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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications.

Réunion de Bdle, 6 et 7 septembre 1941.

La Société mathématique suisse a tenu sa trentiéme assemblée
annuelle a Bale, les 6 et 7 septembre 1941, sous la présidence de
M. le professeur L. KorLros, président, en méme temps que la
121me gession annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a constitué comme suit son
Comité pour les années 1942 et 1943: MM. les professeurs P. BucHNER
(Bale), président; G. pe Ruam (Lausanne), vice-président; M. Gur
(Zurich), secrétaire-caissier.

La partie scientifigue a été consacrée aux communications ci-apres,
réparties sur trois séances.

1. — Karl Merz (Chur). Kreuzhaube erweitert nach Boy (Calotte
polyédrique d’apres Boy). — Eine einfache Kreuzhaube ! besitzt eine
Doppelstrecke SO = 5, wobei S die gemeinsame Spitze ist, von den
beiden an SO in Scheitellage anstossenden dreiseitigen Pyramiden,
und O der Schnitt der beiden Diagonalen des Quadrates, auf dem
iiber zwei Scheiteldreiecken die beiden Pyramiden errichtet sind.
Wird das unter jenem Quadrat ansetzende Prisma noch durch seine
Grundflache abgeschlossen, so ist das entstandene Polyeder als
11-Flach mit e = 10, k = 20, also ¢ = 1, eine Abbildung der projek-
tiven Ebene, wobei S und O singulére Punkte sind, als Endpunkte der

‘Doppelstrecke.

Diese Kreuzhaube soll nun so erweitert werden, dass dadurch am
Polyeder eine Selbstdurchdringung entsteht, die einen einfachen
geschlossenen Streckenzug bildet, so dass keine Endpunkte mehr an
der Durchdringung bestehen. Um dies zu erzielen, sind zu der Doppel-
strecke OS = 5 noch weitere Doppelstrecken anzufiigen, z. B.
ST = 9 und TO = 3, womit das Doppelstreckendreieck SOT entsteht.
Um dabei die neue Doppelstrecke 9 zu erhalten, hat man die in 9 als

1 K. Merz, Kreuzhaube aus verschiedenen Netzen. Vierteljahrsschrift der Natur-
orschenden Gesellschaft in Ziirich, LXXXYV, 1940 (Seite 51).
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Kante zusammenstossenden beiden Flichen A und E iiber 9 hinaus
zu erweltern und dann noch mittels zwei abschliessenden Flichen
eine neue Scheitelzelle aussen lings 9 anzufiigen. Lings 3 entsteht,
auf entsprechende Weise, eine innere Hohlzelle, die in Scheitellage ist
zu einer dussern Liicke der Kreuzhaube. Von diesem geschlossenen
Polyeder, f = 15, e = 14, k = 28, also auch mit ¢ = 1, mit dem
Dreieck SOT als Selbstdurchdringung, lisst sich ein Netz herstellen
(Vorweisung). Bei der Aufklappung dieses Netzes zum 15 Flach tritt
die Eigentiimlichkeit ein, dass die dabei entstehenden Wende-
strecken, in denen Ober- und Unterseite des Netzes aneinander-
stossen und damit die Einseitigkeit herbeifithren, zugleich in die
Doppelstrecken fallen. Das Dreieck SOT der Doppelstrecken ent-
spricht damit der unendlich fernen Geraden, welche die Wendegerade
der projektiven Ebene ist, und es entspricht daher zugleich auch der
Selbstdurchdringung dieser Ebene. Diese durch die erweiterte Kreuz-
haube erhaltene Abbildung der projektiven Ebene hat allerdings noch
die drei singulidren Punkte S, O, T, die aber von einfacherer Art sind
als die sechs singuldren Punkte am Heptaeder, in denen die drei
Doppelstrecken als Selbstdurchdringungen endigen. Ausserdem fehlt
der dreifache Punkt, wie er am Heptaeder auftritt. Doch tritt dafiir
eine Hohlzelle auf. Dieses Polyeder kann als Zugang zu einer neuen
Boy’schen Fliache dienen.

2. — M. DiernELM (Rickenbach, Schwyz). Ein kurzer Weg zur
Entwicklung der Hyperbelfunktionen. — L’auteur indique un moyen
rapide et élémentaire permettant de présenter, dans une premiere
étude, les propriétés essentielles des fonctions hyperboliques en
partant de ’hyperbole et du secteur hyperbolique. Analogies entre les
fonctions hyperboliques et les fonctions circulaires.

