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QUELQUES TENDANCES RECENTES
DE LA GEOMETRIE ALGEBRIQUE

PAR

Pierre SaMUEL (Clermont-Ferrand).

Nous n’entendons pas brosser ici un tableau complet des
récents progrés de la Géométrie algébrique. Nous laisserons, par
exemple, de cOté I’abondante production récente de I’Ecole
italienne et de ses disciples. Nous nous proposons surtout de
parler des points sur lesquels la Géométrie algébrique moderne
se distingue de 1’édifice, maintenant classique, édifié par les
géometres italiens. Parmi ces points, trois surtout retiendront
notre attention:

D’abord la Géomeétrie algébrique moderne ne se borne plus
a opérer sur le corps des nombres complexes, mais admet des
« domaines universels » [38] algébriquement clos quelconques,
ou plus exactement de caractéristique quelconque. Ceci ne peut
se faire qu’au prix du sacrifice des méthodes propres aux nombres
complexes (fonctions théta et homologie, par exemple), et au
-prix d’une étude préalable des phénoménes nouveaux (I'insé-
parabilité, par exemple) que présentent les corps de caractéris-
tique p #= 0.

Ce besoin de généralité suffirait a lui seul & justifier le second
point que nous avons en vue, ¢’est-a-dire l'utilisation par la
Géométrie algébrique de toutes les ressources de I’Algébre
abstraite. Mais il y a de ce fait une raison plus essentielle, et
nous ne pourrons mieux faire que de citer les paroles prononcées
par P. Dubreil au Colloque de Géométrie algébrique de Liége en
1949: « Depuis Descartes, ’application des méthodes de 1’ Algébre
a la Géométrie est dans la meilleure tradition mathématique. Il
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était done fatal, indépendamment de toute question de rigueur,
qu'en pleine période de prospérité, les algébristes se tournent
vers ce magnifique champ d’applications qu’est pour eux la
Géomeétrie. » ' A

Enfin la Géométrie algébrique complexe n’est pas restee
inactive. Son développement récent a été marqué par I'utilisa-
tion de la Topologie, de la théorie des variétés kahleriennes, et

‘de celle des formes harmoniques.

A propos de ces deux derniers points, nous ne voulons pas
dire que l'utilisation par la Géométrie algébrique des ressources
d’autres disciplines, Algébre ou Topologie, par exemple, soit
chose nouvelle. L’utilisation de 1’Algebre remonte a Descartes,
et, plus prés de nous, & Kronecker, Dedekind et Hilbert; celle
des méthodes transcendantes & Riemann, Poincaré et Picard.
Nous ne voulons pas dire non plus que la Géométrie algébrique
est uniquement dans une position de débitrice vis-a-vis de I’Al-
gébre et de la Topologie: elle est aussi, et depuis longtemps, leur
créanciére, car elle leur a fourni de nombreux problémes &
résoudre, et de nombreux exemples a étudier. Notons & ce
propos que si, au début de ce siécle, la Théorie des Nombres était
I'inspiratrice principale de I’Algebre (la Géométrie algébrique
venant au second rang, avec la Théorie des Invariants et la
Théorie des Groupes), il semble en ce moment que la Géométrie
algébrique est en train de la détroner de ce role. Par contre, la

Topologie, qui a pris naissance avec Riemann et Poincaré a

propos de problemes de Géométrie algébrique, parait avoir
maintenant les théories des Groupes de Lie et des espaces fibrés
pour principales inspiratrices. Nous parlerons surtout des ten-
dances algébriques de la Géométrie algébrique contemporaine.

La premiere tache de I’Algébre abstraite était de fournir a
la Géométrie algébrique, non seulement un langage aux termes

- définis sans ambiguité, mais aussi des théorémes généraux

d’utilisation commode et des symbolismes maniables. De ceci

nous sommes redevables aux travaux d’E. Noether et Van

der Waerden, et, plus récemment, d’O. Zariski et d’A. Weil.
Le langage le plus souvent utilisé en ce moment est celui mis
au point dans les «Foundations of Algebraic Geometry »
d’A. Weil [38], ou sont définies les notions de variété, d’en-
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semble algébrique, de cycle, de correspondance birationnelle, et
ou sont démontrées les formules fondamentales de la théorie
des intersections. Par exemple, c¢’est le langage des « Founda-
tions » qui est employé par Matsusaka [23] dans sa généralisation
aux corps de caractéristique p 7% 0 de la démonstration donnée
par Zariski [45] de I'important théoréme de Bertini sur les sys-
temes linéaires.

