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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications.

Réunion de Bale, 6 et 7 septembre 1941.

La Société mathématique suisse a tenu sa trentième assemblée
annuelle à Bâle, les 6 et 7 septembre 1941, sous la présidence de

M. le professeur L. Kollros, président, en même temps que la
121me session annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a constitué comme suit son
Comité pour les années 1942 et 1943: MM. les professeurs P. Büchner
(Bâle), président; G. de Rham (Lausanne), vice-président; M. Gut
(Zurich), secrétaire-caissier.

La partie scientifique a été consacrée aux communications ci-après,
réparties sur trois séances.

1. — Karl Merz (Chur). Kreuzhaube erweitert nach Boy (Calotte
polyédrique d'après Boy). — Eine einfache Kreuzhaube 1 besitzt eine

Doppelstrecke SO 5, wobei S die gemeinsame Spitze ist, von den
beiden an SO in Scheitellage anstossenden dreiseitigen Pyramiden,
und 0 der Schnitt der beiden Diagonalen des Quadrates, auf dem
über zwei Scheiteldreiecken die beiden Pyramiden errichtet sind.
Wird das unter jenem Quadrat ansetzende Prisma noch durch seine
Grundfläche abgeschlossen, so ist das entstandene Polyeder als
11-Flach mit e 10, k 20, also c 1, eine Abbildung der projektiven

Ebene, wobei S und 0 singulare Punkte sind, als Endpunkte der
Doppelstrecke.

Diese Kreuzhaube soll nun so erweitert werden, dass dadurch am
Polyeder eine Selbstdurchdringung entsteht, die einen einfachen
geschlossenen Streckenzug bildet, so dass keine Endpunkte mehr an
der Durchdringung bestehen. Um dies zu erzielen, sind zu der Doppelstrecke

OS 5 noch weitere Doppelstrecken anzufügen, z. B.
ST 9 und TO 3, womit das Doppelstreckendreieck SOT entsteht.
Um dabei die neue Doppelstrecke 9 zu erhalten, hat man die in 9 als

i K. Merz, Kreuzhaube aus verschiedenen Netzen. Vierteljahrsschrift der Natur-
orsehenden Gesellschaft in Zürich, LX X XV, 1940 (Seite 51).
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Kante zusammenstossenden beiden Flächen A und E über 9 hinaus
zu erweitern und dann noch mittels zwei abschliessenden Flächen
eine neue Scheitelzelle aussen längs 9 anzufügen. Längs 3 entsteht,
auf entsprechende Weise, eine innere Hohlzelle, die in Scheitellage ist
zu einer äussern Lücke der Kreuzhaube. Von diesem geschlossenen
Polyeder, / 15, e 14, k — 28, also auch mit c — 1, mit dem
Dreieck SOT als Selbstdurchdringung, lässt sich ein Netz herstellen
(Vorweisung). Bei der Aufklappung dieses Netzes zum 15 Flach tritt
die Eigentümlichkeit ein, dass die dabei entstehenden
Wendestrecken, in denen Ober- und Unterseite des Netzes aneinander-
stossen und damit die Einseitigkeit herbeiführen, zugleich in die
Doppelstrecken fallen. Das Dreieck SOT der Doppelstrecken
entspricht damit der unendlich fernen Geraden, welche die Wendegerade
der projektiven Ebene ist, und es entspricht daher zugleich auch der
Selbstdurchdringung dieser Ebene. Diese durch die erweiterte Kreuzhaube

erhaltene Abbildung der projektiven Ebene hat allerdings noch
die drei singulären Punkte S, 0, T, die aber von einfacherer Art sind
als die sechs singulären Punkte am Heptaeder, in denen die drei
Doppelstrecken als Selbstdurchdringungen endigen. Ausserdem fehlt
der dreifache Punkt, wie er am Heptaeder auftritt. Doch tritt dafür
eine Hohlzelle auf. Dieses Polyeder kann als Zugang zu einer neuen
Boy'schen Fläche dienen.

2. — M. Diethelm (Rickenbach, Schwyz). Ein kurzer Weg zur
Entwicklung der Hyperbelfunktionen. — L'auteur indique un moyen
rapide et élémentaire permettant de présenter, dans une première
étude, les propriétés essentielles des fonctions hyperboliques en
partant de l'hyperbole et du secteur hyperbolique. Analogies entre les
fonctions hyperboliques et les fonctions circulaires.

