deux équations

ax xx + a2 x2 + a3 x3 0 (1)

bx xx + b2 x2 + b3 x3 0 (2)

Parmi les trois déterminants

a2 a3 ax «3 «1 a2

b2 h h h 5 h

qu'on déduit de la matrice

dx <z2 3 |

b\ b% b% I

en supprimant respectivement la première, la seconde ou la
troisième colonne, il doit en exister au moins un qui soit diffé-
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rent de zéro, puisque nous avons supposé que a et b ne sont pas
contenus dans la même droite.

Si, par exemple, le dernier des trois déterminants est différent

de zéro, les équations (1) et (2) déterminent xx et x2 en
fonction de x3; Ton reconnaît que le groupe (xl7 x2, x3) doit être
proportionnel aux trois déterminants, celui du milieu étant
multiplié d'abord par — 1.

On peut donc choisir le vecteur cherché x de telle façon que
ses coordonnées soient égales aux trois valeurs proportionnelles
multipliées par un nombre arbitraire X. Si, en particulier, on
pose X 1, nous appelons le vecteur ainsi défini, vecteur viré1

/\de a et b. Il est désigné par ab, donc

/\db ($2 ^3 #3 è2 CL3 bi (Il 63 Cil ^2 ^2 ^l) • 0)

/\ /\On a immédiatement ab — ba.

/\Le vecteur viré ab s'appelle aussi le produit vectoriel de a et b

(par opposition au produit scalaire ab).
Si a et b sont contenus dans la même droite, on définit

/\
toujours ab par l'expression (3); il en résulte directement
/\ /\
ab ba 0.

En multipliant un des vecteurs a ou b par le scalaire X, on
multiplie aussi le produit vectoriel par X.

/\28. — Le produit vectoriel ab est distributif par rapport
aux deux vecteurs a et à, c'est-à-dire

/s)1 /\ /\ /\ /\ /\a \b + c) — ab + ac (b + c) a ba + ca

n - /\Ceci résulte directement du fait que ab est représenté par
des expressions linéaires et homogènes des deux groupes de
coordonnées de a et b.

Le produit vectoriel reste invariable quand l'extrémité de
l'un des vecteurs se déplace parallèlement à l'autre. Car

/\ /\ /\a [b -f- \a) — ab dr \aa ab

1 Voir deuxième article, p. 303.
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/\

Gomme ab est perpendiculaire et à a et à à, on a

/\ /\ab - a — 0 ab - b 0

29. — Considérons trois vecteurs a, à, c et formons le produit

^ -S /\abc ab • c

Ce produit à trois est un scalaire dont la valeur exprimée
par les coordonnées des vecteurs, est égale à

abc (a2 bz — az b2) c1 -f- (a3 bx — % b3) c2 -f (a± b2 — a2 bx) c3

Il s'ensuit immédiatement de la définition que le produit à

trois est égal à zéro quand les trois vecteurs sont situés dans le même

plan (sont linéairement dépendants), car le vecteur c est alors
/\

perpendiculaire à ab. De ceci résulte encore: Le produit à trois
reste invariable si Vextrémité de l'un des vecteurs se déplace dans

un plan parallèle aux deux autres.
A l'aide de cette proposition on peut transformer de plusieurs

façons un groupe de trois vecteurs (a, 6, c) en un autre dont le

produit à trois est le même, car Ton peut successivement faire
varier les vecteurs. Pendant toutes ces transformations l'orientation

de a, b par rapport à c (c'est-à-dire le sens de rotation
que représente le mouvement de a à b dans le plan de ces vecteurs

pour un spectateur placé du même côté du plan que le vecteur c)

reste invariable; ensuite le volume contenu dans un parallélépipède

aux arêtes a, à, c restera invariable aussi, d'après les

règles élémentaires mentionnées plus haut (n° 6).
Pour examiner le rapport entre le produit à trois et ce

volume nous choisissons d'abord le cas spécial où a, à, c sont
les vecteurs-unité sur les axes de coordonnées, donc (1, 0, 0),

(0, 1, 0) et (0, 0, 1). On en déduit ab c, donc abc c2 1,

c'est-à-dire le produit à trois est exactement égal au nombre-
mesure pour le volume du cube formé par les trois vecteurs-
unité.

Si au lieu des vecteurs-unité nous considérons trois vecteurs
sur les axes de coordonnées aux longueurs a, ß et y, ces nombres
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étant positifs, le produit à trois sera égal à aßy, c'est-à-dire au
volume de la brique formée par les trois vecteurs.

