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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications.

Réunion de Bale, 6 et 7 septembre 1941.

La Société mathématique suisse a tenu sa trentième assemblée
annuelle à Bâle, les 6 et 7 septembre 1941, sous la présidence de

M. le professeur L. Kollros, président, en même temps que la
121me session annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a constitué comme suit son
Comité pour les années 1942 et 1943: MM. les professeurs P. Büchner
(Bâle), président; G. de Rham (Lausanne), vice-président; M. Gut
(Zurich), secrétaire-caissier.

La partie scientifique a été consacrée aux communications ci-après,
réparties sur trois séances.

1. — Karl Merz (Chur). Kreuzhaube erweitert nach Boy (Calotte
polyédrique d'après Boy). — Eine einfache Kreuzhaube 1 besitzt eine

Doppelstrecke SO 5, wobei S die gemeinsame Spitze ist, von den
beiden an SO in Scheitellage anstossenden dreiseitigen Pyramiden,
und 0 der Schnitt der beiden Diagonalen des Quadrates, auf dem
über zwei Scheiteldreiecken die beiden Pyramiden errichtet sind.
Wird das unter jenem Quadrat ansetzende Prisma noch durch seine
Grundfläche abgeschlossen, so ist das entstandene Polyeder als
11-Flach mit e 10, k 20, also c 1, eine Abbildung der projektiven

Ebene, wobei S und 0 singulare Punkte sind, als Endpunkte der
Doppelstrecke.

Diese Kreuzhaube soll nun so erweitert werden, dass dadurch am
Polyeder eine Selbstdurchdringung entsteht, die einen einfachen
geschlossenen Streckenzug bildet, so dass keine Endpunkte mehr an
der Durchdringung bestehen. Um dies zu erzielen, sind zu der Doppelstrecke

OS 5 noch weitere Doppelstrecken anzufügen, z. B.
ST 9 und TO 3, womit das Doppelstreckendreieck SOT entsteht.
Um dabei die neue Doppelstrecke 9 zu erhalten, hat man die in 9 als

i K. Merz, Kreuzhaube aus verschiedenen Netzen. Vierteljahrsschrift der Natur-
orsehenden Gesellschaft in Zürich, LX X XV, 1940 (Seite 51).
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Kante zusammenstossenden beiden Flächen A und E über 9 hinaus
zu erweitern und dann noch mittels zwei abschliessenden Flächen
eine neue Scheitelzelle aussen längs 9 anzufügen. Längs 3 entsteht,
auf entsprechende Weise, eine innere Hohlzelle, die in Scheitellage ist
zu einer äussern Lücke der Kreuzhaube. Von diesem geschlossenen
Polyeder, / 15, e 14, k — 28, also auch mit c — 1, mit dem
Dreieck SOT als Selbstdurchdringung, lässt sich ein Netz herstellen
(Vorweisung). Bei der Aufklappung dieses Netzes zum 15 Flach tritt
die Eigentümlichkeit ein, dass die dabei entstehenden
Wendestrecken, in denen Ober- und Unterseite des Netzes aneinander-
stossen und damit die Einseitigkeit herbeiführen, zugleich in die
Doppelstrecken fallen. Das Dreieck SOT der Doppelstrecken
entspricht damit der unendlich fernen Geraden, welche die Wendegerade
der projektiven Ebene ist, und es entspricht daher zugleich auch der
Selbstdurchdringung dieser Ebene. Diese durch die erweiterte Kreuzhaube

erhaltene Abbildung der projektiven Ebene hat allerdings noch
die drei singulären Punkte S, 0, T, die aber von einfacherer Art sind
als die sechs singulären Punkte am Heptaeder, in denen die drei
Doppelstrecken als Selbstdurchdringungen endigen. Ausserdem fehlt
der dreifache Punkt, wie er am Heptaeder auftritt. Doch tritt dafür
eine Hohlzelle auf. Dieses Polyeder kann als Zugang zu einer neuen
Boy'schen Fläche dienen.

2. — M. Diethelm (Rickenbach, Schwyz). Ein kurzer Weg zur
Entwicklung der Hyperbelfunktionen. — L'auteur indique un moyen
rapide et élémentaire permettant de présenter, dans une première
étude, les propriétés essentielles des fonctions hyperboliques en
partant de l'hyperbole et du secteur hyperbolique. Analogies entre les
fonctions hyperboliques et les fonctions circulaires.

3. — Julien Malengreau (Montreux). Euclide ou Pythagore
(Dissertation sur le continu et le discontinu.) — Pythagore considérait
la droite comme une somme de points. Cette conception a été
abandonnée depuis la découverte des irrationnelles. Les données qui
servent de base à la géométrie d'Euclide présupposent que les figures
appartiennent à un espace continu, aussi la géométrie classique
fondée sur la méthode euclidienne ne fait-elle aucune allusion à

l'espace discontinu. L'auteur se propose de montrer qu'il s'agit là
d'une lacune à combler et dans ce but il examine de près la théorie
de l'évaluation des grandeurs. Cette théorie est basée sur la notion
de limite dont l'emploi ne se justifie cependant qu'en cas de nécessité
absolue. Il est donc indispensable de commencer la géométrie par la
recherche du plus vaste des ensembles de points tel que ses grandeurs
puissent toutes être évaluées au moyen de la seule notion de commune
mesure. Cet ensemble est un espace discontinu auquel l'auteur a donné
le nom d'espace rationnel.
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L'évaluation des grandeurs de l'espace rationnel est basée sur la
relation de Stewart que l'auteur établit en partant des conditions
auxquelles il faut satisfaire pour obtenir la compatibilité des postulats
nécessaires à la construction de cet espace. La relation de Stewart
devient ainsi la garantie de stabilité de tout l'édifice euclidien.

