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QUELQUES TENDANCES RÉCENTES

DE LA GÉOMÉTRIE ALGÉRRIQUE

PAR

Pierre Samuel (Clermont-Ferrand).

Nous n'entendons pas brosser ici un tableau complet des

récents progrès de la Géométrie algébrique. Nous laisserons, par
exemple, de côté l'abondante production récente de l'Ecole
italienne et de ses disciples. Nous nous proposons surtout de

parler des points sur lesquels la Géométrie algébrique moderne
se distingue de l'édifice, maintenant classique, édifié par les

géomètres italiens. Parmi ces points, trois surtout retiendront
notre attention:

D'abord la Géométrie algébrique moderne ne se borne plus
à opérer sur le corps des nombres complexes, mais admet des

« domaines universels » [38] algébriquement clos quelconques,
ou plus exactement de caractéristique quelconque. Ceci ne peut
se faire qu'au prix du sacrifice des méthodes propres aux nombres
complexes (fonctions thêta et homologie, par exemple), et au
prix d'une étude préalable des phénomènes nouveaux (l'insé-
parabilité, par exemple) que présentent les corps de caractéristique

p ^ 0.

Ce besoin de généralité suffirait à lui seul à justifier le second

point que nous avons en vue, c'est-à-dire l'utilisation par la
Géométrie algébrique de toutes les ressources de l'Algèbre
abstraite. Mais il y a de ce fait une raison plus essentielle, et
nous ne pourrons mieux faire que de citer les paroles prononcées

par P. Dubreil au Colloque de Géométrie algébrique de Liège en
1949: « Depuis Descartes, l'application des méthodes de l'Algèbre
à la Géométrie est dans la meilleure tradition mathématique. Il
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était donc fatal, indépendamment de toute question de rigueur,
qu'en pleine période de prospérité, les algébristes se tournent
vers ce magnifique champ d'applications qu'est pour eux la

Géométrie. »

Enfin la Géométrie algébrique complexe n'est pas restée

inactive. Son développement récent a été marqué par l'utilisation

de la Topologie, de la théorie des variétés kähleriennes, et
de celle des formes harmoniques.

A propos de ces deux derniers points, nous ne voulons pas
dire que l'utilisation par la Géométrie algébrique des ressources
d'autres disciplines, Algèbre ou Topologie, par exemple, soit
chose nouvelle. L'utilisation de l'Algèbre remonte à Descartes,

et, plus près de nous, à Kronecker, Dedekind et Hilbert; celle

des méthodes transcendantes à Riemann, Poincaré et Picard.
Nous ne voulons pas dire non plus que la Géométrie algébrique
est uniquement dans une position de débitrice vis-à-vis de

l'Algèbre et de la Topologie: elle est aussi, et depuis longtemps, leur
créancière, car elle leur a fourni de nombreux problèmes à

résoudre, et de nombreux exemples à étudier. Notons à ce

propos que si, au début de ce siècle, la Théorie des Nombres était
l'inspiratrice principale de l'Algèbre (la Géométrie algébrique
venant au second rang, avec la Théorie des Invariants et la
Théorie des Groupes), il semble en ce moment que la Géométrie
algébrique est en train de la détrôner de ce rôle. Par contre, la
Topologie, qui a pris naissance avec Riemann et Poincaré à

propos de problèmes de Géométrie algébrique, paraît avoir
maintenant les théories des Groupes de Lie et des espaces fibrés

pour principales inspiratrices. Nous parlerons surtout des
tendances algébriques de la Géométrie algébrique contemporaine.

La première tâche de l'Algèbre abstraite était de fournir à

la Géométrie algébrique, non seulement un langage aux termes
définis sans ambiguïté, mais aussi des théorèmes généraux
d'utilisation commode et des symbolismes maniables. De ceci
nous sommes redevables aux travaux d'E. Noether et Van
der Waerden, et, plus récemment, d'O. Zariski et d'A. Weil.
Le langage le plus souvent utilisé en ce moment est celui mis
au point dans les « Foundations of Algebraic Geometry »

d'A. Weil [38], où sont définies les notions de variété, d'en-
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182 P. SAMUEL

semble algébrique, de cycle, de correspondance birationnelle, et
où sont démontrées les formules fondamentales de la théorie
des intersections. Par exemple, c'est le langage des « Foundations