Si l'un des vecteurs est remplacé par le vecteur opposé, le

produit à trois change de signe.
Comme on peut toujours transformer un groupe à trois

vecteurs (a, è, c) en un autre dont les vecteurs sont contenus
dans les axes de coordonnées tout en se bornant aux changements

décrits plus haut, il en résulte que le produit à trois abc

représente toujours le volume du parallélépipède aux arêtes

a, à, c, muni de signe plus ou minus selon que l'orientation (abc)
est conforme ou non à l'orientation du système des coordonnées

xyz, c'est-à-dire l'orientation des trois vecteurs (1, 0, 0),
(0, 1, 0) et (0, 0, 1).

On voit que le produit à trois change ' de signe quand on
permute deux vecteurs voisins, car ceci est évident quand les

vecteurs sont situés sur les axes de coordonnées. Il en résulte
ensuite que le produit à trois change de signe quand deux
vecteurs quelconques sont permutés, d'où le résultat final:

Les trois permutations abc, bca et cab ont le même produit
à trois; les trois permutations cba, bac et acb ont le produit
opposé.

La valeur abc représente le nombre-mesure pour le volume
du vecteur à trois a, à, c, muni de signe conformément à l'orientation

(abc).
Pour le volume du tétraèdre orienté aux arêtes a, 6, c nous

serons ainsi obligés de fixer le nombre-mesure 1/6 abc (d'après
les raisonnements établis aux nos 14 et 15).

30. — L'expression abc dépend de trois groupes de nombres
(%, a2, %), (&!, &2, b3) et (clr c2, cz). On la désigne directement en
les inscrivant dans un schéma (une matrice) de la façon suivante

abc

% ^2 ^3

bx b2 è3

C9. c«

Ce schéma s'appelle déterminant de troisième ordre. Son
calcul et les règles pour sa transformation et pour le calcul avec
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les compléments découlent très simplement de ce qui précède,
et c'est pourquoi nous n'entrerons pas dans plus de détails.

Nous mentionnons seulement la résolution des trois équations
scalaires :

ax x1 4 bxx2 + cx x3 dx

a2 x1 4 b2x2 + c2 x3 d2 (1)

^3 ^3 *^2 ~i" C3 ^3 ~ ^3

aux inconnues x2 et xz. En introduisant les vecteurs

a (ax a2 a3) b (bx b2 b3) c (cx c2 c3) d (4 d2 rf3)

on peut réunir les trois équations scalaires en une équation
vectorielle

axx 4 bx2 4 cx3 d

A condition que abc soit différent de zéro, on résout facile-
x\ /\

ment cette équation en multipliant successivement par bc1 ca

/\
et ab: ce qui donne

dbc adc
^

abd

abc abc abc

/\
31. — Longueur du vecteur viré ab. — Le carré du vecteur

/\
perpendiculaire ab est égal à

(ab)2 (a2 b3 — a3 b2)2 4 (a3 bx — ax b3)2 4 (<h b2 — a2 bx)2

d'où l'on déduit

(ab)2 (ax 4 a2 4 <h) (b± 4 b2 4 b3) — (ax bx 4 ^2 b2 4 b3)2

OU

(ab)2 a2 b2~ (ab)2

/\
Le nombre-mesure du vecteur viré ab s'exprime donc par

\db\ \/a2 b2 — (ab)2
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Au cas où les deux vecteurs a et b sont perpendiculaires
Fun à l'autre, on a ab o et, par conséquent,

| ab | \/a2 -\/b2

Le nombre-mesure pour la longueur du vecteur viré est donc

égal au produit des nombres-mesure pour les longueurs des deux

vecteurs, c'est-à-dire égal au nombre-mesure pour l'aire du
rectangle formé par a et b.

Dans le cas général on peut — en déplaçant l'extrémité de

l'un des vecteurs parallèlement à l'autre — transformer le

parallélogramme des vecteurs en un rectangle qui — selon les

règles élémentaires pour les aires planes — possède la même
aire que le parallélogramme. Cette transformation laisse inva-

/\riable le vecteur viré ab, d'où il s'ensuit dans tous les cas que le
nombre-mesure pour la longueur du vecteur viré est égal au
nombre-mesure pour l'aire du parallélogramme formé par les

deux vecteurs. Dans ce qui précède nous avons déjà rendu compte
/\

de l'orientation du vecteur viré ab par rapport à l'orientation
des deux vecteurs a et b dans leur plan.