3. — Julien MALENGREAU (Montreux). Euclide ou Pythagore ?
(Dussertation sur le continu et le discontinu.) — Pythagore considérait
la droite comme une somme de points. Cette conception a été aban-
donnée depuis la découverte des irrationnelles. Les données qui
servent de base & la géométrie d’Euclide présupposent que les figures
appartiennent & un espace continu, aussi la géométrie classique
fondée sur la méthode euclidienne ne fait-elle aucune allusion &
Pespace discontinu. L’auteur se propose de montrer qu’il s’agit 1a
d’une lacune & combler et dans ce but il examine de pres la théorie
de I’évaluation des grandeurs. Cette théorie est basée sur la notion
de limite dont ’emploi ne se justifie cependant qu’en cas de nécessité
absolue. Il est donc indispensable de commencer la géométrie par la
recherche du plus vaste des ensembles de points tel que ses grandeurs
puissent toutes étre évaluées au moyen de la seule notion de commune
mesure. Cet ensemble est un espace discontinu auquel 'auteur a donné
le nom d’espace rationnel.
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-L’évaluation des grandeurs de I’espace rationnel est basée sur la
relation de Stewart que auteur établit en partant des conditions
auxquelles il faut satisfaire pour obtenir la compatibilité des postulats
nécessaires a la construction de cet espace. La relation de Stewart
devient ainsi la garantie de stabilité de tout I’édifice euclidien. ‘

L’espace rationnel jouit d’une propriété remarquable d’apres
laquelle non seulement les longueurs d’une méme droite sont toujours
entre elles dans un rapport rationnel, mais aussi les surfaces d’un
méme plan, les volumes d’un méme espace & trois dimensions, et(}.

Ce n’est qu’apres ’étude de cet espace discontinu que ’on devrait
commencer celle de espace continu; composé de I’ensemble de tous
les espaces rationnels simultanément possibles en vertu du postulat
de continuité adopté. Cette seconde étude peut se faire a I’aide de la
notion de limite dont ’emploi est alors justifié du fait qu’avec I’étude
de P'espace rationnel on a utilisé la notion de la commune mesure dans
toute I’étendue possible.

L’auteur montre que la nécessité de commencer la géométrie par
Iespace discontinu apparait encore au cours de la résolution des
problémes que pose la recherche des fondements de la géométrie.
(C’est parce qu’on a toujours abordé le c6té mathématique de cette
question, en partant de I’espace continu qu’elle a fini par apparaitre
inextricable. En réalité la réponse a cette question s’identifie tout
simplement a la géométrie méme, lorsque celle-ci est bien ordonnée,
c’est-a-dire commence par ’édification point par point de I’espace
rationnel. La considération de cette identité permet a 'auteur d’affir-
mer que c’est la possibilité de la géométrie classique qui entraine
celle de la géométrie analytique et non pas I'inverse, comme on I'a
supposé avec le professeur Hilbert.

4. — Johann Jakob BurckuARDT (Zurich). — Les ceuvres posthumes
de Ludwig Schlifli. — Résumé d’un rapport sur la classification et
I'élaboration d’un catalogue des ceuvres posthumes de Ludwig
Schlafli, qui doit étre publié, avec une Table des matiéres et une
Note sur les travaux de Schlifli relatifs a la Théorie des formes
quadratiques, dans les Mitteilungen der Berner Naturforschenden
Gesellschaft.

Les ceuvres posthumes ont été classées sur la base du relevé de Graf
(Mitt. der Berner Naturf. Ges., 1896) avec 1’aide de la Fondation
Escher-Abegg. Nous avons trouvé des manuscrits méritant une mise
au point dans les domaines suivants: 1. Théorie des surfaces du
troisieme ordre. — 2. 25 cahiers de géométrie. — 3. 12 cahiers sur
la théorie d’Hermite des équations modulaires. — 4. Théorie des
formes quadratiques. |

5. — Louis Kovrrros (Zurich). — Généralisation des théorémes de
Miquel et Clifford. — Cinq droites d’un plan, prises quatre a quatre,
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déterminent cing paraboles dont les foyers sont sur un cercle (théo-
reme de Miquel). Ce cercle est le lieu géométrique des points P tels
que les pieds des perpendiculaires abaissées de P sur les cinq droites
données et le point P lui-méme soient sur un conique. Pour les points
de Miquel, cette conique dégénére en deux droites.

Six droites d’un plan, prises cinq & cing, déterminent six cercles
de Miquel; ces six cercles passent par un point; sept droites, prises
six a six, déterminent sept de ces points qui sont sur un cercle, et ainsi
de suite (théoreme de Clifford, Math. Papers, p. 38). Les cercles de
Clifford peuvent aussi étre définis comme lieux géométriques; on
trouve le résultat suivant:

On donne 2n -+ 1 droites dans un plan; le lieuw géométrique des
points P tels que les pieds des perpendiculaires abaissées de P sur
ces droites sotent sur une courbe algébrique de degré n ayant en P un
pownt multiple d’ordre n — 1 est un cercle. Si on a 2n + 2 droites, il n’y
a qu’un point jouissant de cette propriété.

Démonstration de deux formules de Steiner. — Une conique est
déterminée par son centre O et trois tangentes. Soient A, B, C les
sommets du triangle formé par les trois tangentes, A’ B’ C’ les
milieux des cOtés opposés «, b, ¢. Les cotés du triangle A" B’ C’ pro-
longés indéfiniment divisent le plan en sept parties: I'intérieur du
triangle A" B’ C’, les trois parties extérieures comprises dans les
angles A’ B’, C’, les trois parties adjacentes aux cotés. La conique
est une ellipse si le centre O est dans 'une des quatre premieres
parties, une hyperbole si O est dans I'une des trois derniéres.

O est aussi le centre d’une conique circonscrite au triangle ABC;
elle est toujours de méme nature que la conique inscrite.