» qui est employé par Matsusaka [23] dans sa généralisation jj

aux corps de caractéristique p ^ 0 de la démonstration donnée jj

par Zariski [45] de l'important théorème de Bertini sur les sys- n

tèmes linéaires. jj

Le langage des « Foundations » a reçu récemment quelques jl

perfectionnements grâce à la résolution, par des élèves surtout |j

japonais et français d'A. Weil, de quelques problèmes posés par
lui ([38], chap. IX). Au moyen de la « forme associée » de j;

Van der Waerden et Chow[5], [34] ou par le procédé voisin des

« projections génériques », Chow, Matsusaka [24] et Samuel [29] ;

ont défini les spécialisations de cycles de dimension arbitraire, jj

et démontré leurs principales propriétés, donnant ainsi plus de h

maniabilité à la notion de système algébrique de cycles; cette '!

théorie a été étendue aux variétés dites « abstraites » par j

Van der Waerden [36]. Les propriétés des différentielles de jj

première espèce ont été étudiées par Koizumi [21] et Kawa- :i

hara [20]. Et la théorie des multiplicités d'intersection a été jj

étendue par Samuel [29] aux composantes excédentaires (c'est- jj

à-dire de trop grande dimension, par exemple les points com- ji

muns à deux courbes gauches) et à certaines de celles qui sont ;j

singulières sur la variété ambiante considérée (par exemple
deux génératrices d'un cône du second ordre).

D'autres travaux, de Weil lui-même et de ses élèves, ont :

montré que le langage ainsi créé s'appliquait de façon assez '

directe à la résolution de problèmes concrets. Mentionnons f

d'abord les ouvrages d'A. Weil lui-même: dans celui sur les h

courbes algébriques [39], il y a d'abord l'exposé, par des méthodes ;

géométriques, du théorème de Riemann-Roch, de la théorie des n

différentielles, et de celle des correspondances sur une courbe;
celle-ci est ensuite appliquée au cas d'une courbe sur un corps [;

fini, ce qui permet de donner, pour une telle courbe, la démons- |
tration de l'hypothèse de Riemann et de la conjecture d'Artin; |
une étude plus approfondie des correspondances sur une courbe, |
où sont transposés au cas d'un corps quelconque les résultats qui |
dépendent de l'existence de la jacobienne, est donnée dans le |
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livre sur les variétés abéliennes [40], où Ton trouve aussi une

étude générale de celles-ci. Ces résultats relatifs aux courbes,

jacobiennes et variétés abéliennes ont pu être utilisés dans

l'étude des équivalences entre diviseurs d'une variété; rappelons

qu'on appelle diviseur sur une variété V de dimension n toute
combinaison linéaire formelle à coefficients entiers de sous-

variétés de dimension n — 1 de Y; les diviseurs sur Y forment
un groupe abélien G; les diviseurs de fonctions, qu'on appelle
aussi linéairement équivalents à zéro, en forment un sous-

groupe G ; enfin les diviseurs qui sont différences de deux
diviseurs d'un même système algébrique, et qu'on appelle
algébriquement équivalents à zéro, forment un sous-groupe Ga de

G contenant Gr Les fondements de la théorie des équivalences
ont été posés par Weil lui-même, qui a généralisé au cas général
d'une variété et d'un corps quelconques les critères d'équivalence

de Severi relatifs aux courbes d'une surface [43]. D'autre
part, Néron a démontré [27] que le groupe G/Ga a un nombre
fini de générateurs, généralisant ainsi le théorème de la base finie
de Severi; la méthode employée s'inspire de la méthode de

descente infinie employée par Weil dans l'étude des points rationnels
sur une variété abélienne. Quant au groupe Ga/Gx il est en

correspondance « birationnelle » avec une variété abélienne,
appelée la variété de Picard de V ; c'est ce qui résulte de travaux
récents de Weil, et de Néron et Samuel [28]; ces travaux
procèdent par voie algébrique et sur un corps de base quelconque.
Sur le corps des nombres complexes, Igusa [17] est arrivé aux
mêmes résultats en utilisant l'homologie et la théorie des formes
harmoniques; il a donné aussi les équivalents algébriques des

équivalences homologiques (à coefficients entiers et rationnels)
entre diviseurs d'une variété; enfin il a démontré l'existence
d'une autre variété abélienne attachée à une variété algébrique,
la variété d'Albanese, et montré qu'elle admet une sorte de
dualité avec la'variété de Picard (cf. [41]). Dans un autre ordre
d'idées, Rosenlicht a étudié, sur les courbes, des relations
d'équivalence plus strictes que l'équivalence linéaire.