L'espace rationnel jouit d'une propriété remarquable d'après
laquelle non seulement les longueurs d'une même droite sont toujours
entre elles dans un rapport rationnel, mais aussi les surfaces d'un
même plan, les volumes d'un même espace à trois dimensions, etc.

Ce n'est qu'après l'étude de cet espace discontinu que l'on devrait
commencer celle de l'espace continu; composé de l'ensemble de tous
les espaces rationnels simultanément possibles en vertu du postulat
de continuité adopté. Cette seconde étude peut se faire à l'aide de la
notion de limite dont l'emploi est alors justifié du fait qu'avec l'étude
de l'espace rationnel on a utilisé la notion de la commune mesure dans
toute l'étendue possible.

L'auteur montre que la nécessité de commencer la géométrie par
l'espace discontinu apparaît encore au cours de la résolution des

problèmes que pose la recherche des fondements de la géométrie.
C'est parce qu'on a toujours abordé le côté mathématique de cette
question, en partant de l'espace continu qu'elle a fini par apparaître
inextricable. En réalité la réponse à cette question s'identifie tout
simplement à la géométrie même, lorsque celle-ci est bien ordonnée,
c'est-à-dire commence par l'édification point par point de l'espace
rationnel. La considération de cette identité permet à l'auteur d'affirmer

que c'est la possibilité de la géométrie classique qui entraîne
celle de la géométrie analytique et non pas l'inverse, comme on l'a
supposé avec le professeur Hilbert.

4. — Johann Jakob Burckhardt (Zurich). — Les œuvres posthumes
de Ludwig Schläfli. — Résumé d'un rapport sur la classification et
l'élaboration d'un catalogue des œuvres posthumes de Ludwig
Schläfli, qui doit être publié, avec une Table des matières et une
Note sur les travaux de Schläfli relatifs à la Théorie des formes
quadratiques, dans les Mitteilungen der Berner Naturforschenden
Gesellschaft.

Les œuvres posthumes ont été classées sur la base du relevé de Graf
{Mitt, der Berner Naturf. Ges., 1896) avec l'aide de la Fondation
Escher-Abegg. Nous avons trouvé des manuscrits méritant une mise
au point dans les domaines suivants: 1. Théorie des surfaces du
troisième ordre. — 2. 25 cahiers de géométrie. — 3. 12 cahiers sur
la théorie d'Hermite des équations modulaires. — 4. Théorie des
formes quadratiques.

5- — Louis Kollros (Zurich). — Généralisation des théorèmes de
Miquel et Clifford. Cinq droites d'un plan, prises quatre à quatre,
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déterminent cinq paraboles dont les foyers sont sur un cercle (théorème

de Miquel). Ce cercle est le lieu géométrique des points P tels
que les pieds des perpendiculaires abaissées de P sur les cinq droites
données et le point P lui-même soient sur un conique. Pour les points
de Miquel, cette conique dégénère en deux droites.

Six droites d'un plan, prises cinq à cinq, déterminent six cercles
de Miquel; ces six cercles passent par un point; sept droites, prises
six à six, déterminent sept de ces points qui sont sur un cercle, et ainsi
de suite (théorème de Clifford, Math. Papers, p. 38). Les cercles de
Clifford peuvent aussi être définis comme lieux géométriques; on
trouve le résultat suivant:

On donne 2n -f 1 droites dans un plan; le lieu géométrique des

points P tels que les pieds des perpendiculaires abaissées de P sur
ces droites soient sur une courbe algébrique de degré n ayant en P un
point multiple d'ordre n — 1 est un cercle. Si on a 2n + 2 droites, il n'y
a qu'un point jouissant de cette propriété.

Démonstration de deux formules de Steiner. — Une conique est
déterminée par son centre 0 et trois tangentes. Soient A, B, C les
sommets du triangle formé par les trois tangentes, A/, B', C' les
milieux des côtés opposés a, 6, c. Les côtés du triangle A' B' C'
prolongés indéfiniment divisent le plan en sept parties: l'intérieur du
triangle A'B'C', les trois parties extérieures comprises dans les

angles A', C', les trois parties adjacentes aux côtés. La conique
est une ellipse si le centre 0 est dans l'une des quatre premières
parties, une hyperbole si 0 est dans l'une des trois dernières.

0 est aussi le centre d'une conique circonscrite au triangle ABC;
elle est toujours de même nature que la conique inscrite.

Si r est le rayon du cercle circonscrit au triangle ABC, si x, y, z sont
les distances de 0 aux côtés du triangle ABC et x', y\ z\ les distances
de 0 aux côtés du triangle A' B' C', l'aire Ej de l'ellipse inscrite est
donnée par la formule:

E7 4 7T2 rx' y' z'

et l'aire Ec de l'ellipse circonscrite, par:

•>

2
x2 y2 z2

E„ n2r -
•

c x y z

Ces deux formules ont été indiquées sans démonstration par
Steiner (Œuvres complètes, t. II, p. 329). On peut les démontrer en
déterminant le produit des puissances des involutions des points
conjugués sur les axes; on voit ainsi que si la conique est une hyperbole

inscrite ou circonscrite au triangle ABC, chaque formule donne
l'aire de l'ellipse qui a les mêmes axes que l'hyperbole (voir Steiners

Vorlesungen über synthetische Geometrie, 2. Teil, bearbeitet von
Schröter, Anhang, p. 556 à 564).
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Mais on peut aussi transformer les formules en expressions
invariantes par affinité en multipliant et divisant la première par abc

et la seconde par a2 b2 c2. Si l'on désigne l'aire du triangle ABC par T
abc : 4r) et les doubles des aires des triangles OBC, OCA, OAB

respectivement par t ax, t' by, t" cz, on aura: ax' — T — t,
by' T — t', cz' — T — t" et les deux formules deviendront:

p2 tt2 (T — i) (T — t') (T — t") T,2 tt2 t21'2 C2
hi— T ' c ^ 4T(T —i) (T— 0 (T— t")

'

Il suffit alors de les démontrer pour le cercle inscrit ou le cercle
circonscrit à un triangle, ce qui est élémentaire.