Ce résultat s'accorde avec la règle élémentaire selon laquelle
le volume d'un parallélépipède est égal au produit de la hauteur

par l'aire de la base. Car si abc ab-c doit représenter le
nombre-mesure pour le volume du parallélépipède, il faut que/\le nombre-mesure pour la longueur de ab soit égal au nombre-
mesure pour l'aire du parallélogramme a, à.

Donc, si nous introduisons dans la géométrie analytique de

l'espace les deux conditions que voici:

1° Le nombre-mesure pour le volume d'un parallélépipède
orienté, formé par trois vecteurs a, à, c est représenté par
abc\ et de même, le nombre-mesure pour un tétraèdre'
orienté abc — O dont les arêtes sont les vecteurs a, b, c

est représenté par x/6 abc,

2° Le nombre-mesure pour l'aire d'un parallélogramme
formé de deux vecteurs a et b est représenté par

\/a2b2 — (ab)2

L'Enseignement mathémat. 39me année, 1942-1950. 15
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toutes les règles pour les déterminations de mesure seront
satisfaites.

32. — La dernière condition mentionnée est une condition
numérique car elle ne tient pas compte de l'orientation (l'ordre)
des deux vecteurs a et b. Nous voulons cependant fixer aussi

une condition concernant le signe du parallélogramme formé

par a et b. Elle correspond au choix d'un vecteur normal positif n

pour le plan dans lequel sont situés le parallélogramme et les

autres figures dont nous voulons déterminer l'aire. Nous posons,
en effet, l'aire du parallélogramme formé par a et b égale à

/\
ab/n. Pour l'aire d'un triangle 0ab, dont les deux côtés sont a

/\
et b, nous fixons le nombre-mesure à % ab/n, et pour l'aire d'un
polygone abc ik dans le plan le nombre-mesure sera

/\ /\ /\ /\1 /ab ,bc |
ik

^
ka\

2 \ n n n n

On vérifie que cette détermination renferme comme cas

particulier la stipulation antérieurement introduite dans le

plan Oxy.

33. — Déplacements dans Vespace. — Un déplacement qui
laisse fixe le point 0 est déterminé par la position du trièdre
normal sur lequel est placé le trièdre de coordonnées. Cette

position est déterminée par les trois vecteurs-unité e, / et g qui
correspondent aux vecteurs (1, 0, 0) (0, 1, 0) et (0, 0, 1).

On a pour ces vecteurs

/\ /\ /\# f «p g2 fg ^ ge ef 0 ; fg e ge ^ / ef — g

Pour déterminer le point x' (x'u xz) qui correspond au

point x (#!, x2l x3) nous avons

x' Xl e + X2 f + x3 g '

Les points y' et z' qui correspondent aux deux points y et z

sont déterminés par
y' Vi e + y2 f + yz g

z' zxe + z2f + % g
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On vérifie maintenant par de simples calculs que

x'2 — x2 [xf — y')2 (x — y)2 xf y' xy

puis

/x /\ /
x y («2 2/3 ^3 2/2) ^ "t" (^3 2/i *^12/3) / [xi 2/2 *^2 2/1) § (xy) •>

et

y' z' x'y', z' ** (x2 yz — î/2) % + (x3 yx — xx y3) z2 + (xx y2 — x2 y±) z3

OU

x/ y' z' xyz

34.— Il ressort de ces équations que tous les nombres-
mesure pour les longueurs, les aires et les volumes restent
invariables pourvu que le déplacement laisse fixe le point
0. Il importe donc maintenant de vérifier qu'ils restent
invariables pendant une translation, car leur invariabilité serait
alors assurée quel que soit le déplacement. Ceci se vérifie
immédiatement pour le nombre-mesure pour la longueur; pour
le nombre-mesure de l'aire le fait se déduit de la formule du
n° 32. Par contre le problème concernant le nombre-mesure

pour le volume nécessite un examen un peu plus détaillé, joint
à une extension finale des nombres-mesure déjà introduits pour
le volume.