Le langage des « Foundations » a re¢u récemment quelques
perfectionnements grace & la résolution, par des éléves surtout
Japonais et francais d’A. Weil, de quelques problémes posés par
lui ([38], chap. IX). Au moyen de la «forme associée» de
Van der Waerden et Chow [5], [34] ou par le procédé voisin des
« projections génériques », Chow, Matsusaka [24] et Samuel [29]
ont défini les spécialisations de cycles de dimension arbitraire,
et démontré leurs principales propriétés, donnant ainsi plus de
maniabilité a la notion de systeme algébrique de cycles; cette
théorie a été étendue aux variétés dites «abstraites» par
Van der Waerden [36]. Les propriétés des différentielles de
premiere espece ont été étudiées par Koizumi [21] et Kawa-
hara [20]. Et la théorie des multiplicités d’intersection a été
étendue par Samuel [29] aux composantes excédentaires (¢’est-
a-dire de trop grande dimension, par exemple les points com-
muns a deux courbes gauches) et a certaines de celles qui sont
singuliéres sur la variété ambiante considérée (par exemple
deux génératrices d’un cone du second ordre).

D’autres travaux, de Weil lui-méme et de ses éléves, ont
montré que le langage ainsi créé s’appliquait de fagon assez
directe a la résolution de problémes concrets. Mentionnons
d’abord les ouvrages d’A. Weil lui-méme: dans celui sur les
courbes algébriques [39], 1l y a d’abord I'exposé, par des méthodes
géométriques, du théoreme de Riemann-Roch, de la théorie des
différentielles, et de celle des correspondances sur une courbe;
celle-ci est ensuite appliquée au cas d’une courbe sur un corps
fini, ce qui permet de donner, pour une telle courbe, la démons-
tration de I’hypothése de Riemann et de la conjecture d’Artin;
une étude plus approfondie des correspondances sur une courbe,
ou sont transposés au cas d’un corps quelconque les résultats qui
dépendent de l'existence de la jacobienne, est donnée dans le
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livre sur les variétés abéliennes [40], ou l'on trouve aussi une
étude générale de celles-ci. Ces résultats relatifs aux courbes,
jacobiennes et variétés abéliennes ont pu étre utilisés dans
I'étude des équivalences entre diviseurs d’une variété; rappelons
qu'on appelle diviseur sur une variété V de dimension n toute
combinaison linéaire formelle & coefficients entiers de sous-
variétés de dimension n — 1 de V; les diviseurs sur V forment
un groupe abélien G; les diviseurs de fonctions, qu’on appelle
aussi linéairement équivalents & zéro, en forment un sous-
groupe G, ; enfin les diviseurs qui sont différences de deux
diviseurs d’un méme systéme algébrique, et qu'on appelle algé-
briquement équivalents a zéro, forment un sous-groupe G, de
G contenant G,. Les fondements de la théorie des équivalences
ont été posés par Weil lui-méme, qui a généralisé au cas général
d’une variété et d’un corps quelconques les criteres d’équiva-
lence de Severi relatifs aux courbes d’une surface [43]. D’autre
part, Néron a démontré [27] que le groupe G/G, a un nombre
fini de générateurs, généralisant ainsi le théoreme de la base finie
de Severi; la méthode employée s’inspire de la méthode de des-
cente infinie employée par Weil dans I’étude des points rationnels
sur une variété abélienne. Quant au groupe G,/G, il est en
correspondance « birationnelle » avec une variété abélienne,
appelée la variété de Picard de V; c’est ce qui résulte de travaux
récents de Welil, et de Néron et Samuel [28]; ces travaux pro-
cédent par voie algébrique et sur un corps de base quelconque.
Sur le corps des nombres complexes, Igusa [17] est arrivé aux
mémes résultats en utilisant ’homologie et la théorie des formes
harmoniques; 1l a donné aussi les équivalents algébriques des
équivalences homologiques (a coefficients entiers et rationnels)
entre diviseurs d’une variété; enfin il a démontré Pexistence
d’une autre variété abélienne attachée a une variété algébrique,
la variété d’Albanese, et montré qu’elle admet une sorte de
dualité avec la variété de Picard (cf. [41]). Dans un autre ordre
d’idées, Rosenlicht a étudié, sur les courbes, des relations
d’équivalence plus strictes que I’équivalence linéaire.