Une conique est aussi déterminée par son centre 0 et un triangle
polaire ABC, mais elle n'est pas de même nature que la conique de

même centre inscrite ou circonscrite à ABC; elle est imaginaire si 0
est à l'intérieur du triangle ABC; c'est une ellipse si 0 est en dehors
et dans un des angles A, B, C; c'est une hyperbole si 0 est dans l'une
des trois parties extérieures adjacentes aux côtés. Dans le cas de

l'ellipse, l'aire Ep est donnée par la formule:

Bp 2 TT2 rxyz s=> tc2 • ^ •

Mais dans tous les cas, la valeur absolue du produit des puissances
des involutions des points conjugués sur les deux axes est 2rxyz. On a
donc toujours en valeur absolue:

ou, si a et ß sont les demi-axes de la conique circonscrite, et a!, ß'
ceux de la conique inscrite :

2 rxyz aß a'ß7

En particulier, si la conique inscrite est un cercle de rayon r', on a:

2rr' aß et a + ß 2r

Donc, les ellipses de centre 0 circonscrites à tous les triangles inscrits
au cercle (r) et circonscrits au cercle (r') sont égales.

6. — H. Hopf (Zurich). Sur certaines relations entre la Théorie des

Groupes et la Topologie. — On sait que le premier groupe de Betti B1
d'un complexe est déterminé par son groupe fondamental G: il est le

groupe quotient G/Cg, où Cg est le groupe des commutateurs
(Kommutatorgruppe, ou groupe dérivé) de G. Les recherches communiquées
ici concernent l'influence du groupe fondamental G sur le deuxième
groupe de Betti B2.
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Théorème I: A tout groupe G est attaché, par une opération algé¬
brique bien déterminée, un groupe abélien G*; si G est le groupe
fondamental d^un complexe K et si S2 est le sous-groupe de B2

composé des classes Thomologie qui contiennent des images continues

de la surface de la sphère, on a:

B2 / S2 G*

Corollaire: G* est image homomorphe de B2; le deuxième groupe
de Betti n'est donc en ce sens pas « plus petit » que le groupe G*, qui
est déterminé par le groupe fondamental.

Complément au théorème I: Pour chaque groupe G (avec un
nombre fini de générateurs et de relations) il y a un complexe K dont
le groupe fondamental est G et pour lequel S2 0; G* est par suite
la « borne inférieure exacte » des groupes B2 qui sont compatibles,
en tant que deuxièmes groupes de Betti, avec le groupe fondamental G.

Pour caractériser G* algébriquement, nous utilisons le procédé
suivant de formation de groupes: F étant un groupe quelconque,
R un sous-groupe de F, soit CF(R) le sous-groupe de F engendré par
tous les éléments x r x~x r_1 avec x z F, r s R; C2 (F) CF est

par exemple le groupe des commutateurs, CF (CF) C* est le

« deuxième groupe des commutateurs » de F.

Théorème II: Etant donné un homorphisme du groupe libre F sur
le groupe G ou Vimage inverse de Vélément unité de G est le

sous-groupe invariant R de F, on a:

GÎ - (CF n R)/Cf(R)

Le fait que le groupe qui apparaît au second membre de cette
isomorphie ne dépend pas des groupes F et R, mais seulement du

groupe quotient F/R, donc seulement de G, constitue un théorème
de théorie des groupes.

Exemple : Si G est le groupe abélien libre de rang p, G* est le groupe

abélien libre de rang
p ^ ^. On peut le voir géométriquement

en se basant sur le théorème I ou algébriquement en se basant sur
le théorème II.

Les groupes CF (R) jouent un rôle important dans la nouvelle
théorie des groupes, en particulier dans des travaux de Hall, Magnus,
Witt; il convenait de souligner ici la relation entre ce procédé de

formation de groupes et des concepts topologiques.
Un exposé complet paraîtra dans les Commentarii Mathematici

Helvetici, vol. 14, pp. 257-309.
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7. — Pierre Humbert t (Lausanne). Polyèdre sans singularités
topologiques homéomorphe au plan projectif dans Vespace à trois dimensions.

(Présenté par H. Hopf, Zurich.) — Par des modifications
apportées à un polyèdre que K. Merz a obtenu à partir de
l'heptaèdre, un polyèdre est construit dans l'espace euclidien à trois dimensions,

qui est un modèle du plan projectif dans le sens suivant: Il est

I l'image uniforme et continue du plan projectif, et chaque point du
I plan projectif possède un voisinage dans lequel la correspondance est
{ biunivoque. Ce modèle possède la même symétrie que la surface connue
; de Boy et peut être considéré comme une approximation polyédrale

de cette surface, qui est ainsi obtenue par une voie nouvelle et intui¬
tive. La description exacte de ce modèle paraîtra dans les Comment.

• Math. Helv., vol. 14, en même temps que la construction mentionnée
| de K. Merz.

