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194 H. LORENT

où le vecteur c' est coplanaire avec les vecteurs a, b et n est un
nombre réel. D'après ce que nous venons d'établir, on a:

(a A b) A c' ~ (a xc')b — (b x c') a (3)

et puisque

c' c — «a Ab

on conclut:

(a A b) A c' (a A b) A c

a x c' a x c b x c' b x e

et la relation (3) devient alors identique à la formule (1), qui
se trouve donc établie dans toute sa généralité.

RÉALITÉS ET SYMBOLISMES EN MATHÉMATIQUES

PAR

Henri Lorent (Bruxelles).

Sciences essentiellement abstraites, les mathématiques ont
leurs racines dans les réalités sensibles; par leurs applications,
elles préparent des actions sur d'autres réalités sensibles.

Quelle est la liaison entre les origines sensibles et les divers
niveaux d'abstraction entre lesquels s'étagent les branches et
les méthodes des mathématiques

Nous essayons ici de répondre à cette question, en supposant
la mémoire des lecteurs en possession de quelque résidu de leurs
études mathématiques élémentaires.

Dans notre langage figurera le mot ensemble pris au sens

qu'il a en mathématiques depuis un gros demi-siècle. Ce mot
désignera des suites d'êtres mathématiques se succédant indé-
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fîniment sùivant une loi déterminée plus ou moins explicite,
semblable suite étant un ensemble transfini. Nous aurons à en

considérer de deux espèces:

Il y a des ensembles dénombrables de nombres, dont le

type est la suite indéfinie des nombres entiers naturels:

1,2,3,4,...
et dont les autres sont tels qu'on peut les faire correspondre,

terme pour terme, à la suite des nombres entiers, par exemple
la suite des nombres fractionnaires:

Vi, V», Va, 7*, •••

ou la suite des racines carrées des nombres entiers:

1 \/¥, V4",

D'un ensemble dénombrable, on peut extraire un sous-
ensemble également dénombrable; par exemple: de l'ensemble
des nombres entiers, celui des nombres pairs:

2,4,6,8,...
chacun étant le double d'un des entiers naturels; plus
généralement, la suite:

n 2n 3n 4n

des multiples d'un entier n quelconque.
D'autres ensembles sont dits avoir la puissance du

continu, tel l'ensemble des points d'une droite: on ne peut
passer de l'un à l'autre en suivant la droite, sans passer
par tous les intermédiaires. On ne peut, sur une droite,
concevoir un point suivant d'un autre (alors que dans un
ensemble dénombrable chaque terme a un suivant) ; car
tout point d'un segment de droite, si petit que soit ce segment,
est un terme d'un ensemble de même puissance qu'une demi-
droite; comme on le constate, AB étant un segment de droite
et 0 un point extérieur, en projetant de 0 les points de AB
sur une droite d parallèle à AO: à chaque point de AB correspond

un point de la droite d, y compris le point à l'infini
de d qui (en géométrie euclidienne) correspond au point A.
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Sur une droite, à partir d'une origine 0, il existe un point
dont la distance au point 0 est un nombre donné, le mot \

nombre étant pris au sens général qui résultera des para-
:

graphes suivants. Tout ensemble dénombrable est un sous-
ensemble d'un ensemble ayant la puissance du continu... P

I

Le concret en mathématiques est constitué par deux formes jj

de l'activité mentale et musculaire humaine: le comptage des j

objets et le mesurage des grandeurs. jj

Le comptage des objets distincts d'un groupe d'objets, sem- y

blables à un titre déterminé, assure la formation des nombres f|

entiers. Les noix contenues dans un sac constituent les unités jj

d'un comptage; non pas qu'elles soient des objets identiques, :

substituables l'une à l'autre sans qu'aucun caractère de l'une jj

et de l'autre (par exemple la différence de rugosité ou la diffé- i

rence de poids) dénonce la substitution. Le comptage suppose |a

déjà Une abstraction, la considération des objets sous un carac- |j

tère commun, abstraction faite d'autres caractères considérés

comme des particularités sans intérêt au point de vue du y

caractère commun: par exemple dans le cas des noix achetées à ;j

la douzaine, leur valeur commune en tant qu'aliments.
De même, le comptage des volumes d'une bibliothèque se

fait sans distinguer leurs formats, leurs contenus, leurs prix, etc.
N'oublions pas que ces comptages ne se font pas sans des

déplacements d'objets: soit séparation des noix déjà comptées r

de celles qui restent à compter, soit déplacement de l'amateur
de livres devant les rayons de sa bibliothèque. y