3. — Julien Malengreau (Montreux). Euclide ou Pythagore
(Dissertation sur le continu et le discontinu.) — Pythagore considérait
la droite comme une somme de points. Cette conception a été
abandonnée depuis la découverte des irrationnelles. Les données qui
servent de base à la géométrie d'Euclide présupposent que les figures
appartiennent à un espace continu, aussi la géométrie classique
fondée sur la méthode euclidienne ne fait-elle aucune allusion à

l'espace discontinu. L'auteur se propose de montrer qu'il s'agit là
d'une lacune à combler et dans ce but il examine de près la théorie
de l'évaluation des grandeurs. Cette théorie est basée sur la notion
de limite dont l'emploi ne se justifie cependant qu'en cas de nécessité
absolue. Il est donc indispensable de commencer la géométrie par la
recherche du plus vaste des ensembles de points tel que ses grandeurs
puissent toutes être évaluées au moyen de la seule notion de commune
mesure. Cet ensemble est un espace discontinu auquel l'auteur a donné
le nom d'espace rationnel.
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L'évaluation des grandeurs de l'espace rationnel est basée sur la
relation de Stewart que l'auteur établit en partant des conditions
auxquelles il faut satisfaire pour obtenir la compatibilité des postulats
nécessaires à la construction de cet espace. La relation de Stewart
devient ainsi la garantie de stabilité de tout l'édifice euclidien.

L'espace rationnel jouit d'une propriété remarquable d'après
laquelle non seulement les longueurs d'une même droite sont toujours
entre elles dans un rapport rationnel, mais aussi les surfaces d'un
même plan, les volumes d'un même espace à trois dimensions, etc.

Ce n'est qu'après l'étude de cet espace discontinu que l'on devrait
commencer celle de l'espace continu; composé de l'ensemble de tous
les espaces rationnels simultanément possibles en vertu du postulat
de continuité adopté. Cette seconde étude peut se faire à l'aide de la
notion de limite dont l'emploi est alors justifié du fait qu'avec l'étude
de l'espace rationnel on a utilisé la notion de la commune mesure dans
toute l'étendue possible.

L'auteur montre que la nécessité de commencer la géométrie par
l'espace discontinu apparaît encore au cours de la résolution des

problèmes que pose la recherche des fondements de la géométrie.
C'est parce qu'on a toujours abordé le côté mathématique de cette
question, en partant de l'espace continu qu'elle a fini par apparaître
inextricable. En réalité la réponse à cette question s'identifie tout
simplement à la géométrie même, lorsque celle-ci est bien ordonnée,
c'est-à-dire commence par l'édification point par point de l'espace
rationnel. La considération de cette identité permet à l'auteur d'affirmer

que c'est la possibilité de la géométrie classique qui entraîne
celle de la géométrie analytique et non pas l'inverse, comme on l'a
supposé avec le professeur Hilbert.

4. — Johann Jakob Burckhardt (Zurich). — Les œuvres posthumes
de Ludwig Schläfli. — Résumé d'un rapport sur la classification et
l'élaboration d'un catalogue des œuvres posthumes de Ludwig
Schläfli, qui doit être publié, avec une Table des matières et une
Note sur les travaux de Schläfli relatifs à la Théorie des formes
quadratiques, dans les Mitteilungen der Berner Naturforschenden
Gesellschaft.

Les œuvres posthumes ont été classées sur la base du relevé de Graf
{Mitt, der Berner Naturf. Ges., 1896) avec l'aide de la Fondation
Escher-Abegg. Nous avons trouvé des manuscrits méritant une mise
au point dans les domaines suivants: 1. Théorie des surfaces du
troisième ordre. — 2. 25 cahiers de géométrie. — 3. 12 cahiers sur
la théorie d'Hermite des équations modulaires. — 4. Théorie des
formes quadratiques.

5- — Louis Kollros (Zurich). — Généralisation des théorèmes de
Miquel et Clifford. Cinq droites d'un plan, prises quatre à quatre,
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déterminent cinq paraboles dont les foyers sont sur un cercle (théorème

de Miquel). Ce cercle est le lieu géométrique des points P tels
que les pieds des perpendiculaires abaissées de P sur les cinq droites
données et le point P lui-même soient sur un conique. Pour les points
de Miquel, cette conique dégénère en deux droites.

Six droites d'un plan, prises cinq à cinq, déterminent six cercles
de Miquel; ces six cercles passent par un point; sept droites, prises
six à six, déterminent sept de ces points qui sont sur un cercle, et ainsi
de suite (théorème de Clifford, Math. Papers, p. 38). Les cercles de
Clifford peuvent aussi être définis comme lieux géométriques; on
trouve le résultat suivant:

On donne 2n -f 1 droites dans un plan; le lieu géométrique des

points P tels que les pieds des perpendiculaires abaissées de P sur
ces droites soient sur une courbe algébrique de degré n ayant en P un
point multiple d'ordre n — 1 est un cercle. Si on a 2n + 2 droites, il n'y
a qu'un point jouissant de cette propriété.

Démonstration de deux formules de Steiner. — Une conique est
déterminée par son centre 0 et trois tangentes. Soient A, B, C les
sommets du triangle formé par les trois tangentes, A/, B', C' les
milieux des côtés opposés a, 6, c. Les côtés du triangle A' B' C'
prolongés indéfiniment divisent le plan en sept parties: l'intérieur du
triangle A'B'C', les trois parties extérieures comprises dans les

angles A', C', les trois parties adjacentes aux côtés. La conique
est une ellipse si le centre 0 est dans l'une des quatre premières
parties, une hyperbole si 0 est dans l'une des trois dernières.

0 est aussi le centre d'une conique circonscrite au triangle ABC;
elle est toujours de même nature que la conique inscrite.