Sir est le rayon du cercle circonserit au triangle ABC, si x, y, z sont
les distances de O aux cotés du triangle ABC et 2’, y’, 2z, les distances
de O aux coOtés du triangle A" B’ C', I'aire E; de Dellipse inscrite est
donnée par la formule:

et aire E. de Pellipse circonscrite, par:

22 y? 22

4

Ei = rczrx V7

Ces deux formules ont été indiquées sans démonstration par
Steiner ((Euvres completes, t. 11, p. 329). On peut les démontrer en
déterminant le produit des puissances des involutions des points
conjugués sur les axes; on voit ainsi que si la conique est une hyper-
bole inscrite ou circonscrite au triangle ABC, chaque formule donne
Paire de I'ellipse qui a les mémes axes que I’hyperbole (voir Steiners
Vorlesungen iiber synthetische Geometrie, 2. Teil, bearbeitet von
Schroter, Anhang, p. 556 a 564).
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Mais on peut aussi transformer les formules en expressions inva-
riantes par affinité en multipliant et divisant la premiere par abc
et la seconde par a2 b2 2. Si 'on désigne laire du triangle ABC par T
(= abc : 4r) et les doubles des aires des triangles OBC, OCA, OAB
respectivement par t = ax, t’' = by, t'' = ¢z, on aura: ar’ =T —1,
by =T —1t', ¢z’ =T —1t" et les deux formules deviendront:
221272

ﬁzﬂﬂ—ﬂﬂ~mﬁ—ﬂ)

E. = :
T Y T BT (T —1) (T—1) (T—1)
11 suffit alors de les démontrer pour le cercle inscrit ou le cercle
circonscrit & un triangle, ce qui est élémentaire.

Une conique est aussi déterminée par son centre O et un triangle
polaire ABC, mais elle n’est pas de méme nature que la conique de
méme centre inscrite ou circonscrite & ABC; elle est imaginaire s1 O
est a 'intérieur du triangle ABC; c’est une ellipse si O est en dehors
et dans un des angles A, B, C; c¢’est une hyperbole si O est dans 'une
des trois parties extérieures adjacentes aux coOtés. Dans le cas de
lellipse, I'aire E,, est donnée par la formule:

tt/ z//
2T

2 .

42
B, =2rrays = =

Mais dans tous les cas, la valeur absolue du produit des puissances
des involutions des points conjugués sur les deux axes est 2rayz. On a
donc toujours en valeur absolue:

El = E; B,

=W

ou, si « et 3 sont les demi-axes de la conique circonscrite, et o', B’
ceux de la conique inscrite:

2reys = af o'B .
En particulier, si la conique inscrite est un cercle de rayon »’, on a:
2rr" = af et o+ B = 2r.

Donc, les ellipses de centre O circonscrites a tous les triangles inscrits
au cercle (r) et circonserits au cercle (r') sont égales.

6. — H. Hopr (Zurich). Sur certaines relations entre la Théorte des
Groupes et la Topologie. — On sait que le premier groupe de Betti B!
d’un complexe est déterminé par son groupe fondamental G: il est le
groupe quotient (x/Cg, ou Cg est le groupe des commutateurs (Kom-
mutatorgruppe, ou groupe dérivé) de G. Les recherches communiquées
ici concernent l'influence du groupe fondamental G sur le deuxiéme
groupe de Betti B2.
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TukoreME I: A tout groupe G est attaché, par une opération algé-
brique bien déterminée, un groupe abélien G7; st G est le groupe
fondamental d’un complexe K et si S? est le sous-groupe de B2

composé des classes d’homologie qui contiennent des images conti-
nues de la surface de la sphére, on a:

B2/S® = @) .

Corollaire : G} est image homomorphe de B2; le deuxiéme groupe
de Betti n’est donc en ce sens pas « plus petit » que le groupe G}, qui

est déterminé par le groupe fondamental.

Complément au théoréeme I: Pour chaque groupe G (avec un
nombre fini de générateurs et de relations) il y a un complexe K dont
le groupe fondamental est G et pour lequel S? = 0; G} est par suite

la «borne inférieure exacte » des groupes B2 qui sont compatibles,
en tant que deuxiémes groupes de Betti, avec le groupe fondamental G.

Pour caractériser G algébriquement, nous utilisons le procédé

suivant de formation de groupes: F étant un groupe quelconque,
R un sous-groupe de F, soit Gy (R) le sous-groupe de F engendré par
tous les éléments x . r . a' . r* avec xe F, re R; C?(F) = C; est
par exemple le groupe des commutateurs, Gy (Cp) = C; est le

« deuxiéme groupe des commutateurs » de F.

Tuktoreme I1: Etant donné un homorphisme du groupe libre ¥ sur
le groupe G ou Uimage inverse de Uélément unité de G est le
sous-groupe wnvariant R de ¥, on a:

Gi = (C, N R)/CL(R) .

Le fait que le groupe qui apparait au second membre de cette
isomorphie ne dépend pas des groupes F et R, mais seulement du
groupe quotient F/R, donc seulement de G, constitue un théoréme
de théorie des groupes.

Ezemple : Si G est le groupe abélien libre de rang p, G] est le groupe

abélien libre de rangp_(l’z;“

en se basant sur le théoreme I ou algébriquement en se basant sur
le théoréeme II.