Le mesurage de grandeurs comporte aussi un déplacement i

d'objets ou de personnes, mais cette fois, en présence d'une i

grandeur continue ou traitée comme telle. ;

Grandeur continue, telle la longueur d'un chemin à par- [

courir, la masse d'un volume de liquide, etc. Grandeur traitée f

comme continue, telle le poids d'une masse de grains de café, J

la charge d'un bateau de blé, le cubage d'un tas de pavés, etc... p

Parmi les objets déplacés lors du mesurage figurent les |
unités de ce mesurage: mètre rigide ou chaîne d'arpenteur, poids |
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d'un kilo ou d'un quintal, capacités d'un litre ou d'un décalitre,

etc...

L'agent du mesurage se déplacera le long du chemin à

mesurer ou déplacera les grandeurs à mesurer sur un plateau
d'une balance et les unités métriques sur l'autre plateau, etc...

Cette activité motrice mise en jeu par le comptage ou le

mesurage doit être pratiquée par l'enfant qui débute dans

l'étude du calcul arithmétique et va apprendre à en symboliser
les résultats.

II

Le symbolisme fondamental de l'arithmétique est l'ensemble
dénombrable des nombres entiers. Comment sort-il de l'intuition

sensible Une expression verbale ou chiffrée (douze ou 12,

par exemple) exprime le résultat d'un comptage d'objets ou
d'un mesurage de grandeur. Dans notre pratique du système
métrique décimal des poids et mesures, c'est toujours un nombre
entier : c'est évident pour un comptage, c'est vrai par une opération

auxiliaire s'il s'agit de la longueur d'une table, 2,25 m,
par exemple, car ce dernier nombre est identique à 225 cm et
n'est écrit autrement que pour une raison imposée par la
technique des opérations de l'arithmétique des entiers, si l'on veut
exprimer cette technique à partir d'une unité fondamentale
ayant avec les unités auxiliaires des rapports déterminés.

Les autres nombres non entiers de l'arithmétique sont
amenés par les opérations de l'arithmétique, comme nous aurons
à le montrer plus loin.

Une expérience encore sommaire du comptage d'objets ou
de mesurage de grandeurs comporte cette constatation fondamentale:

un nombre entier étant donné, on peut toujours l'augmenter
d'une unité, en ajoutant aux objets comptés un objet nouveau;
à ce qui est mesuré, une unité de plus. Cette opération réussit
chaque fois que d'évidentes conditions matérielles accidentelles
(dimensions de la table à dessiner, par exemple) ne s'y opposent
pas, elle est précocement conçue comme indéfiniment renouvelable

(abstraction faite de la fatigue musculaire qu'impose la
répétition des déplacements à réaliser).

L'Enseignement mathém., 39me année, 1942-1950. 13
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En langage mathématique, on dira que les nombres entiers
forment un ensemble dénombrable, tel qu'il a été défini à la
première page de la présente note.

III

La première opération mathématique partant sur des

nombres entiers est l'addition. En présence de deux ensembles
finis (dont l'importance est exprimable par un nombre) d'objets
ou d'unités comptés ou mesurés, l'addition dispense d'un
comptage ou mesurage à nouveau, lorsque ces deux ensembles
sont réunis en un seul. L'objet de l'addition est donc une
économie d'action, et même une prévision d'action: car l'addition
de deux entiers fait connaître d'avance, fait prévoir le résultat
du comptage ou mesurage de l'ensemble qui serait constitué par
la réunion de deux collections d'objets comptés ou des deux
grandeurs continues mesurées.

L'objet de la soustraction, opération inverse de l'addition,
est une autre économie d'action, point n'est besoin d'y insister.

Mais alors que l'opération: additionner deux nombres est

toujours possible, quels que soient ces entiers, l'opération:
soustraire un nombre entier d'un autre est parfois impossible.

D'un sac contenant douze noix, il est impossible d'en extraire
vingt; l'opération douze noix moins vingt noix est dépourvue
de sens.