Ces travaux de Rosenlicht nous amènent à parler du rôle
des espaces fibrés en Géométrie algébrique; en effet, les variétés
étudiées par lui sont des variétés de groupe, admettant la jaco-
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bienne pour groupe quotient, les classes d'équivalence étant
certains sous-groupes de groupes linéaires; ces variétés ont
d'ailleurs des liens étroits avec les fonctions quasi-abéliennes
étudies par Severi et Conforto. La méthode des variétés abstraites
de Weil, obtenues par « recollement » de morceaux de variétés
affines ([38], chap. VII), lui permet de définir, sur un corps de

base quelconque, des variétés algébriques qui sont des espaces
fîbrés au sens strict, c'est-à-dire avec des fibres toutes biration-
nellement et birégulièrement équivalentes, et avec un groupe
structural opérant sur ces fibres [10]. Lorsqu'on prend pour
fibre la droite projective opérée par le groupe multiplicatif des

éléments non nuls du corps de base, les espaces fîbrés obtenus
sont caractérisés par leur base et par un unique invariant qui est

une classe d'équivalence linéaire de diviseurs de la base [10].
Weil a aussi démontré des résultats analogues pour d'autres
fibres et groupes structuraux de nature simple ([10], et
conférences faites en 1949 à l'Ecole normale supérieure).

Mais on rencontre aussi des variétés fibrées à un sens plus
large: il n'y a plus ici de groupe structural opérant sur les

fibres — celles-ci ne sont plus birationnellement équivalentes
entre elles —, certaines même peuvent être décomposées ou de

dimension plus grande que celle de la fibre générique (on cherche
d'ailleurs à éviter que cette circonstance ne se produise). Ce sont
des variétés de ce genre que l'on rencontre lorsqu'on applique
la méthode de Picard (dont le cas typique consiste à étudier les

sections d'une surface par les plans d'un faisceau linéaire; ceci

ne donne à vrai dire pas tout à fait une fibration, puisque les

diverses fibres ont des points communs, mais on se ramène
aisément au cas d'une variété fibrée au moyen d'une transformation
birationnelle simple). C'est cette méthode de Picard qui est

employée par Néron et Samuel dans leurs travaux sur le groupe
de Severi [27] et la variété de Picard [28]. Une importante
propriété de ces variétés fibrées au sens large, et qui permet de

les appeler des variétés fibrées, est que, au voisinage d'un point
d'une fibre ordinaire, ce sont des produits de la base et de la

fibre; ce résultat est dû à Chow [7]; le sens dans lequel le mot
« produit » doit être entendu sera précisé plus loin, à propos
de l'étude locale des variétés, à laquelle appartient ce résultat.
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Dans là plus grande partie des résultats qui viennent d'être

mentionnés, on remarquera le rôle prépondérant que jouent
les diviseurs. C'est là une des faiblesses de la Géométrie
algébrique (classique comme moderne) qui jusqu'ici n'a pu édifier
de théorie complète que dans les cas dits « de dimension 1 » (celui
des diviseurs est le cas typique de dimension 1, car c'est la
différence de dimensions qui joue le rôle déterminant). La
méthode la plus féconde, en dimension 1, est celle des valuations
(ou toute autre méthode essentiellement équivalente, comme la
« Quasi-Gleichheit » ou la méthode géométrique de Weil [38,

chap. VIII]. Une autre aide importante, dans l'étude des

diviseurs, est le procédé de normalisation dû à Zariski [44]. On dit
qu'une variété V est normale si, pour tout choix de coordonnées

affines, l'anneau de coordonnées de V (c'est-à-dire l'anneau
obtenu à partir de l'anneau des polynômes en identifiant deux

polynômes qui prennent les mêmes valeurs sur V) est intégralement

clos; une des principales propriétés d'une variété de

dimension n qui est normale sur un corps de base parfait est

qu'elle n'a pas de sous-variété singulière de dimension n—-1.
Actuellement, au lieu de n'étudier que les variétés sans singularités,

on fait plutôt l'hypothèse moins restrictive de normalité,
qui est suffisante dans bien des questions concernant les

diviseurs; en effet, le problème de résolution des singularités n'est
pas résolu dans le cas général, tandis qu'une variété quelconque
est en correspondance birationnelle avec une variété normale,
appelée son modèle normal associé, et la théorie des anneaux
locaux (dont nous parlerons plus loin) nous donne un excellent
contrôle des relations qui existent entre une variété et son modèle
normal associé; ainsi il est facile de déduire les propriétés d'une
variété de celles de son modèle normal.