Les groupes Cgy (R) jouent un role important dans la nouvelle
théorie des groupes, en particulier dans des travaux de Hall, Magnus,
Witt; il convenait de souligner ici la relation entre ce procédé de
formation de groupes et des concepts topologiques.

Un exposé complet paraitra dans les Commentarit Mathematici
Helyetict, vol. 14, pp. 257-309.

. On peut le voir géométriquement
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7. — Pierre Humbert + (Lausanne). Polyédre sans singularités
topologiques homéomorphe au plan projectif dans U'espace a trots dimen-
stons. (Présenté par H. Hopf, Zurich.) — Par des modifications

apportées 4 un polyedre que K. Merz a obtenu & partir de I'hep-
taedre, un polyedre est construit dans I'espace euclidien & trois dimen-
sions, qui est un modeéle du plan projectif dans le sens suivant: Il est
I'image uniforme et continue du plan projectif, et chaque point du
plan projectif posséde un voisinage dans lequel la correspondance est
biunivoque. Ce modele possede la méme symétrie que la surface connue
de Boy et peut étre considéré comme une approximation polyédrale
de cette surface, qui est ainsi obtenue par une voie nouvelle et intui-
tive. La description exacte de ce modeéle paraitra dans les Comment.

Math. Helo., vol. 14, en méme temps que la construction mentionnée
de K. Merz.

8. — G. pE Ruam (Lausanne). Sur une décomposition des chaines
d’un complexe. — Soit un complexe & n dimensions G, et soient
al(t=1, 2, ..., ag; O < ¢< n) ses cellules a ¢ dimensions, prises
avec une orientation déterminée. On appelle produit scalaire des
deux chaines

I

q — - ad q . adq
C_Zy” et d_}_’]yli
1 (A

le nombre

.90 — NV
¢ d__‘_/'_ixly.i.

2

A toute chaine ¢? correspond une chaine a une dimension de moins,
sa frontiere & ¢4, et une chaine a une dimension de plus, (D ¢2™, que
nous appellerons sa cofrontiére, selon I’expression proposée par
M. Whitney.

Quelles que soient les chaines ¢?t! et ¢4, on a la relation
Sredtl o8 — 0T D (1)

Cette relation peut servir de définition de la cofrontiére. On a d’ail-
leurs une définition équivalente en considérant le complexe réciproque
de C; a chaque chaine & ¢ dimensions de C correspond, comme on
sait, une chaine & n— ¢ dimensions du complexe réciproque, sa
duale, et la cofrontiere n’est pas autre chose que la duale de la
frontiére de la duale. On dit que la chaine c? est fermée si F c? = 0,
cofermée si (M ¢? = 0, homologue a zéro s’il existe une chaine ¢2+1
telle que & c1t! = ¢7, cohomologue & zéro s’il existe une chaine
e+l telle que (M ¢! = ¢2. Nous appellerons harmonigue toute chaine
a la fois fermée et cofermée. On a le théoréme suivant:
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Toute chaine ¢4 peut étre décomposée, d’une maniére unique, en la
somme d’une chaine homologue a zéro, d’une chaine cohomologue & zéro
et d’une chaine harmonique.

La démonstration résulte tres simplement de la formule (1), en
remarquant que, pour qu'une chaine soit cofermée, il faut et il suffit
qu’elle soit orthogonale a toute chaine homologue a zéro, et pour
qu’elle soit fermée, il faut et il suffit qu’elle soit orthogonale a toute
chaine cohomologue a zéro. Deux chaines sont dites orthogonales si
leur produit scalaire est nul. On admet que le domaine des coefficients
des chaines est un corps; si la chaine ¢? est a coefficients entiers, il
peut arriver que les chaines composantes ne soient pas a coefficients
entiers. :

Corollaire: Dans chaque classe d’homologie de cycles, comme dans
chaque classe de cohomologie de cocycles, il y a une chaine harmonique
et une seule.

Ces propositions présentent une analogie parfaite avec la théorie
des formes harmoniques sur un espace de Riemann, considérées par
M. Hodge. Aux chaines de dimension ¢ correspondent les formes
différentielles extérieures de degré ¢, & I'opération (0 correspond la
dérivation extérieure, qui associe a chaque forme une autre forme
de degré inférieur d’une unité; chaque forme w de degré ¢ posséde,
dans un espace de Riemann & n dimensions, une forme adjointe »*
de degré n — ¢, analogue a la chaine duale, ce qui permet de définir
le produit scalaire de deux formes w, et w, par I'intégrale

? *
/"01 Wy
t

étendue a tout 'espace de Riemann et une opération analogue a
Popération & par la formule JF w = [(Dw*]*.

9. — H. Hapwicer (Bern). Bemerkung iiber bedingt konvergente
Vektorrethen. — Paraitra dans Math. Zeutschr.; vol. 47.

10. — Ch. Braxc (Lausanne). Les polyédres et les théorémes d’ A bel
et de Riemann-Roch. — Paraitra dans les Comment. Math. Hely.,
vol. 14, pp. 212-229.