C'est pour lever en mathématiques, pareille impossibilité que
l'algèbre construit les nombres négatifs. Le résultat est le suivant:
l'ensemble des nombres entiers positifs se prolonge à gauche par
celui des négatifs dans l'ordre inverse, de manière à présenter
la suite doublement indéfinie.

4,—3,—2,—1, 1,2,3,4...
La loi de formation des termes de cette suite est la suivante:

chaque terme surpasse le précédent d'une unité.
Elle laisse un vide entre + 1 et — 1, où il y a place pour

un symbole correspondant à une collection d'unités épuisée,
c'est-à-dire au néant, dans l'ordre d'abstraction où figurent les
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nombres entiers, positifs et négatifs. Ce symbole, le zéro, peut-il
être considéré comme un nombre

La symbolique arithmétique permet de traiter zéro comme
un nombre dans l'addition et la soustraction; ce qu'exprime:

N ± (a — b) N si b a ;

car la double opération laisse N inchangé, lui impose un
changement qui est le néant. Le symbole 0 jouant alors le rôle

généralisé d'un nombre, on l'exprime en disant que 0 est un
nombre.

Mais dans la multiplication et la division, le rôle du zéro
n'est pas toujours le même que celui d'un entier abstrait d'une
collection d'unités ou d'une suite d'actions, d'opérations.
Partons de la définition de la multiplication réalisable par
déplacements d'objets ou de l'opérateur; multiplier un nombre
entier (multiplicande) par un autre (multiplicateur), c'est
réaliser la somme d'autant de collections symbolisées par le

premier nombre qu'il y a d'unités dans le second. Zéro ne peut
donc être multiplicateur, mais on peut lui faire jouer celui de

multiplicande, car il est un nombre dans l'addition: on aura
0 x a 0, quel que soit l'entier a. Convenons — par un acte
de notre volonté dirigée vers l'élimination des exceptions aux
règles de calcul — d'appliquer au produit 0 X a le théorème:
l'interversion des facteurs d'un produit conserve le produit; il
en résultera que a X 0 0, parce que, nous le répétons, nous
l'avons voulu ainsi1.

Reste la division; quel est le rôle d'un diviseur zéro
Remarquons que chaque terme de la suite des entiers:

— 4, — 3, — 2, — 1, 0 1, 2 3, 4

possède un inverse fractionnaire, sauf 0. L'ensemble dénom-
brable

~ V4, — V», - 7», -1 i, 72-, 73, 74

i Notre volonté est orientée par une condition d'ordre pratique : que les conséquences
du théorème invoqué soient telles que les relations algébriques soient pratiquement
valables lorsque, obtenues par des raisonnements partant sur des multiplicateurs
entiers non nuls, on y annule tel facteur, des situations particulières excluant ce facteur.La même condition d'ordre pratique, dans le calcul des quaternions où figurent deux
symboles mathématiques: i et j, exige la relation ji —ij, qui nie la conservation
d'un produit par inversion des facteurs.
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présente donc une lacune. L'objet du symbolisme infinitésimal
que nous aurons à considérer plus loin, est de combler cette
lacune.

IV

Une seconde extension de la notion de nombre s'introduit
par la division des entiers, opération inverse de la multiplication.

Sous sa forme intuitive, manuellement réalisable, la division

d'un groupe d'objets en sous-groupes partiels égaux n'est
pas toujours possible; l'opération reste inachevée en présence
d'un sous-groupe plus petit que les autres, le reste de la division.
Il est nécessaire, au point de vue pratique comme pour la
généralité des théories, de dissiper cette irrégularité. On y est
parvenu en construisant la notion de fraction. Est-elle toujours
introduite de manière à en faire comprendre le mécanisme et
à en faire entrevoir la richesse

Une maîtresse de maison fait acheter une tarte chez le

pâtissier, pour la réception d'amis. L'unité d'achat est la tarte
entière. Si la tarte est partagée en six morceaux à peu près
égaux, en vue de sa consommation par les amis, l'unité de

consommation est le sixième de tarte; si les consommateurs sont
au nombre de quatre, il reste sur le plat deux sixièmes de la tarte :

le premier mot, deux, énonce le nombre des unités de consommation

restantes (à remarquer que l'idée de reste n'est pas la même

que dans l'expression de reste d'une division); c'est le numérateur
de la fraction; le second mot, sixièmes (de la tarte), rappelle et
l'unité d'achat, et le nombre des parties en lesquelles cette
unité a été partagée pour constituer l'unité de consommation;
c'est le dénominateur de la fraction. Les deux termes de la fraction

ont donc des fonctions nettement différentes; ils seront
traités différemment dans les calculs.