Ces travaux de Rosenlicht nous aménent & parler du role
des espaces fibrés en Géométrie algébrique; en effet, les variétés
étudiées par lui sont des variétés de groupe, admettant la jaco-
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bienne pour groupe quotient, les classes d’équivalence étant
certains sous-groupes de groupes linéaires; ces variétés ont
d’ailleurs des liens étroits avec les fonctions quasi-abéliennes
étudies par Severi et Conforto. La méthode des variétés abstraites
de Weil, obtenues par «recollement » de morceaux de variétés
affines ([38], chap. VII), lui permet de définir, sur un corps de
base quelconque, des variétés algébriques qui sont des espaces
fibrés au sens strict, c’est-a-dire avec des fibres toutes biration-
nellement et birégulierement équivalentes, et avec un groupe

~structural opérant sur ces fibres [10]. Lorsqu’on prend pour

fibre la droite projective opérée par le groupe multiplicatif des
éléments non nuls du corps' de base, les espaces fibrés obtenus
sont caractérisés par leur base-et par un unique invariant qui est
une classe d’équivalence linéaire de diviseurs de la base [10].
Weil a aussi démontré des résultats analogues pour d’autres
fibres et groupes structuraux de nature simple ([10], et confé-
rences faites en 1949 & I’Ecole normale supérieure).

Mais on rencontre aussi des variétés fibrées a un sens plus
large: il n’y a. plus ici de groupe structural opérant sur les
fibres — celles-ci ne sont plus birationnellement équivalentes
entre elles —, certaines méme peuvent étre décomposées ou de
dimension plus grande que celle de la fibre générique (on cherche
d’ailleurs & éviter que cette circonstance ne se produise). Ce sont
des variétés de ce genre que I'on rencontre lorsqu’on applique
la méthode de Picard (dont le cas typique consiste a étudier les
sections d’une surface par les plans d’un faisceau linéaire; ceci
ne donne a vrai dire pas tout & fait une fibration, puisque les
diverses fibres ont des points communs, mais on se raméne aisé-
ment au cas d’une variété fibrée au moyen d’une transformation
birationnelle simple). C’est cette méthode de Picard qui est
employée par Néron et Samuel dans leurs travaux sur le groupe
de Severi [27] et la variété de Picard [28]. Une importante pro-
priété de ces variétés fibrées au sens large, et qui permet de
les appeler des variétés fibrées, est que, au voisinage d’un point
d’une fibre ordinaire, ce sont des produits de la base et de la
fibre; ce résultat est dit a Chow [7]; le sens dans lequel le mot,
¢ produit » doit étre entendu sera précisé plus loin, & propos
de I'étude locale des variétés, a laquelle appartient ce résultat.
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Dans la plus grande partie des résultats qui viennent d’étre
mentionnés, on remarquera le rdéle prépondérant que jouent
les diviseurs. C’est 1a une des faiblesses de la Géométrie algé-
brique (classique comme moderne) qui jusqu’ici n’a pu édifier
de théorie compléte que dans les cas dits « de dimension 1 » (celui
des diviseurs est le cas typique de dimension 1, car c’est la
différence de dimensions qui joue le rdle déterminant). La
méthode la plus féconde, en dimension 1, est celle des valuations
(ou toute autre méthode essentiellement équivalente, comme la
« Quasi-Gleichheit » ou la méthode géométrique de Weil [38,
chap. VIII]. Une autre aide importante, dans I’étude des divi-
seurs, est le procédé de normalisation di & Zariski [44]. On dit
qu’une variété V est normale si, pour tout choix de coordonnées
affines, I'anneau de coordonnées de V (c’est-a-dire l’anneau
obtenu & partir de 'anneau des polynoémes en identifiant deux
polyndmes qui prennent les mémes valeurs sur V) est intégrale-
ment clos; une des principales propriétés d’une variété de
dimension n qui est normale sur un corps de base parfait est
qu’elle n’a pas de sous-variété singuliére de dimension n — 1.
Actuellement, au lieu de n’étudier que les variétés sans singula-
rités, on fait plutdt I’hypothése moins restrictive de normalité,
qui est suffisante dans bien des questions concernant les divi-
seurs; en effet, le probléme de résolution des singularités n’est
pas résolu dans le cas général, tandis qu'une variété quelconque
est en correspondance birationnelle avec une variété normale,
appelée son modele normal associé, et la théorie des anneaux
locaux (dont nous parlerons plus loin) nous donne un excellent
controdle des relations qui existent entre une variété et son modele
normal associé; ainsi il est facile de déduire les propriétés d’une
variété de celles de son modéle normal.

