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SUR LA FORMULE DU DOUBLE PRODUIT VECTORIEL
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PAR
Fernando LAurenTI (Turin, Italie). :
i
Dans le fascicule de mars 1950 du Bollettino della Unione
Matematica Italiana, M. le professeur BoGgGio a complété la :
démonstration donnée par Burari-Forti de la formule qui !
donne le développement d’un double produit vectoriel. Ici je |
:
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vais donner une autre démonstration, plus simple, qui réduit la
formule & démontrer, & celle analogue, relative a des vecteurs
coplanaires; dans ce cas la démonstration est immeédiate.

La formule dont il s’agit est la suivante:

@Ab) Ae=(axeb—(bxea, (1)

ou a, b, ¢ sont des vecteurs arbitraires.
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Comme la formule est homogeéne par rapport aux vecteurs
a, b, ¢, il est clair qu’il est suffisant de la démontrer dans le cas
oll ces vecteurs sont unitaires (verseurs).

Cela posé, démontrons d’abord la relation (1) lorsque les
vecteurs a, b, ¢ sont coplanaires et, en outre, le vecteur b est
perpendiculaire au vecteur a (a X b = 0); si ’on suppose que
le vecteur b dérive du vecteur a par une rotation d’un angle
droit dans le sens antihoraire, on voit immédiatement que
(a A b) A ¢ représente le vecteur ¢’ qui se déduit du vecteur e
par une rotation d’un angle droit dans le sens antihoraire; il
est alors évident que:

c=(axeat+(bxeb,
par conséquent
¢=—((bxea+t+(axeb;
mais, ainsi que nous l’avons remarqué,
¢ =(aAb)Aec,

par suite il en résulte la formule (1).
Supposons maintenant que le vecteur b ne smt plus perpen-
diculaire au vecteur a; on pourra poser

b="b + ma, (2)

ou b’ est un vecteur perpendiculaire au vecteur a ‘et m est un
nombre réel. On aura alors:

(@aAb)Ae=(axeb —(bxea:

mais b’ = b — ma, par conséquent:

@Ab)Ae=(axeb—(bxea—(axcma-+ (maxe)a,

et comme les deux derniers termes s’annulent, il en résulte la

formule (1), qui est donc établie pour trois vecteurs coplanaires.
Supposons enfin que le vecteur e ne soit pas coplanaire avec

le vecteur a et b; nous pourrons supposer |

c:c’—l—ﬁa/\b,
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ou le vecteur ¢’ est coplanaire avec les vecteurs a, b et n est un
nombre réel. D’apres ce que nous venons d’établir, on a:
@Ab) AN =(axe)b—(bxe)a, (3)
et puisque
¢ =c—naAb,
on conclut:

(@aAb) Aee=(aAb)Ae,

axe =axe, bxe=bxe,

et la relation (3) devient alors identique a la formule (1), qui
se trouve donc établie dans toute sa généralité.

REALITES ET SYMBOLISMES EN MATHEMATIQUES

PAR

Henri Lorent (Bruxelles).

Sciences essentiellement abstraites, les mathématiques ont
leurs racines dans les réalités sensibles; par leurs applications,
elles préparent des actions sur d’autres réalités sensibles.

Quelle est la liaison entre les origines sensibles et les divers
niveaux d’abstraction entre lesquels s’étagent les branches et
les méthodes des mathématiques ?

Nous essayons ici de répondre a cette question, en supposant
la mémoire des lecteurs en possession de quelque résidu de leurs
études mathématiques élémentaires.

Dans notre langage figurera le mot ensemble pris au sens
qu’il a en mathématiques depuis un gros demi-siécle. Ce mot
désignera des suites d’étres mathématiques se succédant indé-
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