Si r est le rayon du cercle circonscrit au triangle ABC, si x, y, z sont
les distances de 0 aux côtés du triangle ABC et x', y\ z\ les distances
de 0 aux côtés du triangle A' B' C', l'aire Ej de l'ellipse inscrite est
donnée par la formule:

E7 4 7T2 rx' y' z'

et l'aire Ec de l'ellipse circonscrite, par:

•>

2
x2 y2 z2

E„ n2r -
•

c x y z

Ces deux formules ont été indiquées sans démonstration par
Steiner (Œuvres complètes, t. II, p. 329). On peut les démontrer en
déterminant le produit des puissances des involutions des points
conjugués sur les axes; on voit ainsi que si la conique est une hyperbole

inscrite ou circonscrite au triangle ABC, chaque formule donne
l'aire de l'ellipse qui a les mêmes axes que l'hyperbole (voir Steiners

Vorlesungen über synthetische Geometrie, 2. Teil, bearbeitet von
Schröter, Anhang, p. 556 à 564).
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Mais on peut aussi transformer les formules en expressions
invariantes par affinité en multipliant et divisant la première par abc

et la seconde par a2 b2 c2. Si l'on désigne l'aire du triangle ABC par T
abc : 4r) et les doubles des aires des triangles OBC, OCA, OAB

respectivement par t ax, t' by, t" cz, on aura: ax' — T — t,
by' T — t', cz' — T — t" et les deux formules deviendront:

p2 tt2 (T — i) (T — t') (T — t") T,2 tt2 t21'2 C2
hi— T ' c ^ 4T(T —i) (T— 0 (T— t")

'

Il suffit alors de les démontrer pour le cercle inscrit ou le cercle
circonscrit à un triangle, ce qui est élémentaire.

Une conique est aussi déterminée par son centre 0 et un triangle
polaire ABC, mais elle n'est pas de même nature que la conique de

même centre inscrite ou circonscrite à ABC; elle est imaginaire si 0
est à l'intérieur du triangle ABC; c'est une ellipse si 0 est en dehors
et dans un des angles A, B, C; c'est une hyperbole si 0 est dans l'une
des trois parties extérieures adjacentes aux côtés. Dans le cas de

l'ellipse, l'aire Ep est donnée par la formule:

Bp 2 TT2 rxyz s=> tc2 • ^ •

Mais dans tous les cas, la valeur absolue du produit des puissances
des involutions des points conjugués sur les deux axes est 2rxyz. On a
donc toujours en valeur absolue:

ou, si a et ß sont les demi-axes de la conique circonscrite, et a!, ß'
ceux de la conique inscrite :

2 rxyz aß a'ß7

En particulier, si la conique inscrite est un cercle de rayon r', on a:

2rr' aß et a + ß 2r

Donc, les ellipses de centre 0 circonscrites à tous les triangles inscrits
au cercle (r) et circonscrits au cercle (r') sont égales.

6. — H. Hopf (Zurich). Sur certaines relations entre la Théorie des

Groupes et la Topologie. — On sait que le premier groupe de Betti B1
d'un complexe est déterminé par son groupe fondamental G: il est le

groupe quotient G/Cg, où Cg est le groupe des commutateurs
(Kommutatorgruppe, ou groupe dérivé) de G. Les recherches communiquées
ici concernent l'influence du groupe fondamental G sur le deuxième
groupe de Betti B2.
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Théorème I: A tout groupe G est attaché, par une opération algé¬
brique bien déterminée, un groupe abélien G*; si G est le groupe
fondamental d^un complexe K et si S2 est le sous-groupe de B2

composé des classes Thomologie qui contiennent des images continues

de la surface de la sphère, on a:

B2 / S2 G*

Corollaire: G* est image homomorphe de B2; le deuxième groupe
de Betti n'est donc en ce sens pas « plus petit » que le groupe G*, qui
est déterminé par le groupe fondamental.

Complément au théorème I: Pour chaque groupe G (avec un
nombre fini de générateurs et de relations) il y a un complexe K dont
le groupe fondamental est G et pour lequel S2 0; G* est par suite
la « borne inférieure exacte » des groupes B2 qui sont compatibles,
en tant que deuxièmes groupes de Betti, avec le groupe fondamental G.

Pour caractériser G* algébriquement, nous utilisons le procédé
suivant de formation de groupes: F étant un groupe quelconque,
R un sous-groupe de F, soit CF(R) le sous-groupe de F engendré par
tous les éléments x r x~x r_1 avec x z F, r s R; C2 (F) CF est

par exemple le groupe des commutateurs, CF (CF) C* est le

« deuxième groupe des commutateurs » de F.

Théorème II: Etant donné un homorphisme du groupe libre F sur
le groupe G ou Vimage inverse de Vélément unité de G est le

sous-groupe invariant R de F, on a:

GÎ - (CF n R)/Cf(R)

Le fait que le groupe qui apparaît au second membre de cette
isomorphie ne dépend pas des groupes F et R, mais seulement du

groupe quotient F/R, donc seulement de G, constitue un théorème
de théorie des groupes.