Notre connaissance des situations de dimension supérieure
a 1 est, avons-nous dit, bien moins compléte. Les méthodes
transcendantes, topologiques surtout, permettent d’y aborder
certains problémes globaux, mais nous ne nous étendrons pas
sur ce point. Les méthodes algébriques le permettent aussi, mais
les seuls problémes de dimension supérieure dont la théorie soit
assez développée sont les problémes locaux et semi-locaux. La

technique algébrique nécessaire dans ces problémes est beaucoup
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plus poussée que celle des « Foundations », et fait appel & toutes
les ressources de I’Algébre commutative; elle a été surtout mise
au point par Zariski et par Chevalley. D’ailleurs, comme nous
Pavons dit, la nécessité de forger ces outils a été un important
facteur de progrés pour I’Algebre, laquelle ne saurait constituer,
sans danger de stérilité, une branche autonome de la Mathéma-
tique, mais ne peut progresser que sous 'impulsion des problémes
que lui posent ses applications, arithmétiques, géométriques ou
topologiques. La branche d’Algebre qui s’est constituée sous
I'impulsion des problémes locaux de Géométrie algébrique
s’appelle I’Algebre locale. |

Le travail de base de la Géométrie algébrique locale a été la
caractérisation et 1’'étude des points simples [51], et le dévelop-
pement d’une théorie locale des multiplicités d’intersection
comprenant la théorie analogue pour les variétés algébroides [3];
le lien entre les théories des intersections de Weil et de Chevalley
a été établi par Igusa [16] et Samuel [29]. Puis est venue I’étude
locale de la normalisation (c’est-a-dire ’étude de la cloture inté-
grale d’un anneau local) et des variétés normales: leur principale
propriété, démontrée par Zariski [53, b4], est d’étre analytique-
ment 1rréductibles et analytiquement normales, c’est-a-dire
que, au voisinage d’un point, une variété algébrique normale ne
peut se décomposer en plusieurs nappes analytiques, et que
I'unique nappe analytique obtenue est normale en tant que
variété analytique; en termes algébriques ceci veut dire que, si
I'anneau local d’un point est intégralement clos, son complété
est un anneau sans diviseurs de zéro et intégralement clos. A
cette étude des anneaux locaux se rattache le résultat de Chow
sur certaines variétés fibrées [7]: s1 une variété V est recouverte
par un systeme algébrique S de cycles C (M) tels que par un
point générique de V passe un cycle et un seul du systéme, alors
(sous certaines conditions, en général vérifiées), V est localement,
en tant que variété analytique, produit de S et de C (M); en
termes algébriques, ’anneau local complété d’un point de V est
isomorphe au produit tensoriel de ceux de S'et de C (M).

Une technique algébrique encore. plus poussée devient néces-
saire pour étudier toutes les valuations du corps des fonctions
algébriques sur V, et non plus seulement celles correspondant
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aux sous-variétés de dimension n— 1. C’est cette étude qui a
conduit Zariski & ses démonstrations du théoreme d’uniformisa-
tion locale [48], de la réduction des singularités des Variétés a
deux et trois dimensions [46, 47], et & son étude des correspon-
dances birationnelles en leurs éléments irréguliers et fondamen-
taux [50]. Une autre technique encore, celle des anneaux semi-
locaux et M-adiques [52] est nécessaire dans I’étude des pro-
blemes «semi-locaux », c’est-a-dire ceux ot l'on étudie une
variété V au voisinage de tous les points d’une sous-variété W
grice a cette technique, Zariski a pu définir, dans le cas abstrait, -
les fonctions holomorphes sur V le long de W [55]; et au moyen
d’un théoréme d’invariance birationnelle de ces fonctions, il a
démontré, dans le cas d’un corps de base quelconque, le principe
de dégénérescence. Ce résultat est le suivant: si on a un systeme
algébrique irréductible de cycles dont 1’élément générique est
irréductible, alors tous les cycles du systéme sont connexes
(c’est-a-dire ne sont pas sommes de deux cycles sans point
commun); ainsi, lorsqu’une cubique gauche vient se décomposer
en une conique et une droite, ces deux courbes ont un point
commun. Dans le cas de variétés sur le corps des nombres
complexes, la notion de connexion définie ci-dessus coincide
avec la notion topologique, et le principe de dégénérescence
devient un facile exercice de Topologie. Il serait donc tentant
d’essayer de déduire de ce cas celui d’un corps de base de caracté-
ristique p % 0 au moyen d’une technique convenable de «ré-
duction modulo p»; mais les essais faits dans cette voie ne
semblent pas avoir abouti.