Ceci compris, l'addition et la soustraction des fractions ne

présenteront pas d'obstacles durables, moyennant peut-être un
nouveau changement d'unité, une réduction à un dénominateur

commun.
Aussi n'est-ce pas dans ces opérations que trébuche l'enfant

venu de l'école primaire à la théorie et la pratique du calcul des

fractions.
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Mais la multiplication par un multiplicateur fractionnaire

présente une difficulté à mettre clairement en lumière. Dans le

passé de cet enfant, multiplier un nombre par 12, par exemple,

c'est faire (par une technique abrégée) la somme de douze

nombres égaux au multiplicande (entier ou fractionnaire). Mais,

qu'est-ce que multiplier un nombre par une fraction, opération à

laquelle ne s'applique pas la définition qui vient d'être rappelée?
Considérons deux problèmes concrets analogues.
Voici le premier: j'ai acheté 3 m de ruban à 7 fr. 50 le mètre;

quelle somme ai-je payée La somme demandée est le produit
de 7 fr. 50 multipliée par 3.

Changeons l'une des données du problème, en achetant une
fraction de mètre de ruban, soit 3/5 m. Nous résoudrons le

problème en passant par une unité auxiliaire, le cinquième de

mètre; nous raisonnons ainsi:

1 m de ruban coûte 7,50 fr.
1/5 m de ruban coûte 7,50 fr. : 5 (ou le cinquième de 7,5)

7 50
3/5 m de ruban coûtent -^7— fr. x 3 (ou les trois cinquièmes de 7,50 fr.).

Nous voyons qu'après un transfert au multiplicande du dénominateur

du multiplicateur, nous sommes en état d'énoncer et d'appliquer

la règle, qui est celle d'une multiplication, addition abrégée
conformément à la définition rappelée.

Pourquoi cette double opération — dont les deux parties
peuvent être interverties — s'appelle-t-elle, du nom de l'une
des parties, une multiplication Parce que la partie finale est
une multiplication, au sens de la première définition de cette
opération. Le même mot multiplier appliqué à un nombre peut
déterminer un nombre plus grand, en accord avec le sens vulgaire
du mot multiplier, ou un nombre plus petit. Cette bivalence du
mot n'est-elle pas assimilée sans trouble par une intelligence
enfantine; elle nous paraît être la cause de l'insécurité du calcul
par fractions chez le jeune enfant. Pareille bivalence n'est pas
en cause à propos de l'addition ou de la soustraction des
fractions, généralement pratiquée sans autre hésitation une fois les
fractions réduites au même dénominateur.

Dès que le sens de l'opération: multiplication par une fraction,

est bien compris, il n'y a aucune difficulté à y appliquer la
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règle des signes d'un produit de facteurs monômes. Puis le rôle
le plus général de la division, opération inverse de la multiplication,

peut être abordé en évitant les hésitations encore
fréquentes chez des enfants de quatorze ans.

L'imparfaite assimilation de la multiplication par une
fraction a sa répercussion sur celle de la division par une fraction.
Exécuter une division par une multiplication reste rebutant
pour un enfant dont le langage est encore celui de la conversation
courante et pour qui la notion de nombres inverses n'est pas
encore familière. Pourquoi ne pas enseigner que pour diviser une
fraction par une fraction, on les réduit au même dénominateur
(opération habituelle dans l'addition et la soustraction), puis
l'on divise le numérateur du dividence par celui du diviseur
il n'est pas difficile à l'enfant de comprendre que 13/16 est contenu
dans 29/i6 autant de fois que 13 m dans 29 m. Perte de temps,
dira-t-on, puisque l'on complique des nombres que l'on aura à

simplifier ensuite Oui, mais compensée par une sécurité d'action
qui évite les erreurs et par conséquent, donne confiance au jeune
calculateur; bref, gain de temps au total.

V

Outre ses quatre opérations fondamentales, l'arithmétique
en étudie deux autres, inverses l'une de l'autre: l'élévation aux
puissances et l'extraction des racines.