Exemple : Si G est le groupe abélien libre de rang p, G* est le groupe

abélien libre de rang
p ^ ^. On peut le voir géométriquement

en se basant sur le théorème I ou algébriquement en se basant sur
le théorème II.

Les groupes CF (R) jouent un rôle important dans la nouvelle
théorie des groupes, en particulier dans des travaux de Hall, Magnus,
Witt; il convenait de souligner ici la relation entre ce procédé de

formation de groupes et des concepts topologiques.
Un exposé complet paraîtra dans les Commentarii Mathematici

Helvetici, vol. 14, pp. 257-309.
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7. — Pierre Humbert t (Lausanne). Polyèdre sans singularités
topologiques homéomorphe au plan projectif dans Vespace à trois dimensions.

(Présenté par H. Hopf, Zurich.) — Par des modifications
apportées à un polyèdre que K. Merz a obtenu à partir de
l'heptaèdre, un polyèdre est construit dans l'espace euclidien à trois dimensions,

qui est un modèle du plan projectif dans le sens suivant: Il est

I l'image uniforme et continue du plan projectif, et chaque point du
I plan projectif possède un voisinage dans lequel la correspondance est
{ biunivoque. Ce modèle possède la même symétrie que la surface connue
; de Boy et peut être considéré comme une approximation polyédrale

de cette surface, qui est ainsi obtenue par une voie nouvelle et intui¬
tive. La description exacte de ce modèle paraîtra dans les Comment.

• Math. Helv., vol. 14, en même temps que la construction mentionnée
| de K. Merz.

8. — G. de Rham (Lausanne). Sur une décomposition des chaînes
d'un complexe. — Soit un complexe à n dimensions C, et soient
a?(i 1, 2, aq; 0 < q <; n) ses cellules à q dimensions, prises

i| avec une orientation déterminée. On appelle produit scalaire des
i deux chaînes

ciet *2iyiai
j i i

| le nombre
I ci. dq •

j A toute chaîne cq correspond une chaîne à une dimension de moins,
j sa frontière 3' d, et une chaîne à. une dimension de plus, COc^1, que
i nous appellerons sa cofrontière, selon l'expression proposée par
i M. Whitney.

Quelles que soient les chaînes cq+1 et c®, on a la relation

j Zïcq+l - cq cô+1 cOcq (1)

| Cette relation peut servir de définition de la cofrontière. On a d'ail¬
leurs une définition équivalente en considérant le complexe réciproque
de C; à chaque chaîne à q dimensions de C correspond, comme on
sait, une chaîne à n — q dimensions du complexe réciproque, sa

j duale, et la cofrontière n'est pas autre chose que la duale de la
frontière de la duale. On dit que la chaîne cq est fermée si cq 0,
cofermée si (N)eß 0, homologue à zéro s'il existe une chaîne cq+1
telle que Wcq+l cl, cohomologue à zéro s'il existe une chaîne
eq+l telle que COc^-1 À Nous appellerons harmonique toute chaîne
à la fois fermée et cofermée. On a le théorème suivant:
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Toute chaîne <A peut être décomposée, d'une manière unique, en la
somme dune chaîne homologue à zéro, dune chaîne cohomologue à zéro
et dune chaîne harmonique.

La démonstration résulte très simplement de la formule (1), en
remarquant que, pour qu'une chaîne soit cofermée, il faut et il suffît
qu'elle soit orthogonale à toute chaîne homologue à zéro, et pour
qu'elle soit fermée, il faut et il suffît qu'elle soit orthogonale à toute
chaîne cohomologue à zéro. Deux chaînes sont dites orthogonales si
leur produit scalaire est nul. On admet que le domaine des coefficients
des chaînes est un corps; si la chaîne & est à coefficients entiers, il
peut arriver que les chaînes composantes ne soient pas à coefficients
entiers.

Corollaire: Dans chaque classe dUiomdogie de cycles, comme dans
chaque classe de cohomologie de cocycles, il y a une chaîne harmonique
et une seule.

Ces propositions présentent une analogie parfaite avec la théorie
des formes harmoniques sur un espace de Riemann, considérées par
M. Hodge. Aux chaînes de dimension q correspondent les formes
différentielles extérieures de degré #, à l'opération CD correspond la
dérivation extérieure, qui associe à chaque forme une autre forme
de degré inférieur d'une unité; chaque forme co de degré q possède,
dans un espace de Riemann à n dimensions, une forme adjointe o*
de degré n — </, analogue à la chaîne duale, ce qui permet de définir
le produit scalaire de deux formes co1 et o)2 par l'intégrale

/ ou ou

étendue à tout l'espace de Riemann et une opération analogue à

l'opération A7 par la formule fw [C9co*]*.

9. — H. Hadwiger (Bern). Bemerkung über bedingt konvergente
Vektorreihen. — Paraîtra dans Math. Zeitsehr. ; vol. 47.

10. — Ch. Blanc (Lausanne). Les polyèdres et les théorèmes dAbel
et de Riemann-Roch. Paraîtra dans les Comment. Math. Helv.,
vol. 14, pp. 212-229.