8. — G. de Rham (Lausanne). Sur une décomposition des chaînes
d'un complexe. — Soit un complexe à n dimensions C, et soient
a?(i 1, 2, aq; 0 < q <; n) ses cellules à q dimensions, prises

i| avec une orientation déterminée. On appelle produit scalaire des
i deux chaînes

ciet *2iyiai
j i i

| le nombre
I ci. dq •

j A toute chaîne cq correspond une chaîne à une dimension de moins,
j sa frontière 3' d, et une chaîne à. une dimension de plus, COc^1, que
i nous appellerons sa cofrontière, selon l'expression proposée par
i M. Whitney.

Quelles que soient les chaînes cq+1 et c®, on a la relation

j Zïcq+l - cq cô+1 cOcq (1)

| Cette relation peut servir de définition de la cofrontière. On a d'ail¬
leurs une définition équivalente en considérant le complexe réciproque
de C; à chaque chaîne à q dimensions de C correspond, comme on
sait, une chaîne à n — q dimensions du complexe réciproque, sa

j duale, et la cofrontière n'est pas autre chose que la duale de la
frontière de la duale. On dit que la chaîne cq est fermée si cq 0,
cofermée si (N)eß 0, homologue à zéro s'il existe une chaîne cq+1
telle que Wcq+l cl, cohomologue à zéro s'il existe une chaîne
eq+l telle que COc^-1 À Nous appellerons harmonique toute chaîne
à la fois fermée et cofermée. On a le théorème suivant:
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Toute chaîne <A peut être décomposée, d'une manière unique, en la
somme dune chaîne homologue à zéro, dune chaîne cohomologue à zéro
et dune chaîne harmonique.

La démonstration résulte très simplement de la formule (1), en
remarquant que, pour qu'une chaîne soit cofermée, il faut et il suffît
qu'elle soit orthogonale à toute chaîne homologue à zéro, et pour
qu'elle soit fermée, il faut et il suffît qu'elle soit orthogonale à toute
chaîne cohomologue à zéro. Deux chaînes sont dites orthogonales si
leur produit scalaire est nul. On admet que le domaine des coefficients
des chaînes est un corps; si la chaîne & est à coefficients entiers, il
peut arriver que les chaînes composantes ne soient pas à coefficients
entiers.

Corollaire: Dans chaque classe dUiomdogie de cycles, comme dans
chaque classe de cohomologie de cocycles, il y a une chaîne harmonique
et une seule.

Ces propositions présentent une analogie parfaite avec la théorie
des formes harmoniques sur un espace de Riemann, considérées par
M. Hodge. Aux chaînes de dimension q correspondent les formes
différentielles extérieures de degré #, à l'opération CD correspond la
dérivation extérieure, qui associe à chaque forme une autre forme
de degré inférieur d'une unité; chaque forme co de degré q possède,
dans un espace de Riemann à n dimensions, une forme adjointe o*
de degré n — </, analogue à la chaîne duale, ce qui permet de définir
le produit scalaire de deux formes co1 et o)2 par l'intégrale

/ ou ou

étendue à tout l'espace de Riemann et une opération analogue à

l'opération A7 par la formule fw [C9co*]*.

9. — H. Hadwiger (Bern). Bemerkung über bedingt konvergente
Vektorreihen. — Paraîtra dans Math. Zeitsehr. ; vol. 47.

10. — Ch. Blanc (Lausanne). Les polyèdres et les théorèmes dAbel
et de Riemann-Roch. Paraîtra dans les Comment. Math. Helv.,
vol. 14, pp. 212-229.

11. — F. Fiala (Genève). Sur le problème isopérimétrique L — On
considère une surface homéomorphe au plan euclidien et normale au
sens de Cartan. On peut démontrer les deux théorèmes suivants 2

:

1 Le mémoire paraîtra dans le vol. XV des Comment. Math. Helv.
2 Voir aussi: F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à

courbure positive. Comment. Math. Helv., vol. XIII, 1941, pp. 993-346.
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A. — Si la courbure totale est partout positive, parmi toutes les

courbes simplement fermées de longueur donnée, il en existe au
moins une qui contient un domaine d'aire maximum.

B. — Si la courbure totale est partout négative, et si l'intégrale
de cette courbure est bornée inférieurement, parmi toutes les courbes

simplement fermées de longueur donnée, il n'en existe aucune qui
contienne un domaine d'aire maximum.

12. — B. Eckmann (Zurich). Vektorfelder auf Sphären (Champs de

vecteurs sur les sphères). — Par un champ de vecteurs (ou un champ
de directions) sur une sphère, nous entendons un champ continu de

vecteurs-unité tangents à cette sphère. D'après un théorème connu de

Poincaré et Brouwer, il n'existé pas de champs de vecteurs sur les

sphères à dimension paire (tandis qu'il existe un tel champ sur toute
sphère à dimension impaire). Un k-champ sur une sphère est un
système de /c-champs de vecteurs tel qu'en tout point de la sphère les

^-vecteurs du système soient linéairement indépendants, ou bien, ce

qui revient au même, forment un système orthogonal. S'il existe
sur une sphère à n dimensions un 72-champ, on dit que cette sphère
est parallélisable1; les sphères de dimension 1, 3, 7 ont cette
propriété, comme on sait1, mais on ne sait pas s'il existe d'autres sphères
parallélisables. Les méthodes de Stiefel x, qui dans le cas des espaces
projectifs réels ont conduit à bien des résultats, ne sont plus
applicables dans le cas des sphères. Cependant nous pouvons montrer:

Sur les sphères à 4s + 1 dimensions il n'existe pas de 2-champ.
Une telle sphère ne peut donc être parallélisable.