La première, formation du produit de facteurs égaux, positifs

ou négatifs, entiers ou fractionnaires, est toujours réalisable,
mais la seconde présente deux cas d'impossibilité, pour lesquels
deux symboles nouveaux ont été créés.

1. Le nombre donné est tel qu'il n'y a ni nombre entier ni
nombre fractionnaire qui en soit la racine cherchée. Par
exemple, 2 n'est carré ni d'un entier ni d'une fraction;
2 n'a pas de racine carrée parmi les nombres envisagés

jusqu'ici. Mais on a observé qu'il est possible de construire
une suite croissante de nombres (1 ; 1,4; 1,41 ; 1,414...) dont
les carrés, également croissants, sont moindres que 2, et

une suite décroissante de nombres (2; 1,5; 1,42; 1,415...)



RÉALITÉS ET SYMBOLISMES 203

dont les carrés, également décroissants, sont supérieurs à

2; cependant aucun terme de la première suite n'a un
carré surpassant celui d'un terme quelconque de la
seconde; par contre, aucun terme de la seconde n'a un
carré inférieur à celui d'un quelconque de la première ; et
l'on peut aller assez loin dans chacune des deux pour y
trouver deux termes de même rang dont la différence soit
aussi petite que l'on veut, par exemple moindre qu'une
unité décimale du millionième ordre. On exprime
l'ensemble de ces faits en disant que les deux suites dénom-
brables en question ont une limite commune, qu'on nomme
la racine carrée de 2 et qu'on écrit s/2- Ce symbole est
donc défini par la relation (\/2)2 2; on le nomme un
nombre irrationnel (les entiers et les fractions étant
rationnels)

2. Dans d'autres cas, le nombre donné est tel que la
construction, à partir de lui, d'un nombre irrationnel soit
impossible. Le plus simple de ces cas est celui où se pose
le problème : quelle est la racine carrée de — 1 Elle
n'existe pas, même comme symbole irrationnel, puisqu'on
ne peut reproduire le processus précédent, le carré d'un
nombre positif ou négatif étant positif.
C'est pour ces cas que l'on a créé le symbole i — 1,

auquel on a imposé les règles de calcul exprimées par:
i2 — 1 iz — i, i* 1 i5 -f i, etc.

Les symboles composés au moyen de i obéissent moyennant

cette convention, aux règles de calcul des symboles
antérieurs. On les nomme des nombres imaginaires, par
opposition à l'ensemble des nombres rationnels et
irrationnels, qui est celui des nombres réels. Un symbole tel
que a + èï, dont le premier terme est réel et le second
imaginaire, est souvent dénommé nombre complexe.

VI

Nous n'avons pas encore résolu le problème réservé à la
fin de l'alinéa III: intégrer aux mathématiques le fait exception-
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nel que le nombre 0 n'a pas d'inverse, donc, que les nombres
fractionnaires de la forme :

a
b — c

cessent d'exister si c b avec a ^ 0.

Reprenons l'intervalle de — 1 à + 1 dans l'ensemble dénom-
brable des entiers. Dans cet intervalle prennent place les inverses
de tous les nombres entiers, tant négatifs que positifs. Rangés

par ordre de grandeur croissante (au sens algébrique de ce

qualificatif), ils se présentent ainsi:

-1, -V»> -Va, -V4, ...V4, Va, Va, 1-

Cet ensemble transfini dénombrable des inverses des entiers est

un sous-ensemble du continu; en effet, soit par exemple une
droite infinie graduée dans les deux sens à partir de 0; l'ensemble
de ses points a la puissance du continu; à chaque terme de
l'ensemble des inverses des entiers correspond un point, et un seul
de la droite, celui qui a ce terme pour abscisse.

Mais d'un ensemble ayant la puissance du continu, on peut
extraire un ensemble transfmi dénombrable de sous-ensembles
dont chacun est dénombrable; en voici un second exemple:

l _L_ 1 1 l
\/î ' \/¥ ' '

et le lecteur multipliera aisément les exemples, à volonté.
Dans chacun, on peut imaginer un terme positif ou négatif

aussi petit que l'on veut, en valeur absolue; la partie négative
comme la partie positive de l'intervalle (— 1, + 1) a pour limite 0.