11. — F. Fiala (Genève). Sur le problème isopérimétrique L — On
considère une surface homéomorphe au plan euclidien et normale au
sens de Cartan. On peut démontrer les deux théorèmes suivants 2

:

1 Le mémoire paraîtra dans le vol. XV des Comment. Math. Helv.
2 Voir aussi: F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à

courbure positive. Comment. Math. Helv., vol. XIII, 1941, pp. 993-346.
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A. — Si la courbure totale est partout positive, parmi toutes les

courbes simplement fermées de longueur donnée, il en existe au
moins une qui contient un domaine d'aire maximum.

B. — Si la courbure totale est partout négative, et si l'intégrale
de cette courbure est bornée inférieurement, parmi toutes les courbes

simplement fermées de longueur donnée, il n'en existe aucune qui
contienne un domaine d'aire maximum.

12. — B. Eckmann (Zurich). Vektorfelder auf Sphären (Champs de

vecteurs sur les sphères). — Par un champ de vecteurs (ou un champ
de directions) sur une sphère, nous entendons un champ continu de

vecteurs-unité tangents à cette sphère. D'après un théorème connu de

Poincaré et Brouwer, il n'existé pas de champs de vecteurs sur les

sphères à dimension paire (tandis qu'il existe un tel champ sur toute
sphère à dimension impaire). Un k-champ sur une sphère est un
système de /c-champs de vecteurs tel qu'en tout point de la sphère les

^-vecteurs du système soient linéairement indépendants, ou bien, ce

qui revient au même, forment un système orthogonal. S'il existe
sur une sphère à n dimensions un 72-champ, on dit que cette sphère
est parallélisable1; les sphères de dimension 1, 3, 7 ont cette
propriété, comme on sait1, mais on ne sait pas s'il existe d'autres sphères
parallélisables. Les méthodes de Stiefel x, qui dans le cas des espaces
projectifs réels ont conduit à bien des résultats, ne sont plus
applicables dans le cas des sphères. Cependant nous pouvons montrer:

Sur les sphères à 4s + 1 dimensions il n'existe pas de 2-champ.
Une telle sphère ne peut donc être parallélisable.

La démonstration de ce théorème, qui sera publiée prochainement,
fait usage des « groupes d'homotopie » introduits par Hurewicz et de

quelques résultats de la théorie des « espaces fibrés » 2, et de plus de
certaines propriétés du groupe fondamental des groupes orthogonaux.
Dans cette démonstration on réduit le théorème énoncé au suivant:

Soit r un nombre impair ; si on a y fonctions complexes fl7 f2, fr
de r variables complexes ul7 u2, ur, continues pour, toutes les valeurs
des variables ^ (0, 0, 0), et si la relation

r
•••> ur — 0

j=1

1 E. Stiefel, Comm. Math. Helv., vol. 8 (1935), 305-351 et vol. 13 (1941), 201-218.
2 B. Eckmann, Zur Homotopietheorie gefaserter Räume. Comm. Math. Helv., 14

(1943).
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a lieu pour toutes les valeurs des u1, alors les fonctions ff2, îr ont
au moins un zéro commun (différent de (0, 0, 0)J.

On déduit de ce résultat trouvé par une voie purement topologique
de nouveaux théorèmes algébriques (en choisissant pour les fonctions
fj des formes ou des polynômes en uv ur). On peut poser le
problème de les démontrer par des méthodes algébriques 1.

13. — P. Bernays (Zurich). A propos des nouvelles recherches de

Gödel. — Dans son mémoire « The consistency of the axiom of choice
and of the generalized continuum-hypothesis with the axioms of set

theory» (Annals of Mathematics Studies, n° 3, Princeton, 1940; voir
aussi le rapport dans le Journal of Symbolic Logic, vol. VI, pp. 112-114),
Gödel a prouvé qu'à la base de la théorie axiomatique des ensembles,

y compris la délimitation exacte de la notion « definite Eigenschaft »

et aussi l'axiome du remplacement, mais non pas l'axiome du choix,
on peut établir un modèle de la théorie des ensembles pour lequel
l'assertion de l'axiome du choix ainsi que celle de l'hypothèse
généralisée du continu sont des théorèmes démontrables. La construction
de ce modèle comprend la définition par un procédé récurrent d'une
représentation univoque des nombres ordinaux sur les ensembles.

A ces résultats de Gödel on peut ajouter la remarque qu'il est
possible d'éliminer de toute la considération l'axiome sur l'ensemble de

tous les sous-ensembles. (Il s'entend que l'hypothèse généralisée du
continu doit alors être restreinte à des nombres cardinaux pour
lesquels il existe un plus haut nombre cardinal.)