35. — Au n° 29 nous avons fixé le nombre-mesure pour le
volume du tétraèdre orienté abc — 0 à

1 ^ 1 T— ab c » — abc
6 6

Nous généralisons maintenant cette condition en fixant le
nombre-mesure pour le volume du tétraèdre abcp à

1 / \ 1 /\ /\ /\— b — a c — a (p — a) — (bc + ca + ab) (p — a)

qui — comme on le voit immédiatement — satisfait à la condition

concernant l'invariabilité du nombre-mesure pendant une
translation.
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D'après ceci la différence entre les deux tétraèdres abcp et
abcq sera la suivante

1
' /\ /\ /\abcp — abcq — — (bc -f ca + ab) (p — q)

d'où l'on reconnaît que pour un polyèdre quelconque limité
entièrement par des triangles abc, cbd, — ceux-ci étant
parcourus selon une orientation fixe sur la surface du polyèdre telle
que les parcours de deux triangles voisins soient opposés sur
le côté commun (comme plus haut abc et cbd) — la somme de

tous les tétraèdres au sommet commun p et avec bases dans les
faces du polyèdre sera indépendante de la position de p. Si, en

effet, on déplace p sur un autre point q, la différence entre les
deux sommes correspondantes sera la suivante

l /\ /\ /\ /\ /\ /\— [bc + ca + ab + cb + bd + de + •••) (p — q)

où les termes dans la parenthèse s'annullent deux à deux de

sorte que la somme est égale à zéro.

Il sera donc naturel de définir le nombre-mesure pour le
volume du polyèdre conformément au parcours choisi sur la
surface, c'est-à-dire comme la somme des tétraèdres énumérés

abcp, cbdp, ...; ici on peut, bien entendu, choisir p à l'origine
aussi bien qu'en n'importe quel autre point.

Il en résulte que les nombres-mesure ainsi définis sont
invariables pendant tout déplacement.

36. — Si les faces du polyèdre ne sont pas des triangles mais
des polygones, on peut diviser chacun de ces polygones abede

en un système de triangles abs, bcs, cds, des, eas, s étant un
point quelconque dans le plan du polygone. On reconnaît que
la position de s dans le plan n'influencera aucunement le nombre-
mesure pour le volume.

Finalement on vérifie sans difficulté que le nombre-mesure

pour le volume d'un polyèdre composé de deux autres est égal-
à la somme 'des nombres-mesure pour les volumes de ces deux
polyèdres.
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37. — Formules contenant 3 ou 4 vecteurs, — Nous cherchons

d'abord une formule pour abc. Si b et c sont sur la même droite,
/\

l'expression est égale à zéro; si a et bc sont sur la même droite,
l'expression est aussi égale à zéro. Dans les autres cas on obtient
un vecteur situé dans le plan de b et c de sorte qu'on peut poser

a bc Xb \lc

En multipliant par a on aura

0 \ab + [Aac >

d'où l'on reconnaît que X et p. sont proportionnels à ac et
On peut donc poser X aac et p — — aaô, c'est-à-dire

ab.

a bc öl ((ac) b — (ab) c)

Reste à trouver le scalaire a; on trouve par un calcul direct
a — 1.

Nous avons donc trouvé cette formule

ou
a bc (ac) b — (ab) c

b c
ab aca bc (i)

qui — comme on le reconnaît sans difficulté — est valable aussi
pour les cas spéciaux mentionnés plus haut.

On en déduit

/> /> /\ /\ / XN

ab - ca — ab cd — cd ab — c • d ab.

d'où à l'aide de (I)
/\ /\ab ' cd —

ac bc

ad bd

Nous trouvons finalement à l'aide de (I)

ab cd ~
d c d

/\ r.—N ^ N
c ab • d abc abd

(ii)

(m)
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38. — Deux droites orientées suivant les vecteurs-unité a

et b déterminent — comme dans le plan — un angle (a, b) dont
le cosinus est défini par la relation

cos (a b) ab

Le sinus de Tangle dépend du vecteur normal n pour le plan
dans lequel est situé Tangle; il est défini par la relation

/\
7, ab

sin (a b) —
n

La dernière définition renferme comme cas particulier
celle qui a été donnée pour le plan xy\ car pour n (0, 0, 1),
a (a±J a2, 0) et b (b±, b2, 0), la formule devient

/\
sin (a b) — a1b2 a2 bx

Soient deux plans orientés, leur intersection étant dirigée
suivant le vecteur-unité e. L'angle que forment ces deux plans
est défini par Tangle que forme le vecteur normal au premier
plan avec le vecteur normal au second plan, le plan de cet angle
étant orienté conformément au vecteur e. Le cosinus et le sinus
de Tangle en question sont donc complètement déterminés.