11. — F. Fiavra (Geneve). Sur le probléeme isopérimétriqgue 1. — On
considére une surface homéomorphe au plan euclidien et normale au
sens de Cartan. On peut démontrer les deux théoremes suivants 2:

1 Le mémoire paraitra dans le vol. XV des Comment. Math. Helv.
2 Voir aussi: F. Fiara, Le probiéme des isopérimétres sur les surfaces ouvertes i
courbure positive. Commenl. Math. Ilelv., vol. XIII, 1941, pp. 293-346.
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A. — Si la courbure totale est partout positive, parmi toutes les
courbes simplement fermées de longueur donnée, il en ex1ste au
moins une quil contlent un domaine d’aire maximum.

B. — Si la courbure totale est partout négative, et si I'intégrale
de cette courbure est bornée inférieurement, parmi toutes les courbes
simplement fermées de longueur donnée, il n’en ex1ste aucune qui
contienne un domaine d’aire maximum. ' :

12. — B. EckMANN (Zurich). Vektorfelder auf Sphdren (Champs de
vecteurs sur les sphéres). — Par un champ de vecteurs (ou un champ
de directions) sur une sphére, nous entendons un champ continu de -
vecteurs-unité tangents & cette sphére. D’aprés un théoreme connu de
Poincaré et Brouwer, il n’existe pas de champs de vecteurs sur les
sphéres a dimension paire (tandis qu’il existe un tel champ sur toute
sphere a dimension impaire). Un k-champ sur une sphére est un sys-
téme de k-champs de vecteurs tel qu'en tout point de la sphere les
k-vecteurs du systéme soient linéairement indépendants, ou bien, ce
qui revient au méme, forment un systéme orthogonal. S’il existe
sur une sphére a n dimensions un n-champ, on dit que cette sphére
est parallélisable®; les sphéres de dimension 1, 3, 7 ont cette pro-
priété, comme on sait 1, mais on ne sait pas s’il existe d’autres sphéres
parallélisables. Les méthodes de Stiefel 1, qui dans le cas des espaces
projectifs réels ont conduit a bien des résultats, ne sont plus appli-
cables dans le cas des spheres. Cependant nous pouvons montrer:

Sur les sphéres & 4s + 1 dimensions il n’existe pas de 2-champ.
Une telle sphéere ne peut donc étre parallélisable.

La démonstration de ce théoréme, qui sera publiée prochainement,
fait usage des « groupes d’homotopie » introduits par Hurewicz et de
quelques résultats de la théorie des « espaces fibrés » 2, et de plus de
certaines propriétés du groupe fondamental des groupes orthogonaux.
Dans cette démonstration on réduit le théoréeme énoncé au suivant:

Soit v un nombre impair ; st on a r fonctions complexes 1y, f,, ..., f,
de r variables complexes uq, u,, ..., Uy, continues pour. toutes les valeurs
des vartables # (0, 0, ..., 0), et si la relation

L E. ST1EFEL, Comm. Math. Helv., vol. 8 (1935), 305-351 et vol. 13 (1941), 201-218.

2 B. ECKMANN, Zur Homotopletheorle gefaserter Rdume, Comm. Math. Helv., 14
(1943)
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a liew pour toutes les valeurs des ut, alors les fonctions fj, f,, ..., £, ont
au moins un zéro commun (différent de (0, 0, ..., 0)).

On déduit de ce résultat trouvé par une voie purement topologique
de nouveaux théorémes algébriques (en choisissant pour les fonctions
f; des formes ou des polynomes en u,, ..., u,). On peut poser le pro-
bléme de les démontrer par des méthodes algébriques L.

13. — P. BERNAYS (Zurich). A propos des nouvelles recherches de
Gadel. — Dans son mémoire « The consistency of the axiom of choice
and of the generalized continuum-hypothesis with the axioms of set
theory » (Annals of Mathematics Studies, n° 3, Princeton, 1940; voir
aussi le rapport dans le Journal of Symbolic Logic,vol. VI, pp. 112-114),
Godel a prouvé qu’a la base de la théorie axiomatique des ensembles,
y compris la délimitation exacte de la notion « definite Eigenschaft »
et aussi I’axiome du remplacement, mais non pas ’axiome du choix,
on peut établir un modele de la théorie des ensembles pour lequel
Passertion de ’axiome du choix ainsi que celle de I'hypothése géné-
ralisée du continu sont des théorémes démontrables. La construction
de ce modele comprend la définition par un procédé récurrent d’une
représentation univoque des nombres ordinaux sur les ensembles.

A ces résultats de Godel on peut ajouter la remarque qu’il est pos-
sible d’éliminer de toute la considération I’axiome sur I’ensemble de
tous les sous-ensembles. (Il s’entend que I'hypothése généralisée du
continu doit alors &tre restreinte a des nombres cardinaux pour
lesquels il existe un plus haut nombre cardinal.)

On peut d’ailleurs montrer généralement qu’au sein d’une axioma-
tique des ensembles, pour déduire les théoremes généraux (bon ordre
et récurrence transfinie) ainsi que I'analyse infinitésimale, on peut se
passer de I'axiome sur I’ensemble de tous les sous-ensembles.