On peut d'ailleurs montrer généralement qu'au sein d'une axiomatique

des ensembles, pour déduire les théorèmes généraux (bon ordre
et récurrence transfmie) ainsi que l'analyse infinitésimale, on peut se

passer de l'axiome sur l'ensemble de tous les sous-ensembles.
En écartant cet axiome de la théorie axiomatique des ensembles,

nous gagnons une plus grande liberté en regard des modèles — tout
en conservant l'opposition soulignée par Zermelo entre la théorie
axiomatique des ensembles et ses modèles. (Le rôle des « Grenzzahlen »

de Zermelo devient maintenant commun à tous les ordinaux « réguliers

» au sens de Hausdorfï.)
De cette manière, nous échappons à l'obligation de choisir entre un

cadre axiomatique trop restreint et un cadre dépassant déjà les
besoins de l'analyse en nous engageant dans la progression illimitée
des nombres cardinaux transfmis.

14. — W. Scherrer (Bern). Zur Theorie der Elementarteilchen. —
Veranlasst durch neue Ansätze zu einer skalaren relativistischen
Wellenmechanik 2 diskutiert der Referent folgenden Ansatz zu einer

1 Voir B. E. Eckmann, Comm. Math. Helveti,ci vol. 15, 1-26.
2 Vgl. Helv. Phys. Acta, XIV, 2, 81, und XIV, 2.
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Gravitationstheorie mit einer skalaren und durchwegs positiven
Wirkungsdichte

T T (x0 x± x2, x3) (1)

und dem Linienelement
ds2 Gikdxidxk (2)

fTE\/^dx0dx1dx2dx3 Extremum (3)

mit der Nebenbedingung

JT \/G dxo da?! d#2 konst. (4)

wo R den Riemannschen Krümmungsskalar darstellt.
Bezeichnet man .mit A die wegen (4) sich ergebende kosmologische

Konstante und benutzt man die Abkürzung

§2T
__

A BT
ik $xi8xk ikSm%f X}

so ergeben sich die Gleichungen

TRife T^-G^DT R -A (6)

zur Bestimmung der 11 Grössen G^ und T.
Als Folgerung aus (6) ergibt sich die Gleichung

QT=jT. (7)

Sie darf nicht unmittelbar als Wellengleichung angesprochen werden,
da nicht T2 sondern T die Materiedichte darstellt.

Das zugehörige kosmologische Problem ist eindeutig bestimmt und
liefert eine Welt, die sich aus einer Einsteinschen Zylinderwelt für
x0 — go in eine De-Sitter-Welt für x0 + oo entwickelt.

Einen allgemeinern Ansatz erhält man, wenn man in (3) R ersetzt
durch

R + k (grad) Lg T)2 (8)

15. — L. Locher (Winterthur). Ueber projektive Linien- und
Ebenenkoordinaten. — Homogene projektive Koordinaten bildet
man, indem die nichthomogenen K als Quotienten mit derselben
Hilfsvariablen im Nenner dargestellt werden. Zur Einführung stellt
sich die didaktische Frage, ob diese homogenen K nicht unmittelbar
anschaulich gelesen werden können. Das geht sehr einfach und wird
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doch in der Lehrbuchliteratur unterlassen. Führt mail das K-System
entsprechend ein, so lassen sich die K tt, e., des Punktes Uw +
Yv + — 0 und des mit ihm inzidierenden dualen Elementes U, V,
unmittelbar anschaulich fassen. Sind im metrischen Falle u, v, w,
rechtwinklige Punktkoordinaten, so stellen U, V, W, diejenigen
dazu dualen K dar, welche sich aus der pseudoeuklidischen Metrik
ergeben. Die vorgetragene Bemerkung ist in meinem Buche
Projektive Geometrie (Orell-Füssli, 1940, S. 215 f.) angewendet.

16. — Sophie Piccard (Neuchâtel). Sur une catégorie d'ensembles

parfaits et leur application à divers problèmes métriques. Quelques
propositions concernant les ensembles de sommes et les ensembles de

différences de nombres d'un ensemble linéaire. — Soit n un entier > 2,
soit k un entier tel que 1 < k < n et soient a0 ==0, av a2 au
(0 < a± < a2 < < au) k nombres donnés (distincts, quelconques)
de la suite 0, 1, 2,..., n — 1. L'ensemble P des nombres > qui peuvent
s'exprimer dans le système de numération à base n à l'aide des
seuls chiffres a0, av au est un ensemble parfait non dense de

mesure nulle. La famille LÂ de tous les ensembles P est dénombrable.
Nous avons étudié la structure des ensembles de cette famille qui
fournit de nombreux et instructifs exemples pour des théorèmes
d'existence dans la théorie des ensembles linéaires. Un ensemble P

peut être de première espèce L La condition nécessaire et suffisante

pour qu'il en soit ainsi est que a\+1 — ai — 1 (i 0, 1, 2, k — 1)
et que 2au > n —• 1, si au < n — 1, ou que l'ensemble K

| a0, öj, au j contienne, avec tout couple de nombres ai, dq+i tels

que ai+i — ai l > 1, les nombres ai — 1, ai — 2, ai — 1 + 2

et ai+i + 1, ai+\ + 2, ai+\ + l — 2.