La démonstration de ce théorème, qui sera publiée prochainement,
fait usage des « groupes d'homotopie » introduits par Hurewicz et de

quelques résultats de la théorie des « espaces fibrés » 2, et de plus de
certaines propriétés du groupe fondamental des groupes orthogonaux.
Dans cette démonstration on réduit le théorème énoncé au suivant:

Soit r un nombre impair ; si on a y fonctions complexes fl7 f2, fr
de r variables complexes ul7 u2, ur, continues pour, toutes les valeurs
des variables ^ (0, 0, 0), et si la relation

r
•••> ur — 0

j=1

1 E. Stiefel, Comm. Math. Helv., vol. 8 (1935), 305-351 et vol. 13 (1941), 201-218.
2 B. Eckmann, Zur Homotopietheorie gefaserter Räume. Comm. Math. Helv., 14

(1943).
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a lieu pour toutes les valeurs des u1, alors les fonctions ff2, îr ont
au moins un zéro commun (différent de (0, 0, 0)J.

On déduit de ce résultat trouvé par une voie purement topologique
de nouveaux théorèmes algébriques (en choisissant pour les fonctions
fj des formes ou des polynômes en uv ur). On peut poser le
problème de les démontrer par des méthodes algébriques 1.

13. — P. Bernays (Zurich). A propos des nouvelles recherches de

Gödel. — Dans son mémoire « The consistency of the axiom of choice
and of the generalized continuum-hypothesis with the axioms of set

theory» (Annals of Mathematics Studies, n° 3, Princeton, 1940; voir
aussi le rapport dans le Journal of Symbolic Logic, vol. VI, pp. 112-114),
Gödel a prouvé qu'à la base de la théorie axiomatique des ensembles,

y compris la délimitation exacte de la notion « definite Eigenschaft »

et aussi l'axiome du remplacement, mais non pas l'axiome du choix,
on peut établir un modèle de la théorie des ensembles pour lequel
l'assertion de l'axiome du choix ainsi que celle de l'hypothèse
généralisée du continu sont des théorèmes démontrables. La construction
de ce modèle comprend la définition par un procédé récurrent d'une
représentation univoque des nombres ordinaux sur les ensembles.

A ces résultats de Gödel on peut ajouter la remarque qu'il est
possible d'éliminer de toute la considération l'axiome sur l'ensemble de

tous les sous-ensembles. (Il s'entend que l'hypothèse généralisée du
continu doit alors être restreinte à des nombres cardinaux pour
lesquels il existe un plus haut nombre cardinal.)

On peut d'ailleurs montrer généralement qu'au sein d'une axiomatique

des ensembles, pour déduire les théorèmes généraux (bon ordre
et récurrence transfmie) ainsi que l'analyse infinitésimale, on peut se

passer de l'axiome sur l'ensemble de tous les sous-ensembles.
En écartant cet axiome de la théorie axiomatique des ensembles,

nous gagnons une plus grande liberté en regard des modèles — tout
en conservant l'opposition soulignée par Zermelo entre la théorie
axiomatique des ensembles et ses modèles. (Le rôle des « Grenzzahlen »

de Zermelo devient maintenant commun à tous les ordinaux « réguliers

» au sens de Hausdorfï.)
De cette manière, nous échappons à l'obligation de choisir entre un

cadre axiomatique trop restreint et un cadre dépassant déjà les
besoins de l'analyse en nous engageant dans la progression illimitée
des nombres cardinaux transfmis.

14. — W. Scherrer (Bern). Zur Theorie der Elementarteilchen. —
Veranlasst durch neue Ansätze zu einer skalaren relativistischen
Wellenmechanik 2 diskutiert der Referent folgenden Ansatz zu einer

1 Voir B. E. Eckmann, Comm. Math. Helveti,ci vol. 15, 1-26.
2 Vgl. Helv. Phys. Acta, XIV, 2, 81, und XIV, 2.
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Gravitationstheorie mit einer skalaren und durchwegs positiven
Wirkungsdichte

T T (x0 x± x2, x3) (1)

und dem Linienelement
ds2 Gikdxidxk (2)

fTE\/^dx0dx1dx2dx3 Extremum (3)

mit der Nebenbedingung

JT \/G dxo da?! d#2 konst. (4)

wo R den Riemannschen Krümmungsskalar darstellt.
Bezeichnet man .mit A die wegen (4) sich ergebende kosmologische

Konstante und benutzt man die Abkürzung

§2T
__

A BT
ik $xi8xk ikSm%f X}

so ergeben sich die Gleichungen

TRife T^-G^DT R -A (6)

zur Bestimmung der 11 Grössen G^ und T.
Als Folgerung aus (6) ergibt sich die Gleichung

QT=jT. (7)

Sie darf nicht unmittelbar als Wellengleichung angesprochen werden,
da nicht T2 sondern T die Materiedichte darstellt.

Das zugehörige kosmologische Problem ist eindeutig bestimmt und
liefert eine Welt, die sich aus einer Einsteinschen Zylinderwelt für
x0 — go in eine De-Sitter-Welt für x0 + oo entwickelt.