En écartant cet axiome de la théorie axiomatique des ensembles,
nous gagnons une plus grande liberté en regard des modeles — tout
en conservant ’opposition soulignée par Zermelo entre la théorie
axiomatique des ensembles et ses modéles. (Le role des « Grenzzahlen »
de Zermelo devient maintenant commun a tous les ordinaux « régu-
liers » au sens de Hausdorff.)

De cette maniere, nous échappons & I'obligation de choisir entre un
cadre axiomatique trop restreint et un cadre dépassant deéja les
besoins de l'analyse en nous engageant dans la progression illimitée
des nombres cardinaux transfinis.

14. — W. ScHERRER (Bern). Zur Theorte der Elementarteilchen. —
Veranlasst durch neue Ansédtze zu einer skalaren relativistischen
Wellenmechanik ? diskutiert der Referent folgenden Ansatz zu einer

1 Voir B. E. EckMANN, Comm. Math. Helveti,ci vol. 15, 1-26.
2 Vgl. Helv. Phys. Acta, XIV, 1, 81, und XIV, 2.
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Gravitationstheorie mit einer skalaren und durchwegs positiven

Wirkungsdichte
T:T(xo,xl,xz,x;,) (1)

und dem Linienelement

/QTR \/ G dz, dz, dz, dz, = Extremum |, (3)
mit der Nebenbedingung
f T /G dz, dz, dz, dx, = konst. , (&)

wo R den Riemannschen Kriimmungsskalar darstellt.
Bezeichnet man mit A die wegen (4) sich ergebende kosmologische
Konstante und benutzt man die Abkiirzung

T o 3T

Tik = 52,82, "3 (5)
so ergeben sich die Gleichungen

zur Bestimmung der 11 Grossen Gy, und T. |
Als Folgerung aus (6) ergibt sich die Gleichung

DT:%T. (7)

Sie darf nicht unmittelbar als Wellengleichung angesprochen werden,
da nicht T? sondern T die Materiedichte darstellt.

Das zugehorige kosmologische Problem ist eindeutig bestimmt und
liefert eine Welt, die sich aus einer Einsteinschen Zylinderwelt fir
x, = — o0 1in eine De-Sitter-Welt fiir z;, = 4 o0 entwickelt.

Einen allgemeinern Ansatz erhélt man, wenn man in (3) R ersetzt
durch

R 4+ k(grad) Lg T)* . (8)

15. — L. Locrer (Winterthur). Ueber projekiive Linien- und
Ebenenkoordinaten. — Homogene projektive Koordinaten bildet
man, indem die nichthomogenen K als Quotienten mit derselben
Hilfsvariablen im Nenner dargestellt werden. Zur Einfiihrung stellt
sich die didaktische Frage, ob diese homogenen K nicht unmittelbar
anschaulich gelesen werden konnen. Das geht sehr einfach und wird
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doch in der Lehrbuchliteratur unterlassen. Fithrt man das K-System
entsprechend ein, so lassen sich die K u, ¢.,... des Punktes Uu -+
Vo + ... = 0 und des mit ihm inzidierenden dualen Elementes U, V, ...
unmittelbar anschaulich fassen. Sind im metrischen Falle u, ¢, w, ...
rechtwinklige Punktkoordinaten, so stellen U, V, W, ... diejenigen
dazu dualen K dar, welche sich aus der pseudoeuklidischen Metrik
ergeben. Die vorgetragene Bemerkung ist in meinem Buche Pro-
jektive Geometrie (Orell-Fiissli, 1940, S. 215 f.) angewendet.

16. — Sophie Piccarp (Neuchdtel). Sur une catégorie d’ensembles
parfaits et leur application a divers problémes métriques. Quelques
propositions concernant les ensembles de sommes et les ensembles de
différences de nombres d’un ensemble linéaire. — Soit n un entier > 2,
soit £ un entier tel que 1< k < n et soient a¢; = 0, a4, a, ..., a
(0 <@, <ay, <..<a)k nombres donnés (distincts, quelconques)
de la suite 0,1, 2, ..., n — 1. L’ensemble P des nombres > qui peuvent
s'exprimer dans le systéme de numération & base n a laide des
seuls chiffres a,, a;, ... ar est un ensemble parfait non dense de
mesure nulle. La famille & de tous les ensembles P est dénombrable.
Nous avons étudié la structure des ensembles de cette famille & qui
fournit de nombreux et instructifs exemples pour des théoremes
d’existence dans la théorie des ensembles linéaires. Un ensemble P
peut étre de premiére espece . La condition nécessaire et suffisante
pour qu’il en soit ainsi est que a;.y —a; =1 (@ =0,1, 2, ..., k—1)
et que 2a, >n—1, s1 ap <n—1, ou que lensemble K =
{ao, By ssss ak} contienne, avec tout couple de nombres a;, a; ., tels
que a;yy — a; = [ > 1, les nombres ¢; — 1, a; — 2, ..., a; — 1 4+ 2
et a1 + 1, a1 + 2, ., i 12

A et B étant deux ensembles linéaires, désignons par o (A, B)
Pensemble des sommes a + b, ac A, beB, et par d (A, B) 'ensemble
des différences a — b, ac A, beB. En particulier, si A = B,
posons ¢ (A, A) = o (A) et 3 (A, A) = 3 (A). :

On. a les propositions suivantes:

1. Si A est ouvert, ¢ (A) est ouvert et 3 (A) est un Gs.

2. Si A est fermé, borné ou semi-borné, ¢ (A) est fermé. Il en est
de méme de & (A), si 'ensemble A est borné.

3. Si A est dense en soi, il en est de méme de ¢ (A) et de d (A).
Il résulte de 2 et de 3 que si A est parfait (borné ou semi-borné),
o (A) est parfait. Si A est parfait et borné, & (A) est parfait.

t Terminologie de M. Mirimanoff (voir D. MIRIMANOFF, Sur un probléme de la
théorie de 1a mesure, II, Fund. Math., t. IV, p. 118); M. Denjoy qualifie ces ensembles
d’ensembles présentant le caractére A (voir A. DENJOY, Sur une classe d’ensembles
parfaits discontinus, Comptes rendus du Congrés international des Mathémalticiens,
Strasbourg, 1920).
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4. Si A est un F,, chacun des ensembles 6 (A), 3 (A) est aussi un Fi.
5. Si A est un Gy, o (A), aussi bien que d(A), peut ne pas étre un Gs.

6. St A et B sont deux ensembles linéaires de mesure intérieure
positive, ou §’ils sont tous deux de seconde catégorie de Baire et
jouissent de la propriété de Baire, ou encore. s’ils sont tous deux de§
ensembles parfaits de premiére espéce, I'ensemble o (A, B), aussi
bien que 3 (A, B), contient un intervalle.

Les parties des énoncés 1-5 relatives aux ensembles & (A, B) sont
connues.

7. 11 existe deux ensembles linéaires A, B, tels que d(A, B) =
(—o0, o) alors que mes ¢ (A, B) = 0. Il existe aussi deux ensembles
linéaires C, D tels que ¢ (C, D) = ( < 0, oo, c0) alors que mes
3 (G, D) = 0.

8. Il existe deux ensembles linéaires A et B, tels que mes ¢ (A) = 0
mes o (B) = 0, alors que mes o (A,B) > 0. Il existe aussi deux
ensembles linéaires G et D, tels que mes ¢ (A) > 0, mes ¢ (B) > 0 et
que mes ¢ (G, D) = 0.

Une proposition analogue a, comme on sait, lieu pour les ensembles
de diftérences.

P et K ayant la signification indiquée dans le premier alinéa de ce
résumé, on a les résultats suivants concernant la mesure (lesbesguienne)
des ensembles ¢ (P) et § (P).

9. a) Supposons d’abord que ap < n— 1.

Si tout nombre de la suite 1, 2, ..., n — 1 appartient & ¢ (K), on a
c(P)= (<0, ).

S’1l existe au moins un nombre de la suite 1, 2, ..., n — 1 qui ne
fait pas partie de ¢ (K), on a ¢ (P) 4 (< 0, »).

S’1l existe au moins un entier ¢ de la suite 1, 2, ..., n — 1 qui est

absent dans ¢ (K) en méme temps que le nombre n - i, on a mes
s (P)=0. |

Si quel que soit le nombre i de la suite 1, 2, ..., n — 1 qui fait défaut
dans ¢ (K) (et nous supposons qu'il existe au moins un tel nombre),
le nombre n + i appartient & ¢ (K), on a mes ¢ (P) > 0 et en méme
temps mes [( < 0, ©0)—c (P)] > 0.

b) Supposons maintenant que a = n — 1.

Si deux nombres consécutifs de la suite 1, 2, ..., 27 — 2 ne font pas
simultanément défaut dans o (K) ou si aucun nombre de la suite
1,2, ..., n—1 ne fait défaut dans ¢ (K), on a ¢ (P) = ( < 0, ).

Si deux nombres consécutifs de la suite 1, 2, ..., n — 2 ou si un
nombre au moins de la dite suite et deux nombres consécutifs de la
suite n, n + 1, ..., 2n—2 font défaut dans o (K), on a o (P) e
<0, ) et mes [( <0, ©)—c(P)]> 0. Dans ce cas, o (P) est
de mesure nulle §’il existe au moins un entier (1 < i < n— 2) qui

[L’Enseignement mathém., 39™e année, 1942-1950. 6
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fait défaut dans ¢ (K) en méme temps que n -+ i. Par contre, si quel
que soit le nombre i de la suite 1, 2, ..., n — 2 qui fait défaut dans
6 (K), on a n 4+ ieo (K), I'ensemble ¢ (P) est de mesure positive.

10. Désignons par K, ’ensemble des nombres n — d, ol d est un
¢lément non nul quelconque de I’ensemble des distances D (K) de K.

Si D (K) + Klz{O, 1, 2, .., n——1} et si 1D (K), on a
3(P) = (— w0, ).

Siap <n—1, on a soit § (P) = (— o0, %), soit mes & (P) = 0.

Si ap=n—1, D(K)+ K, :{O, 1, 2, ..., n—i}, 1 D (K),
mais s’il n’existe aucun nombre ¢ de la suite 0, 1, 2, ..., n — 2, tel que
12D (K), t+zD (K), on a 3 (P) = (—oo,oo>.

S1 ak:n—i,D(K)J;—Kl:{O, 1, 2, . 1} D (K),
mais s’1l existe un nombre ¢ de la suite 1, 2, ..., n — 2 telquete D (K),
t + 1¢e (D) (K), onameSS()>Oetmes[( w)— 3 (P)]> 0.