Si, arrivés là, nous acceptons le postulat suivant: ce qui est

vrai de tous les ensembles dénombrables, qui sont des sous-ensembles

d^un ensemble E ayant la puissance du continu, reste vrai de cet

ensemble E, nous construirons, par des passages à la limite, le

calcul différentiel et le calcul intégral.

VII

Depuis Descartes, l'algèbre sert à étudier des lignes et des

surfaces, considérées comme des ensembles transfinis de points,
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ayant la puissance du continu; ce qui a été possible, grâce au
fait signalé plus haut: il existe une correspondance biunivoque
entre les points d'une ligne ou d'une surface et les termes de

l'ensemble des nombres réels. L'exploitation de ce fait, par
Descartes et ses continuateurs, a valu à la géométrie et à la
mécanique, le développement considérable qui les ont enrichies

depuis le xvne siècle.

C'est le moment pour nous de faire remarquer le caractère

abstrait, symbolique si l'on veut, des êtres géométriques par
rapport aux êtres réels du monde physique.

Les êtres géométriques, lignes et surfaces, sont abstraits des

réalités sensibles; cette abstraction leur donne le caractère
d'êtres dont les ensembles sont transfinis; car on peut en concevoir

et en définir autant de sous-ensembles que l'on veut,
chaque définition d'une ligne ou d'une surface étant celle d'un
ensemble transfini, ne fût-ce que parce que cette ligne ou surface

peut être imaginée à telle échelle que l'on veut.
Comment se forment les concepts géométriques à partir du

concret sensible Soit le concept ligne droite. On le présente
aux débutants en géométrie à partir d'un fil tendu entre deux
points plus ou moins éloignés: d'abord une ficelle assez épaisse

pour être vue de toute la classe, puis de fils plus fins observés par
des groupes d'élèves, encore par le rappel de souvenirs, par
exemple un fil tendu entre deux nœuds d'une toile d'araignée.
La synthèse des observations de pareils objets est formulée soit
dans la définition négative d'Euclide (« longueur sans largeur
également interposée entre ses points » — traduction Peyrard),
soit dans celle plus compréhensive d'Archimède (« la droite est
la plus courte des lignes ayant les mêmes extrémités » —
traduction Ver Eecke).

Soit, parmi les surfaces, celles que les manuels,
traditionnellement, proposent la première à l'étude: le plan.

Quelles opérations permettent de classer parmi les plans la
surface d'une table bien dressée ou celle d'un miroir Un fil
fixé à un point du contour, puis tendu peut balayer cette surface
sans être déformé par des aspérités ni sans enjamber des creux,
c'est-à-dire, en restant en contact par chacun de ses points
avec la surface de la table ou du miroir; et ceci pour deux
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points d'attache différents au contour (une surface conique
réalisant cette condition pour un seul de ses points, le sommet).
Reproduite par l'imagination, en faisant abstraction de l'épaisseur

du fil et en imaginant la surface prolongée indéfiniment
tout en conservant la même propriété, cette expérience a pour
conclusion le concept de plan indéfini.

Si l'on remarque que, sur la Terre approximativement
sphérique, ce travail d'imagination ne peut être effectivement
réalisé, on est à l'une des sources possibles de la relativité
einsteinienne.

Nous pourrions redire de toute autre ligne ou surface
géométrique quelque chose d'analogue, si la nature offrait à notre
observation beaucoup d'occasions de faire pareil travail. En
fait, la géométrie construit ses surfaces à partir de lignes et ses

lignes à partir de points. Le point étant, selon Euclide, ce qui n'a
aucune partie, la géométrie est fondée sur ce paradoxe : construire
toute étendue à partir de ce qui n'a pas d'étendue On s'étonne

que les sceptiques n'aient pas autrement exploité ce paradoxe î

VIII

Ce n'est pas à un sceptique qu'est dû un autre paradoxe,
celui du philosophe anglais Bertrand Russell: «En mathématiques,

on ne sait jamais de quoi l'on parle ni si ce qu'on dit
est vrai. »

C'est l'algèbre que vise ce paradoxe, et c'est à travers l'algèbre
appliquée à la géométrie qu'il atteint cette dernière.