Einen allgemeinern Ansatz erhält man, wenn man in (3) R ersetzt
durch

R + k (grad) Lg T)2 (8)

15. — L. Locher (Winterthur). Ueber projektive Linien- und
Ebenenkoordinaten. — Homogene projektive Koordinaten bildet
man, indem die nichthomogenen K als Quotienten mit derselben
Hilfsvariablen im Nenner dargestellt werden. Zur Einführung stellt
sich die didaktische Frage, ob diese homogenen K nicht unmittelbar
anschaulich gelesen werden können. Das geht sehr einfach und wird
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doch in der Lehrbuchliteratur unterlassen. Führt mail das K-System
entsprechend ein, so lassen sich die K tt, e., des Punktes Uw +
Yv + — 0 und des mit ihm inzidierenden dualen Elementes U, V,
unmittelbar anschaulich fassen. Sind im metrischen Falle u, v, w,
rechtwinklige Punktkoordinaten, so stellen U, V, W, diejenigen
dazu dualen K dar, welche sich aus der pseudoeuklidischen Metrik
ergeben. Die vorgetragene Bemerkung ist in meinem Buche
Projektive Geometrie (Orell-Füssli, 1940, S. 215 f.) angewendet.

16. — Sophie Piccard (Neuchâtel). Sur une catégorie d'ensembles

parfaits et leur application à divers problèmes métriques. Quelques
propositions concernant les ensembles de sommes et les ensembles de

différences de nombres d'un ensemble linéaire. — Soit n un entier > 2,
soit k un entier tel que 1 < k < n et soient a0 ==0, av a2 au
(0 < a± < a2 < < au) k nombres donnés (distincts, quelconques)
de la suite 0, 1, 2,..., n — 1. L'ensemble P des nombres > qui peuvent
s'exprimer dans le système de numération à base n à l'aide des
seuls chiffres a0, av au est un ensemble parfait non dense de

mesure nulle. La famille LÂ de tous les ensembles P est dénombrable.
Nous avons étudié la structure des ensembles de cette famille qui
fournit de nombreux et instructifs exemples pour des théorèmes
d'existence dans la théorie des ensembles linéaires. Un ensemble P

peut être de première espèce L La condition nécessaire et suffisante

pour qu'il en soit ainsi est que a\+1 — ai — 1 (i 0, 1, 2, k — 1)
et que 2au > n —• 1, si au < n — 1, ou que l'ensemble K

| a0, öj, au j contienne, avec tout couple de nombres ai, dq+i tels

que ai+i — ai l > 1, les nombres ai — 1, ai — 2, ai — 1 + 2

et ai+i + 1, ai+\ + 2, ai+\ + l — 2.

A et B étant deux ensembles linéaires, désignons par <j (A, B)
l'ensemble des sommes a + b, ae A, b s B, et par S (A, B) l'ensemble
des différences a — &, a e A, b z B. En particulier, si A B,
posons or (A, A) a (A) et S (A, A) S (A).

On. a les propositions suivantes :

1. Si A est ouvert, g (A) est ouvert et S (A) est un G§.

2. Si A est fermé, borné ou semi-borné, g (A) est fermé. Il en est
de même de S (A), si l'ensemble A est borné.

3. Si A est dense en soi, il en est de même de cr (A) et de S (A).
Il résulte de 2 et de 3 que si A est parfait (borné ou semi-borné),

<j (A) est parfait. Si A est parfait et borné, S (A) est parfait.

i Terminologie de M. Mirimanoff (voir D. Mirimanoff, Sur un problème de la
théorie de la mesure, II, Fund. Math., t. IV, p. 118); M. Denjoy qualifie ces ensembles
d'ensembles présentant le caractère A (voir A. Denjoy, Sur une classe d'ensembles
parfaits discontinus, Comptes rendus du Congrès international des Mathématiciens,
Strasbourg, 1920).
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4. Si A est un F0, chacun des ensembles cr (A), 8 (A) est aussi un Fa.

5. Si A est un G§, g (A), aussi bien que a(A), peut ne pas être un Gs.

| 6. Si A et B sont deux ensembles linéaires de mesure intérieure
I positive, ou s'ils sont tous deux de seconde catégorie de Baire et
| jouissent de la propriété de Baire, ou encore, s'ils sont tous deux des
j ensembles parfaits de première espèce, l'ensemble cr (A, B), aussi

bien que 8 (A, B), contient un intervalle.
Les parties des énoncés 1-5 relatives aux ensembles S (A, B) sont

1 connues.
7. Il existe deux ensembles linéaires A, B, tels que S (A, B)

(—oo oo alors que mes cr (A, B) 0. Il existe aussi deux ensembles
linéaires C, D tels que cr (G, D) < 0, oo oo alors que mes

: 8 (C, D) - 0.

8. Il existe deux ensembles linéaires A et B, tels que mes cr (A) — 0

mes cr (B) 0, alors que mes g (A, B) > 0. Il existe aussi deux
ensembles linéaires G et D, tels que mes cr (A) > 0, mes g (B) > 0 et
que mes g (C, D) 0.

Une proposition analogue a, comme on sait, lieu pour les ensembles
de différences.

P et K ayant la signification indiquée dans le premier alinéa de ce

résumé, on a les résultats suivants concernant la mesure (lesbesguienne)
des ensembles cr (P) et S (P).

9. a) Supposons d'abord que au < n— 1.

Si tout nombre de la suite 1, 2, n — 1 appartient à g (K), on a
g(P) <0, oo).

: S'il existe au moins un nombre de la suite 1, 2, n — 1 qui ne
fait pas partie de cr (K), on a cr (P) ^ (< 0, oo

S'il existe au moins un entier i de la suite 1, 2, n — 1 qui est
absent dans g (K) en même temps que le nombre n + z', on a mes
cr (P) 0.

Si quel que soit le nombre i de la suite 1, 2,..., n — 1 qui fait défaut
dans cr (K) (et nous supposons qu'il existe au moins un tel nombre),
le nombre n + i appartient à cr (K), on a mes g (P) > 0 et en même

; temps mes [( < 0, co — a (P)] > 0.