St ap, = n— 1 et §’il existe au moins un nombre de la suite O 1, 2,

n — 2 qui fait défaut dans D (K) 4+ K, on a soit 6(P) = (—o0, o)

's.oit mes § (P) = 0.

11. P. étant un ensemble parfait de la famille &, I’ensemble & (P),
aussi bien que 3 (P), peut également faire partie de la famille F.

12. 11 existe des ensembles de la famille & qui ne sauraient étre
les ensembles de distances d’un ensemble linéaire.

17. — A. SpEeIsgRr (Ziirich). Ueber geoddtische Linien.

18. — R. WAVRE (Geneve). L’itération au moyen des opérateurs
hermitiens. — Pour les définitions fondamentales on consultera
I Introduction mathématique & la Mécanique quantiqgue de G. JULIA,
t. I1.

Soit A un opérateur linéaire, (x, y) le produit scalaire, 1l peut étre
défini dans I’espace d’Hilbert ou dans I’espace fonctionnel. On a, s1 A
est hermitien,

(Az, y) = (z, Ay) .

Considérons la suite

Yy, = Az, , Ly = o s ny, = ||y, || nrmede y, ,
1
)
Yy, = Az, Ty = ’—{LE ; ng = H?/z” ¥ o0 Ys »
2
Yy = Ady , Ty == A, , ete.
ng

Les z, sont donc les itérés de xz, ramenés sur la sphere unitc:
H In l]2 = (Tn, Tn) = 1.
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On a
1 ' 1
(@, 0, 2) = ——(Ax, 4, B,) = (€, 1, Az)) =
q-+27 7q nq_{_2 q-+ q ]7,q+2 q

n . n
1 — ‘q+1

= (@, Tgpn) = ~
Tyt q+2

et en vertu de l'inégalité de Schwartz, ces produits scalaires, ou cosi-

nus, sont < 1.
Douny < ng L oo o .
On trouverait sans peine la relation

_ e+t Tadw
o+p+1 | g+2p

X

Enfin 'on a

| Zgpap — @ |IP = 2 — 2(2g10p, %

Soit n = lim n;, n est fini ou infini, et posons

Dés lors, deux cas sont possibles:

a) @ s 0 alors

Hm (g 5, 2o = ——

pP—>®©
et

l@yop — 2l < e

pourvu que ¢ soit assez grand quel que soit p. La suite des 1térés xqy,
pairs et la suite des itérés impairs 9,41 convergent fortement.

b) @ = 0; alors, que r soit fini ou infini, I'on a
Iim ||z , 20 > 2
S “ qg+2p q H \/ K

quel que soit ¢. L’ensemble des itérés n’est pas compact, il n’admet
aucun point d’accumulation pour la convergence forte.
En résumé, deux cas seulement sont possibles:

ou bien les suites xq, et x9,41 convergent fortement (@ £ 0),
ou bien I'ensemble x;, n’est pas compact pour la convergence forte.
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Si opérateur A est « complétement continu », alors w # 0.

Cette étude sera développée dans un article a paraitre dans les
Commentarii  Mathematict Helpetici (vol. 15). Quant au produit
infini & nous I'avions déja introduit dans le cas particulier des noyaux
symétriques de Fredholm dans un article paru en 1925.

19. — A. PrrucEer (Fribourg). Sur la répartition des zéros des
fonctions entiéres. — Soit G (z) une fonction entiére du type moyen
de T'ordre p, H (¢) son type angulaire (Strahltypus). La famille de
droites . cos pO 4 y.sin p = H () (0 variable) enveloppe une
courbe convexe, appelée diagramme indicateur (Indikatordiagramm).
Soit £’ (p) la longueur de l'arc 0 < 6 < @. Nous considérons les
ensembles de zéros de la fonction entiére pour lesquels |

lim 77, @) _ N (¢)

—> 0 ,,.p

existe quel que soit ¢; n (r, @) désigne le nombre des zéros de I'en-
semble en question qui sont situés dans le secteur 0 < arg z < o,
| 2| << r. Nous prenons celui de ces ensembles qui est le plus ample
et nous Pappelons la partie mesurable des zéros, N (@) est appelé sa
mesure. On a alors:

2 Ng) < (),

c’est-a-dire le produit par 21 de la mesure des zéros dans un angle ne
dépasse pas Uarc correspondant du diagramme indicateur.

La méthode de démonstration repose essentiellement sur I’étude
des fonctions entiéres ayant une répartition mesurable de zéros (Cf.
Comm. Math. Help., 11, 180-214). Soit g (z) une telle fonction, dont la
répartition des zéros coincide avec la partie mesurable de G (z) dans
Iangle en question, et [ (p) I'arc (fonction de ¢) de son diagramme
indicateur. On a alors 2w . dN (¢) = dl (p) et d £ (o) — dl (¢) > 0
G (2)
8(z)

b/

parce que
de la.

est une fonction entiére. Notre affirmation résulte

Remarque : J’ai appris postérieurement que le résultat ci-dessus est
déja démontré par B. LEVINE dans Rec. math. Moscou, t. 2.
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