En résumé, la Géométrie algébrique moderne semble avoir &
sa disposition les moyens de traiter les problémes globaux de
dimension 1 (par voie algébrique), les problémes locaux de
dimension . quelconque (par voie algébrique aussi), et aussi
certains moyens d’action (algébriques et transcendants) sur les
problémes globaux de dimension supérieure. Un grand progrés
serait la mise au point d’une technique de réduction modulo p;
celle-ci permettrait d’abord de généraliser & une caractéristique
_quelconque les résultats démontrés par voie transcendante sur
le corps des nombres complexes; et elle permettrait aussi de
surmonter des difficultés purement algébriques qui se présentent
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en caractéristique p; par exemple, dans notre travail récent sur
la variété de Picard, Néron et moi nous nous sommes heurtés a
des questions d’inséparabilité qui nous ont causé de grands efforts;
un exemple plus probant, vu son ancienneté (toute relative !)
et la qualité du mathématicien, est le fait que Zariski n’a pu
démontrer (algébriquement d’ailleurs) ses théorémes de locale
uniformisation et de réduction des singularités des variétés de
dimension trois [47, 48] que dans des cas d’un corps de base de
caractéristique nulle. Il semble donc que, malgré tous les progres
faits dans I'étude des questions d’inséparabilité (en particulier
les résultats de Weil sur 'ordre d’inséparabilité [38, chap. I] et
ses rapports avec les multiplicités d’intersection et la notion de
cycle rationnel sur un corps[38, chap. VI et VII]), notre technique
algébrique n’est pas encore suffisante pour traiter des problemes
de caractéristique arbitraire sans avoir & s’occuper de celle-ci.
Il y a la un probléme a résoudre; nous pensons que sa solution
viendra moins d’une étude a priori des phénomenes d’insépara-
bilité, que d’approximations successives analysant les besoins
de la Géomeétrie algébrique. Mais les problémes de la Géométrie
algébrique ne concernent pas seulement les cas de dimension
supérieure et l'inséparabilité. Il reste de nombreux problemes
ouverts, méme en dimension 1, méme dans le cas des courbes,
par exemple I’établissement par voie géométrique de la théorie
du corps de classes; pour plus de détails sur ces problemes nous
ne pouvons mieux faire que renvoyer le lecteur & des articles
d’A. Weil [37, 42].

Pour conclure nous caractériserons quelques tendances
algébriques actuelles de la Géométrie algébrique. On peut,
semble-t-il, v distinguer deux stades, élémentaire et supérieur.
Le stade élémentaire comprend les questions relatives aux inter-
sections, aux systémes algébriques de cycles, bref tous les outils
d’application universelle. Quant au stade supérieur, i1l comprend
tout le reste, c’est-a-dire principalement (aujourd’hui!) les
théories des équivalences et les résultats du type Riemann-
Roch. Il semble qu’il y ait une convention tacite de ne pas
employer les résultats du stade supérieur pour démontrer ceux
du stade élémentaire (contrairement a ce qui se passait chez les
Italiens). Mais I’épithete « élémentaire » ne doit pas leurrer:
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Iemploi, dans la démonstration d’un résultat élémentaire, de
toutes les ressources de ’Algébre (ou de la Topologie) est chose
fréquente.

Un autre trait, avons-nous dit, est d’éviter de se restreindre
aux variétés non singuliéres, et de faire plutdt I'hypotheése de
normalité. On peut, en effet, se demander maintenant si le pro-
bléme de résolution des singularités appartient bien & la théorie
élémentaire, méme algébrisée autant qu’il le faudra. Et 1l reste
le vague espoir de pouvoir I'aborder au moyen d’un détour par
la théorie supérieure (développée pour les variétés normales).

Enfin, tandis que les objectifs de la théorie élémentaire seront
déterminés par les besoins de la théorie supérieure, le choix des
~objectifs dans cette derniére sera surtout guidé par les travaux
de I’Ecole italienne: les premiers efforts semblent porter surtout
sur les résultats que les Italiens ont montré étre importants.
Lorsque ceux-ci étaient ’aboutissement de toute une théorie
(par exemple ceux relatifs aux équivalences), grande est la
tentation de les emporter maintenant par un assaut direct,
analogue au «metodo rapido » des Italiens pour la théorie des
courbes; en somme l'idéal serait une sorte d’attaque «aéro-
portée » des points les plus importants du territoire & conquérir;
les résultats environnants pourraient alors étre peut-étre atta-
qués avec facilité.
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