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SUR LA FORMULE DU DOUBLE PRODUIT VECTORIEL

PAR

Fernando Laurenti (Turin, Italie).

I
p

:!

|

Dans le fascicule de mars 1950 du Bollettino della Unione £

Matematica Italiana, M. le professeur Boggio a complété la m

démonstration donnée par Burali-Forti de la formule qui
donne le développement d'un double produit vectoriel. Ici je j|

'£

P

vais donner une autre démonstration, plus simple, qui réduit la |
formule à démontrer, à celle analogue, relative à des vecteurs i
coplanaires; dans ce cas la démonstration est immédiate. 1

La formule dont il s'agit est la suivante: |

(a A b) A c (a x c) b — (b x c) a (1) |

où a, b, c sont des vecteurs arbitraires.
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Comme la formule est homogène par rapport aux vecteurs
a, b, c, il est clair qu'il est suffisant de la démontrer dans le cas
où ces vecteurs sont unitaires (verseurs).

Cela posé, démontrons d'abord la relation (1) lorsque les

vecteurs a, b, c sont coplanaires et, en outre, le vecteur b est

perpendiculaire au vecteur a (a x b 0); si l'on suppose que
le vecteur b dérive du vecteur a par une rotation d'un angle
droit dans le sens antihoraire, on voit immédiatement que
(a A b) A c représente le vecteur c' qui se déduit du vecteur c

par une rotation d'un angle droit dans le sens antihoraire; il
est alors évident que:

c (a x c) a -f (b x c) b

par conséquent

C — (b x c) a -f (a x c) b ;

mais, ainsi que nous l'avons remarqué,

c' (a a b) A e

par suite il en résulte la formule (1).
Supposons maintenant que le vecteur b ne soit plus

perpendiculaire au vecteur a; on pourra poser

b b7 -f ma (2)

où b' est un vecteur perpendiculaire au vecteur a et m est un
nombre réel. On aura alors:

(a A b') A c (a x c) b' — (b'xc)a;
mais b' b — ma, par conséquent:

(a A b) a c (a x c) b — (b x c) a —• (a x c) ma -f (ma x c) a

et comme les deux derniers termes s'annulent, il en résulte la
formule (1), qui est donc établie pour trois vecteurs coplanaires.

Supposons enfin que le vecteur c ne soit pas coplanaire avec
le vecteur a et b; nous pourrons supposer

c c' + na, A b
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où le vecteur c' est coplanaire avec les vecteurs a, b et n est un
nombre réel. D'après ce que nous venons d'établir, on a:

(a A b) A c' ~ (a xc')b — (b x c') a (3)

et puisque

c' c — «a Ab

on conclut:

(a A b) A c' (a A b) A c

a x c' a x c b x c' b x e

et la relation (3) devient alors identique à la formule (1), qui
se trouve donc établie dans toute sa généralité.

RÉALITÉS ET SYMBOLISMES EN MATHÉMATIQUES

PAR

Henri Lorent (Bruxelles).

Sciences essentiellement abstraites, les mathématiques ont
leurs racines dans les réalités sensibles; par leurs applications,
elles préparent des actions sur d'autres réalités sensibles.

Quelle est la liaison entre les origines sensibles et les divers
niveaux d'abstraction entre lesquels s'étagent les branches et
les méthodes des mathématiques

Nous essayons ici de répondre à cette question, en supposant
la mémoire des lecteurs en possession de quelque résidu de leurs
études mathématiques élémentaires.

Dans notre langage figurera le mot ensemble pris au sens

qu'il a en mathématiques depuis un gros demi-siècle. Ce mot
désignera des suites d'êtres mathématiques se succédant indé-
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