A et B étant deux ensembles linéaires, désignons par <j (A, B)
l'ensemble des sommes a + b, ae A, b s B, et par S (A, B) l'ensemble
des différences a — &, a e A, b z B. En particulier, si A B,
posons or (A, A) a (A) et S (A, A) S (A).

On. a les propositions suivantes :

1. Si A est ouvert, g (A) est ouvert et S (A) est un G§.

2. Si A est fermé, borné ou semi-borné, g (A) est fermé. Il en est
de même de S (A), si l'ensemble A est borné.

3. Si A est dense en soi, il en est de même de cr (A) et de S (A).
Il résulte de 2 et de 3 que si A est parfait (borné ou semi-borné),

<j (A) est parfait. Si A est parfait et borné, S (A) est parfait.

i Terminologie de M. Mirimanoff (voir D. Mirimanoff, Sur un problème de la
théorie de la mesure, II, Fund. Math., t. IV, p. 118); M. Denjoy qualifie ces ensembles
d'ensembles présentant le caractère A (voir A. Denjoy, Sur une classe d'ensembles
parfaits discontinus, Comptes rendus du Congrès international des Mathématiciens,
Strasbourg, 1920).
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4. Si A est un F0, chacun des ensembles cr (A), 8 (A) est aussi un Fa.

5. Si A est un G§, g (A), aussi bien que a(A), peut ne pas être un Gs.

| 6. Si A et B sont deux ensembles linéaires de mesure intérieure
I positive, ou s'ils sont tous deux de seconde catégorie de Baire et
| jouissent de la propriété de Baire, ou encore, s'ils sont tous deux des
j ensembles parfaits de première espèce, l'ensemble cr (A, B), aussi

bien que 8 (A, B), contient un intervalle.
Les parties des énoncés 1-5 relatives aux ensembles S (A, B) sont

1 connues.
7. Il existe deux ensembles linéaires A, B, tels que S (A, B)

(—oo oo alors que mes cr (A, B) 0. Il existe aussi deux ensembles
linéaires C, D tels que cr (G, D) < 0, oo oo alors que mes

: 8 (C, D) - 0.

8. Il existe deux ensembles linéaires A et B, tels que mes cr (A) — 0

mes cr (B) 0, alors que mes g (A, B) > 0. Il existe aussi deux
ensembles linéaires G et D, tels que mes cr (A) > 0, mes g (B) > 0 et
que mes g (C, D) 0.

Une proposition analogue a, comme on sait, lieu pour les ensembles
de différences.

P et K ayant la signification indiquée dans le premier alinéa de ce

résumé, on a les résultats suivants concernant la mesure (lesbesguienne)
des ensembles cr (P) et S (P).

9. a) Supposons d'abord que au < n— 1.

Si tout nombre de la suite 1, 2, n — 1 appartient à g (K), on a
g(P) <0, oo).

: S'il existe au moins un nombre de la suite 1, 2, n — 1 qui ne
fait pas partie de cr (K), on a cr (P) ^ (< 0, oo

S'il existe au moins un entier i de la suite 1, 2, n — 1 qui est
absent dans g (K) en même temps que le nombre n + z', on a mes
cr (P) 0.

Si quel que soit le nombre i de la suite 1, 2,..., n — 1 qui fait défaut
dans cr (K) (et nous supposons qu'il existe au moins un tel nombre),
le nombre n + i appartient à cr (K), on a mes g (P) > 0 et en même

; temps mes [( < 0, co — a (P)] > 0.

1 b) Supposons maintenant que a& — n — 1.

Si deux nombres consécutifs de la suite 1, 2, 2n — 2 ne font pas
simultanément défaut dans cr (K) ou si aucun nombre de la suite

; 1, 2, n— 1 ne fait défaut dans cr (K), on a cr (P) < 0, oo).
j

Si deux nombres consécutifs de la suite 1, 2, n — 2 ou si un
nombre au moins de la dite suite et deux nombres consécutifs de la

j suite n, n + 1, 2n — 2 font défaut dans cr(K), on a a (P) ^
j <0, oo) et mes [( <0, oo) — cr(P)] > 0. Dans ce cas, cr (P) est
j de mesure nulle s'il existe au moins un entier i(l < i < n — 2) qui
\ L'Enseignement mathém., 39me année, 1942-1950. 6
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fait défaut dans a (K) en même temps que n + i> Par contre, si quel
que soit le nombre i de la suite 1, 2, n— 2 qui fait défaut dans
g (K), on a n + iea(K), l'ensemble er (P) est de mesure positive.

10. Désignons par Kj l'ensemble des nombres n — d, où d est un
élément non nul quelconque de l'ensemble des distances D (K) de K.

Si D (K) + Kt 10, 1, 2, n — 1 j et si 1 s D (K), on a

S(P) (— 00, 00 )•

Si ak < n — 1, on a soit S (P) (— oo, oo soit mes S (P) — 0.
Si ak n — 1, D(K) + K1={0, 1, 2, n— 1}, lëD(K),

mais s'il n'existe aucun nombre t de la suite 0, 1, 2, n — 2, tel que
t ï D (K), I + i D (K), on a S (P) (— ce oc

Si ak n — 1, D (K) + Kx { 0, 1, 2, n — 1}, 1 ë D (K),
mais s'il existe un nombre t de la suite 1, 2,..., n — 2, tel que t ë D (K),
t + 1 ë (D) (K), on a mes S (P) > 0 et mes [(— oo oo — S (P)] > 0.