1 b) Supposons maintenant que a& — n — 1.

Si deux nombres consécutifs de la suite 1, 2, 2n — 2 ne font pas
simultanément défaut dans cr (K) ou si aucun nombre de la suite

; 1, 2, n— 1 ne fait défaut dans cr (K), on a cr (P) < 0, oo).
j

Si deux nombres consécutifs de la suite 1, 2, n — 2 ou si un
nombre au moins de la dite suite et deux nombres consécutifs de la

j suite n, n + 1, 2n — 2 font défaut dans cr(K), on a a (P) ^
j <0, oo) et mes [( <0, oo) — cr(P)] > 0. Dans ce cas, cr (P) est
j de mesure nulle s'il existe au moins un entier i(l < i < n — 2) qui
\ L'Enseignement mathém., 39me année, 1942-1950. 6
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fait défaut dans a (K) en même temps que n + i> Par contre, si quel
que soit le nombre i de la suite 1, 2, n— 2 qui fait défaut dans
g (K), on a n + iea(K), l'ensemble er (P) est de mesure positive.

10. Désignons par Kj l'ensemble des nombres n — d, où d est un
élément non nul quelconque de l'ensemble des distances D (K) de K.

Si D (K) + Kt 10, 1, 2, n — 1 j et si 1 s D (K), on a

S(P) (— 00, 00 )•

Si ak < n — 1, on a soit S (P) (— oo, oo soit mes S (P) — 0.
Si ak n — 1, D(K) + K1={0, 1, 2, n— 1}, lëD(K),

mais s'il n'existe aucun nombre t de la suite 0, 1, 2, n — 2, tel que
t ï D (K), I + i D (K), on a S (P) (— ce oc

Si ak n — 1, D (K) + Kx { 0, 1, 2, n — 1}, 1 ë D (K),
mais s'il existe un nombre t de la suite 1, 2,..., n — 2, tel que t ë D (K),
t + 1 ë (D) (K), on a mes S (P) > 0 et mes [(— oo oo — S (P)] > 0.

Si au n — 1 et s'il existe au moins un nombre de la suite 0, 1, 2,
n — 2 qui fait défaut dans D (K) + K1? on a soit S(P) (—oo oo

soit mes S (P) 0.

11. P. étant un ensemble parfait de la famille l'ensemble a (P),
aussi bien que S (P), peut également faire partie de la famille Ü*.

12. Il existe des ensembles de la famille qui ne sauraient être
les ensembles de distances d'un ensemble linéaire.

17. — A. Speiser (Zürich). Ueber geodätische Linien.

18. — R. Wavre (Genève). L'itération au moyen des opérateurs
hermitiens. — Pour les définitions fondamentales on consultera
Y Introduction mathématique à la Mécanique quantique de G. Julia,
t. IL

Soit A un opérateur linéaire, (x, y) le produit scalaire, il peut être
défini dans l'espace d'Hilbert ou dans l'espace fonctionnel. On a, si A
est hermitien,

(Ax y) (x Ay)

Considérons la suite

yx Ax0 XrS I] i/! H nrme de
ni

y2 AXi ,«2 ~,n2\\y2\\ » » y2
/ï2

y3 Ax2 xaetc.
n3

Les xn sont donc les itérés de x0 ramenés sur la sphère unité:
Il %n j|2 ^ n-i %n) P
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On a

(Axq+i Xq) - ' (xq+1 5 Axq) —
lq+ 2 * ' * * W«+2

(®fl+i xq+i)
Uq + 2

«+1

et en vertu de l'inégalité de Schwartz, ces produits scalaires, ou cosinus,

sont <1.
D'où % < n2 <
On trouverait sans peine la relation

(x x) Uq+l
Aa+2v ' *V my + 2p ' "V

Enfin l'on a

Il ^ + 2p
II2 ^ \*q+2p ' *V

Soit n lim ni, n est fini ou infini, et posons

œ ^ .Ih i!?
n n n

Dès lors, deux cas sont possibles:

a) m ^ 0 alors

lim (xq+2p,
p->oo

et
WXq + 2p — XqW < Z

pourvu que q soit assez grand quel que soit p. La suite des itérés x^n
pairs et la suite des itérés impairs ^2n+i convergent fortement.

b) et) — 0; alors, que n soit fini ou infini, l'on a

lim \\xq + 2p< xqII> V2 — 71

P~> 00

quel que soit q. L'ensemble des itérés n'est pas compact, il n'admet
aucun point d'accumulation pour la convergence forte.

En résumé, deux cas seulement sont possibles:

ou bien les suites Xon et Xon+i convergent fortement (© ^ 0),
ou bien l'ensemble xn n'est pas compact pour la convergence forte.
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Si l'opérateur A est « complètement continu », alors co ^ 0.
Cette étude sera développée dans un article à paraître dans les

Commentarii Mathematici Helvetici (vol. 15). Quant au produit
infini cù nous l'avions déjà introduit dans le cas particulier des noyaux
symétriques de Fredholm dans un article paru en 1925.