Notre connaissance des situations de dimension supérieure
à 1 est, avons-nous dit, bien moins complète. Les méthodes
transcendantes, topologiques surtout, permettent d'y aborder
certains problèmes globaux, mais nous ne nous étendrons pas
sur ce point. Les méthodes algébriques le permettent aussi, mais
les seuls problèmes de dimension supérieure dont la théorie soit
assez développée sont les problèmes locaux et semi-locaux. La
technique algébrique nécessaire dans ces problèmes est beaucoup
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plus poussée que celle des « Foundations », et fait appel à toutes
les ressources de Y Algèbre commutative; elle a été surtout mise
au point par Zariski et par Chevalley. D'ailleurs, comme nous
l'avons dit, la nécessité de forger ces outils a été un important
facteur de progrès pour l'Algèbre, laquelle ne saurait constituer,
sans danger de stérilité, une branche autonome de la Mathématique,

mais ne peut progresser que sous l'impulsion des problèmes
que lui posent ses applications, arithmétiques, géométriques ou
topologiques. La branche d'Algèbre qui s'est constituée sous
l'impulsion des problèmes locaux de Géométrie algébrique
s'appelle l'Algèbre locale.

Le travail de base de la Géométrie algébrique locale a été la
caractérisation et l'étude des points simples [51], et le développement

d'une théorie locale des multiplicités d'intersection
comprenant la théorie analogue pour les variétés algébroïdes [3] ;

le lien entre les théories des intersections de Weil et de Chevalley
a été établi par Igusa [16] et Samuel [29]. Puis est venue l'étude
locale de la normalisation (c'est-à-dire l'étude de la clôture
intégrale d'un anneau local) et des variétés normales: leur principale
propriété, démontrée par Zariski [53, 54], est d'être analytique-
ment irréductibles et analytiquement normales, c'est-à-dire

que, au voisinage d'un point, une variété algébrique normale ne

peut se décomposer en plusieurs nappes analytiques, et que
l'unique nappe analytique obtenue est normale en tant que
variété analytique; en termes algébriques ceci veut dire que, si

l'anneau local d'un point est intégralement clos, son complété
est un anneau sans diviseurs de zéro et intégralement clos. A
cette étude des anneaux locaux se rattache le résultat de Chow

sur certaines variétés fibrées [7] : si une variété V est recouverte

par un système algébrique S de cycles C (M) tels que par un
point générique de V passe un cycle et un seul du système, alors
(sous certaines conditions, en général vérifiées), Y est localement,
en tant que variété analytique, produit de S et de C(M); en

termes algébriques, l'anneau local complété d'un point de V est

isomorphe au produit tensoriel de ceux de S et de C (M).
Une technique algébrique encore plus poussée devient nécessaire

pour étudier toutes les valuations du corps des fonctions
algébriques sur V, et non plus seulement celles correspondant



GÉOMÉTRIE ALGÉBRIQUE 187

aux sous-variétés de dimension n — 1. C'est cette étude qui a

conduit Zariski à ses démonstrations du théorème d'uniformisation

locale [48], de la réduction des singularités des variétés à

deux et trois dimensions [46, 47], et à son étude des correspondances

birationnelles en leurs éléments irréguliers et fondamentaux

[50]. Une autre technique encore, celle des anneaux semi-

locaux et M-adiques [52] est nécessaire dans l'étude des

problèmes « semi-locaux », c'est-à-dire ceux où l'on étudie une
variété V au voisinage de tous les points d'une sous-variété W;
grâce à cette technique, Zariski a pu définir, dans le cas abstrait,
les fonctions holomorphes sur V le long de W [55] ; et au moyen
d'un théorème d'invariance birationnelle de ces fonctions, il a

démontré, dans le cas d'un corps de base quelconque, le principe
de dégénérescence. Ce résultat est le suivant: si on a un système
algébrique irréductible de cycles dont l'élément générique est

irréductible, alors tous les cycles du système sont connexes
(c'est-à-dire ne sont pas sommes de deux cycles sans point
commun) ; ainsi, lorsqu'une cubique gauche vient se décomposer
en une conique et une droite, ces deux courbes ont un point
commun. Dans le cas de variétés sur le corps des nombres
complexes, la notion de connexion définie ci-dessus coïncide
avec la notion topologique, et le principe de dégénérescence
devient un facile exercice de Topologie. Il serait donc tentant
d'essayer de déduire de ce cas celui d'un corps de base de caractéristique

^ 0 au moyen d'une technique convenable de «

réduction modulo p»; mais les essais faits dàns cette voie ne
semblent pas avoir abouti.