Si au n — 1 et s'il existe au moins un nombre de la suite 0, 1, 2,
n — 2 qui fait défaut dans D (K) + K1? on a soit S(P) (—oo oo

soit mes S (P) 0.

11. P. étant un ensemble parfait de la famille l'ensemble a (P),
aussi bien que S (P), peut également faire partie de la famille Ü*.

12. Il existe des ensembles de la famille qui ne sauraient être
les ensembles de distances d'un ensemble linéaire.

17. — A. Speiser (Zürich). Ueber geodätische Linien.

18. — R. Wavre (Genève). L'itération au moyen des opérateurs
hermitiens. — Pour les définitions fondamentales on consultera
Y Introduction mathématique à la Mécanique quantique de G. Julia,
t. IL

Soit A un opérateur linéaire, (x, y) le produit scalaire, il peut être
défini dans l'espace d'Hilbert ou dans l'espace fonctionnel. On a, si A
est hermitien,

(Ax y) (x Ay)

Considérons la suite

yx Ax0 XrS I] i/! H nrme de
ni

y2 AXi ,«2 ~,n2\\y2\\ » » y2
/ï2

y3 Ax2 xaetc.
n3

Les xn sont donc les itérés de x0 ramenés sur la sphère unité:
Il %n j|2 ^ n-i %n) P
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On a

(Axq+i Xq) - ' (xq+1 5 Axq) —
lq+ 2 * ' * * W«+2

(®fl+i xq+i)
Uq + 2

«+1

et en vertu de l'inégalité de Schwartz, ces produits scalaires, ou cosinus,

sont <1.
D'où % < n2 <
On trouverait sans peine la relation

(x x) Uq+l
Aa+2v ' *V my + 2p ' "V

Enfin l'on a

Il ^ + 2p
II2 ^ \*q+2p ' *V

Soit n lim ni, n est fini ou infini, et posons

œ ^ .Ih i!?
n n n

Dès lors, deux cas sont possibles:

a) m ^ 0 alors

lim (xq+2p,
p->oo

et
WXq + 2p — XqW < Z

pourvu que q soit assez grand quel que soit p. La suite des itérés x^n
pairs et la suite des itérés impairs ^2n+i convergent fortement.

b) et) — 0; alors, que n soit fini ou infini, l'on a

lim \\xq + 2p< xqII> V2 — 71

P~> 00

quel que soit q. L'ensemble des itérés n'est pas compact, il n'admet
aucun point d'accumulation pour la convergence forte.

En résumé, deux cas seulement sont possibles:

ou bien les suites Xon et Xon+i convergent fortement (© ^ 0),
ou bien l'ensemble xn n'est pas compact pour la convergence forte.
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Si l'opérateur A est « complètement continu », alors co ^ 0.
Cette étude sera développée dans un article à paraître dans les

Commentarii Mathematici Helvetici (vol. 15). Quant au produit
infini cù nous l'avions déjà introduit dans le cas particulier des noyaux
symétriques de Fredholm dans un article paru en 1925.

19. — A. Pfluger (Fribourg). Sur la répartition des zéros des

fonctions entières. — Soit G (z) une fonction entière du type moyen
de l'ordre p, H (9) son type angulaire (Strahltypus). La famille de
droites x cos p0 + y • sin p0 H (0) (0 variable) enveloppe une
courbe convexe, appelée diagramme indicateur (Indikatordiagramm).
Soit if (9) la longueur de l'arc 0 < 0 < 9. Nous considérons les
ensembles de zéros de la fonction entière pour lesquels

N(ç)
7*-> 00

existe quel que soit 9; n (r, 9) désigne le nombre des zéros de
l'ensemble en question qui sont situés dans le secteur 0 < arg z < 9,
\ z \ < r. Nous prenons celui de ces ensembles qui est le plus ample
et nous l'appelons la partie mesurable des zéros, N (9) est appelé sa
mesure. On a alors:

2 tc • N (9) < p(cp)

c'est-à-dire le produit par 2tz de la mesure des zéros dans un angle ne
dépasse pas Fare correspondant du diagramme indicateur.

La méthode de démonstration repose essentiellement sur l'étude
des fonctions entières ayant une répartition mesurable de zéros (Cf.
Comm. Math. Helv., 11, 180-214). Soit g (z) une telle fonction, dont la
répartition des zéros coïncide avec la partie mesurable de G (z) dans
l'angle en question, et l (9) l'arc (fonction de 9) de son diagramme
indicateur. On a alors 2tz dN (9) dl (9) et d £ (9) — dl (9) ;> 0,

parce que est une fonction entière. Notre affirmation résulte

de là.

Remarque: J'ai appris postérieurement que le résultat ci-dessus est
déjà démontré par B. Lévine dans Ree. math. Moscou, t. 2.
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