On ne sait de quoi l'on parle en mathématiques, si quoi
désigne un objet sensible. Une fois mis en équation le problème
dont l'énoncé nomme de pareils objets, l'algébriste ne manie

plus que des symboles substitués aux objets; il ne reviendra à

ces derniers que pour interpréter en physique, en chimie, en

finances, en statistique... le résultat de ses combinaisons de

symboles. Et le paradoxe de Russell disparaît alors, parce que
les symboles algébriques ont été dotés de propriétés appartenant
au moins approximativement à des réalités: celles d'égalité et
celles d'addition.
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Mais l'égalité et l'addition algébriques sont conçues comme

rigoureuses: deux symboles égaux sont substituables l'un à

l'autre sans aucune altération dans la relation symbolique où ils

figurent. Dans la réalité physique, il n'y a pas d'objets rigoureusement

égaux: dans la construction de précision, la tolérance

au centième de millimètre implique une inégalité mathématique
en même temps qu'une équivalence pratique incontestée; pour
qui les compte un à un, il n'y a pas de grains de café égaux, mais

qu'importe à leur total
L'addition de deux symboles algébriques est la conservation

absolue des parties dans le tout. Mais on ne réunira pas dans un
même sac le café contenu dans deux plus petits sans que quelque
poussière ou quelque grain égaré manque au contenu du grand
sac, somme de ceux des plus petits.

Ces écarts entre les réalités et leurs symboles sont inexistants

pour l'algébriste; de quelque réalité physique qu'il semble

s'occuper, il ne changera rien à ses combinaisons de symboles; au

physicien de trier celles qui conviennent à la réalité sous-entendue.

L'algèbre pure n'a pas besoin de savoir à quelles réalités
on l'appliquera, de savoir de quoi elle parle.

Ce qu'elle dit est-il orai ou non Il est vrai d'une vérité
logique si le calculateur a observé strictement les règles du jeu;
et cela peut-être parce que la logique a eu pour premier modèle
la géométrie. Mais lorsqu'on cherche par l'algèbre la solution
d'un problème physique portant sur des réalités, l'appréciation
de vérité est moins simple, moins absolue.

Observons l'ingénieur qui élabore le projet d'un pont. Il
introduit dans ses calculs les dimensions du pont (en nombres
qui diffèrent de quelques millimètres avec les dimensions réelles),
la masse et la vitesse des charges qui se déplaceront sur le pont,
les efforts du vent auxquels le pont devra résister, etc... Il
combine ces éléments au moyen de formules de résistance'des
matériaux, formules que l'algébriste a obtenues à partir d'hypothèses

sur les actions moléculaires — non sensibles — engendrées
par les déformations des pièces du pont; le résultat est exprimé
à peu près comme ceci: « pour que le pont en service résiste dans
les conditions les plus dures, il faut donner aux pièces telles
dimensions et les asssembler de telles manières ». Que vaut
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pareille conclusion, pareille prédiction, fondée sur le maniement
de symboles dont les substituts physiques n'ont pas été retenus
dans l'élaboration du projet Il s'y attache une large part de |
confiance, parce que de multiples ponts ayant un passé sem- |
blable ont tenu en service; nous savons d'ailleurs que les dimen- |

sions des pièces du pont ne seront qu'à quelques millimètres près j*

celles que le'calcul a indiquées; l'ingénieur les a d'ailleurs multi- f

pliées par un coefficient de sécurité peut-être important. |
Un à peu près apparaît aussi dans la solution mathématique p

de matières inaccessibles à nos mains. Un problème fondamental |
de l'astronomie, par exemple, est la détermination exacte des 0

positions des astres aux instants d'un avenir plus ou moins |
étendu. L'histoire de l'astronomie nous apprend que l'idéal n

d'exactitude a été si peu atteint qu'il est à peine énonçable. Les

astronomes ont dû se contenter de positions approximatives 0

qu'ils ont su telles parce qu'il existait un écart appréciable entre p

les positions prévues pour le calcul pour un instant donné — à |
venir pour le calculateur — et les positions constatées à l'approxi- [

mation près des instruments — positions présentes ou passées f

pour les successeurs du calculateur. Les efforts se sont portés jj

vers une meilleure approximation dans deux domaines distincts: $

dans le domaine physique, par la construction d'instruments B

plus puissants ; dans le domaine mathématique, par la construe- y

tion de méthodes capables de conduire à des écarts plus étroitement

limités entre les résultats du calcul et ceux des observations. ;i

Dans le champ des applications astronomiques, comme dans :