En résumé, la Géométrie algébrique moderne semble avoir à

sa disposition les moyens de traiter les problèmes globaux de
dimension 1 (par voie algébrique), les problèmes locaux de
dimension quelconque (par voie algébrique aussi), et aussi
certains moyens d'action (algébriques et transcendants) sur les
problèmes globaux de dimension supérieure. Un grand progrès
serait la mise au point d'une technique de réduction modulo p;
celle-ci permettrait d'abord de généraliser à une caractéristique
quelconque les résultats démontrés par voie transcendante sur
le corps des nombres complexes; et elle .permettrait aussi de
surmonter des difficultés purement algébriques qui se présentent
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en caractéristique p; par exemple, dans notre travail récent sur
la variété de Picard, Néron et moi nous nous sommes heurtés à i
des questions d'inséparabilité qui nous ont causé de grands efforts ; }

un exemple plus probant, vu son ancienneté (toute relative
et la qualité du mathématicien, est le fait que Zariski n'a pu ;

démontrer (algébriquement d'ailleurs) ses théorèmes de locale
uniformisation et de réduction des singularités des variétés de [

dimension trois [47, 48] que dans des cas d'un corps de base de

caractéristique nulle. Il semble donc que, malgré tous les progrès §

faits dans l'étude des questions d'inséparabilité (en particulier [j

les résultats de Weil sur l'ordre d'inséparabilité [38, chap. I] et fj

ses rapports avec les multiplicités d'intersection et la notion de fj

cycle rationnel sur un corps [38, chap. VI et VII]), notre technique ;

algébrique n'est pas encore suffisante pour traiter des problèmes
de caractéristique arbitraire sans avoir à s'occuper de celle-ci. f

Il y a là un problème à résoudre; nous pensons que sa solution J

viendra moins d'une étude a priori des phénomènes d'inséparabilité,

que d'approximations successives analysant les besoins
de la Géométrie algébrique. Mais les problèmes de la Géométrie i

algébrique ne concernent pas seulement les cas de dimension j

supérieure et l'inséparabilité. Il reste de nombreux problèmes :j

ouverts, même en dimension 1, même dans le cas des courbes, f

par exemple l'établissement par voie géométrique de la théorie
du corps de classes; pour plus de détails sur ces problèmes nous
ne pouvons mieux faire que renvoyer le lecteur à des articles j

d'A. Weil [37, 42]. j

Pour conclure nous caractériserons quelques tendances i

algébriques actuelles de la Géométrie algébrique. On peut,
semble-t-il, y distinguer deux stades, élémentaire et supérieur.
Le stade élémentaire comprend les questions relatives aux
intersections, aux systèmes algébriques de cycles, bref tous les outils
d'application universelle. Quant au stade supérieur, il comprend
tout le reste, c'est-à-dire principalement (aujourd'hui les f

théories des équivalences et les résultats du type Riemann- %

Roch. Il semble qu'il y ait une convention tacite de ne pas
employer les résultats du stade supérieur pour démontrer ceux j

du stade élémentaire (contrairement à ce qui se passait chez les $

Italiens). Mais l'épithète «élémentaire» ne doit pas leurrer: |
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Temploi, dans la démonstration d'un résultat élémentaire, de

toutes les ressources de l'Algèbre (ou de la Topologie) est chose

fréquente.
Un autre trait, avons-nous dit, est d'éviter de se restreindre

aux variétés non singulières, et de faire plutôt l'hypothèse de

normalité. On peut, en effet, se demander maintenant si le

problème de résolution des singularités appartient bien à la théorie
élémentaire, même algébrisée autant qu'il le faudra. Et il reste
le vague espoir de pouvoir l'aborder au moyen d'un détour par
la théorie supérieure (développée pour les variétés normales).

Enfin, tandis que les objectifs de la théorie élémentaire seront
déterminés par les besoins de la théorie supérieure, le choix des

objectifs dans cette dernière sera surtout guidé par les travaux
de l'Ecole italienne: les premiers efforts semblent porter surtout
sur les résultats que les Italiens ont montré être importants.
Lorsque ceux-ci étaient l'aboutissement de toute une théorie
(par exemple ceux relatifs aux équivalences), grande est la
tentation de les emporter maintenant par un assaut direct,
analogue au « metodo rapido » des Italiens pour la théorie des

courbes; en somme l'idéal serait une sorte d'attaque «aéroportée

» des points les plus importants du territoire à conquérir;
les résultats environnants pourraient alors être peut-être attaqués

avec facilité.
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