39. — Un trièdre dont les arêtes sont des vecteurs-unité
A, B, C détermine un triangle sphérique ABC dont les côtés

sont (B, C) a, (C, A) b et (A, B) — c. Ils correspondent à

des orientations données dans les plans, donc à des vecteurs
normaux. Les angles A, B, C du triangle sphérique sont les

angles entre les plans de façon que

180° — A est l'angle de GA à AB
180° — B « » » AB )> BG
180° — G » » » BG » GA

ces angles étant orientés conformément aux vecteurs A, B, C

comme il a été mentionné ci-dessus. On a maintenant (n° 37, II)

/\ /\BG • GA
BG BA

G2 GA
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donc

ou

— sin a sin b cos C
cos a cos c

1 cos b

cos c cos a cos b -j- sin a sin b cos C

c'est-à-dire la formule générale des cosinus.

En appliquant la formule III, n° 37, nous avons

G A
BG CA

0 BGA
G • BGA

ou
G (sin a sin b sin C) G ABC

sin a sin b sin G ABC

ce qui constitue la formule des sinus dans l'espace. En exécutant

un mouvement circulaire en A, B, C on obtient

sin b sin c sin A sin c sin a sin B sin a sin b sin G

ou par division par sin a sin b sin c

sin A sin B sin G

sm a sin b sm c

ce qui représente la formule des sinus pour le triangle sphérique.
Ces deux formules constituent la base de la trigonométrie

sphérique.

III. L'espace arithmétique.

40. — Dans ce qui précède nous avons introduit toute l'analyse

calculatoire pour étudier la géométrie de la chambre;
maintenant nous allons élargir cette analyse de façon à y
renfermer tous les nombres réels, qu'ils soient grands ou petits,
rationnels ou irrationnels. Nous définissons en effet comme suit:

Un point arithmétique est un ensemble de nombres (al7 a2, a3)

où %, a2 et az sont des nombres réels arbitraires (les coordonnées
du point). Le point 0 (0, 0, 0) s'appelle l'origine. Un ensemble
de deux points arithmétiques a et à pris dans cet ordre, s'appelle
un vecteur ab ; le vecteur 0a est cependant désigné par la lettre a
seule. Chaque vecteur a détermine une translation, c'est-à-dire
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une transformation qui déplace le point (xv x2, #3) sur le point
correspondant (x1 + %, x2 + a2, x3 + a3). La somme et la
différence de deux vecteurs se définissent comme plus haut,
d'où résulte ab b — a. On multiplie un vecteur a par un
scalaire X en multipliant ses coordonnées par X. Une droite est
définie par le point variable x a + Xè, où a et b sont deux
vecteurs fixes tandis que X est un paramètre arbitrairement
variable. On définit le produit ab par la relation

ab ax 6r+ a2 b2 + az bz

et des vecteurs perpendiculaires l'un à l'autre par la condition
ab — 0. Un plan est défini par la représentation paramétrique
x a + Xb + [jlc, où a, b et c sont des vecteurs fixes, X et [x

/\
sont des paramètres. Le vecteur viré ab de deux vecteurs a et h

est défini par

/\ab (a2 b§ a$ b2 a% b^ a^ b3 a^ b2 a2 b.
La distance entre deux points a et b est définie par ^/{a — b)2,

les aires et les volumes comme précédemment ainsi que les

notions trigonométriques.
Il est immédiatement évident que tous les résultats et

locutions antérieurs sont applicables dans notre domaine élargi
(l'espace arithmétique).

41. — Nous ferons, en dernier lieu, encore cette remarque
que la transition au domaine encore plus général qu'est le
domaine complexe est fort simple. Toutes les définitions et
locutions s'appliquent directement avec la réserve qu'il faut
prendre, comme dans le plan (voir article 2) pour les vecteurs à

longueur zéro, c'est-à-dire tous les vecteurs (&1? k2l k3) où

K + kl + kl 0. Les droites qui contiennent de tels vecteurs
s'appellent des lignes isotropes; elles n'ont pas de vecteur
d'orientation et doivent donc être exclues des recherches dans

lesquelles celui-ci est indispensable, telles que les recherches sur
les relations trigonométriques qui d'ailleurs, à part cette exception,

s'appliquent au domaine complexe sans aucune
modification.
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