d'autres champs de la pratique, les mathématiques et la
technique des instruments de précision peuvent s'appeler des

sciences de Yà peu près, sans aucune intention péjorative, en ce
1

sens qu'un de leurs buts constants est l'épuisement graduel de

l'a peu près, l'obtention d'approximations de plus en plus
étroites — sans d'ailleurs qu'on puisse espérer jamais la réduc- ;

tion de l'a peu près à zéro. H

C'est là, je crois, le sens de la seconde partie du paradoxe j

de Russell; la vérité physique des résultats ne coïncide jamais £

avec la vérité logique des calculs qui ont conduit à les prévoir. -ri

Dans le champ des applications, le rôle des mathématiques est h

celui d'un instrument de prévision de l'avenir d'un objet céleste |



RÉALITÉS ET S YMBOLISMES 209

ou terrestre; elles sont un outillage de prophète, mais d'un
prophète qui ne prétend pas à une coïncidence absolue entre ses

prophéties et ses réalisations.

IX

Le paradoxe de Russell n'a pas arrêté les hommes de science

dont le travail a pour but l'application des mathématiques

pures à l'étude de phénomènes du monde physique ou des

sociétés humaines.
Pour rendre les mathématiques plus maniables dans pareille

étude, qui reprend quelque élément du concret, ils ont conçu et
mis en œuvre d'autres symboles, dont nous signalerons un seul

ici. Le lecteur a conservé souvenir des notions de mécanique qui
ont formé le premier chapitre de son premier cours de physique.
Il y a appris à manier le vecteur:, segment de droite orientée dans

un plan, à partir du point représentant le point d'application
d'une force, suivant la droite que la force ferait parcourir à ce

point si elle agissait seule et dans le sens où elle entraînerait ce

point; la longueur donnée au vecteur étant proportionnelle à

l'intensité de la force à symboliser.
On voit apparaître ici la condensation en un symbole unique

d'éléments géométriques et d'éléments mécaniques mis
simultanément en cause dans l'étude des mouvements. La notion
vecteur est donc plus concrète ou moins abstraite que chacune
des notions droite et mouvement réunies dans sa définition.

La science moderne de l'électricité a recours à d'autres
concepts, unissant des concepts géométriques avec d'autres,
tirés de l'analyse des phénomènes électriques. C'est à l'invention
et à l'usage de pareils concepts composés, à l'enrichissement du
symbolisme physico-mathématique que sont dus les progrès
étonnants des conceptions modernes de la mécanique et de la
physique.

Ainsi, entre les réalités et les êtres mathématiques abstraits
s'est opéré, par l'intermédiaire d'un système de symboles, un
échange de services en deux sens: la réalité physique manipulée
est à l'origine de tous les développements des mathématiques
pures : comptage et mesurage sont les deux mamelles de celles-ci,
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pour copier une métaphore d'Olivier de Serres. En revanche, la
richesse des résultats abstraits des mathématiques alimente de

plus en plus efficacement l'étude des réalités physiques et
humaines, dans les domaines les plus variés des sciences vouées
à cette étude, et ce, en vue d'orienter l'activité humaine capable
s'agir sur ces réalités pour en faire les instruments de buts
humains.

LA GÉOMÉTRIE SENSIBLE

(3me article) 1

PAR

f Johannes Hjelmslev (Copenhague).

LA GÉOMÉTRIE DANS L'ESPACE

I. Les deux tableaux.

1. — L'enseignement préliminaire de la géométrie dans

l'espace s'effectue au moyen d'exercices pratiques. On emploie
deux tableaux, le tableau vertical et le tableau horizontal. Ils
se rencontrent le long d'une droite x. Nous nous servons de ces

tableaux pour l'orientation dans l'espace (le dièdre normal)
qu'ils limitent pour déterminer la position de points, de lignes
et de plans dans cet espace, et pour effectuer des constructions.
D'autre part on se sert, en plus des instruments habituels pour
dessiner, d'une brique normale, d'un triangle rectangle (triangle
normal), d'une planchette rectangulaire (planchette normale)
sur laquelle on peut dessiner et avec laquelle on peut dresser des

plans (et par là des figures planes) dans des positions différentes.

i Pour les deux premiers articles, voir L'Ens. math., t. 38, pp. 7-26 et pp. 294-322.
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