19. — A. Pfluger (Fribourg). Sur la répartition des zéros des

fonctions entières. — Soit G (z) une fonction entière du type moyen
de l'ordre p, H (9) son type angulaire (Strahltypus). La famille de
droites x cos p0 + y • sin p0 H (0) (0 variable) enveloppe une
courbe convexe, appelée diagramme indicateur (Indikatordiagramm).
Soit if (9) la longueur de l'arc 0 < 0 < 9. Nous considérons les
ensembles de zéros de la fonction entière pour lesquels

N(ç)
7*-> 00

existe quel que soit 9; n (r, 9) désigne le nombre des zéros de
l'ensemble en question qui sont situés dans le secteur 0 < arg z < 9,
\ z \ < r. Nous prenons celui de ces ensembles qui est le plus ample
et nous l'appelons la partie mesurable des zéros, N (9) est appelé sa
mesure. On a alors:

2 tc • N (9) < p(cp)

c'est-à-dire le produit par 2tz de la mesure des zéros dans un angle ne
dépasse pas Fare correspondant du diagramme indicateur.

La méthode de démonstration repose essentiellement sur l'étude
des fonctions entières ayant une répartition mesurable de zéros (Cf.
Comm. Math. Helv., 11, 180-214). Soit g (z) une telle fonction, dont la
répartition des zéros coïncide avec la partie mesurable de G (z) dans
l'angle en question, et l (9) l'arc (fonction de 9) de son diagramme
indicateur. On a alors 2tz dN (9) dl (9) et d £ (9) — dl (9) ;> 0,

parce que est une fonction entière. Notre affirmation résulte

de là.

Remarque: J'ai appris postérieurement que le résultat ci-dessus est
déjà démontré par B. Lévine dans Ree. math. Moscou, t. 2.
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Réunion de S ion, 30 août 1942.

La Société mathématique suisse a tenu sa 31e assemblée annuelle
à Sion, le 30 août 1942, en même temps que la 122e session de

la Société helvétique des Sciences naturelles. Les communications
scientifiques, au nombre de onze, ont fait l'objet de deux séances

présidées par M. le professeur G. de Rham, vice-président, en
remplacement de M. le professeur B. Büchner, président, empêché par
un service militaire.

1. — P. Nolfi (Zurich). Exposé de phénomènes stochastiques à
Vaide de la théorie des probabilités. — L'application de la théorie
des probabilités aux problèmes de la statistique se heurte à de grosses
difficultés. C'est ainsi que les problèmes pratiques ne mènent pas à des

probabilités qui sont en tout cas les mêmes, comme l'exige la théorie.
Les nombreuses propositions ayant en vue l'élimination de ces
insuffisances de la théorie sont encore fort discutées. En outre, l'exposé
courant de la théorie des probabilités de phénomènes statistiques
donne toujours lieu à des contradictions logiques, ainsi par exemple
en ce qui concerne le choix de l'unité de temps. Par une autre
interprétation de l'événement réel, qui tient aussi compte des découvertes
les plus récentes relatives à la réalité effective, on acquiert un exposé
mathématique qui ne présente précisément plus les imperfections
mentionnées. En vertu de cette interprétation, une probabilité déterminée

est adjointe à chaque phénomène présomptif pour chaque
moment de son apparition possible. Par un passage à la limite, sur
la base duquel sont établies les probabilités continues, on acquiert
sous réserve de l'observation des règles générales de l'enchaînement,
suivant la manière dont est posé le problème, des expressions
mathématiques générales, qui permettent de trouver les probabilités
cherchées pour n'importe quel genre d'ensembles statistiques. En examinant

les cas spéciaux, on trouve des formules connues, comme par
exemple celle de Poisson pour l'évaluation de la probabilité d'événements

rares qui, sous ce rapport, apparaît comme solution exacte
d'un problème déterminé, c'est-à-dire par conséquent des résultats
auxquels sont arrivés par d'autres moyens Borel, Lundberg et Khin-
chine. Les résultats obtenus en mathématiques d'assurance à l'aide
de la conception de l'intensité ressortent également, comme cas
spéciaux, de cette façon générale d'envisager la question.
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2. — Alexandre PreisSiMann (Bâle). Quelques propriétés globales

des espaces de Riemann. — Alors que les propriétés globales (connexion
topologique: allure des géodésiques, etc.) des surfaces dont la courbure
garde un signe constant commencent à être bien connues; il n'en est
pas de même des espaces de Riemann. La présente communication
est une contribution à l'étude des espaces de Riemann de courbure
partout négative. Nous sommes parvenus à démontrer dans ce cas les
théorèmes suivants:

I. Un espace de Riemann dont le groupe fondamental est cyclique
possède au plus une géodésique fermée et dans le cas général il existe
au plus une géodésique fermée de chaque classe d'homotopie.

II. Si une géodésique fermée fait partie de la classe d'homotopie a,
tous les sous-groupes abéliens du groupe fondamental qui contiennent

a sont des groupes cycliques.

III. Tous les sous-groupes abéliens d'un espace fermé sont
cycliques.

Ce dernier théorème montre en particulier que le produit
topologique de deux variétés fermées ne saurait être métrisé par une
métrique de courbure partout négative.

Ces théorèmes s'appliquent au cas particulier des formes spatiales
hyperboliques.

3. — B. Eckmann (Zurich). Solutions continues de système d'équations

linéaires. — Dans un système

n

2j aikxk ~ Q i i — 1 ' • • • ' m < n (1)
ft l

de m équations linéaires homogènes à n inconnues, nous donnons aux
coefficients a\h toutes les valeurs réelles pour lesquelles la matrice
(üik) a le rang m. Nous cherchons une solution valable et continue
pour toutes ces valeurs des coefficients et qui ne soit jamais triviale,
c'est-à-dire un système de fonctions Xf. /& (an, anm) réelles et
continues de ces coefficients qui satisfassent, pour toutes les valeurs
admises, aux relations S fk — 0, et qui ne s'annulent jamais
simultanément. Nous appelons ceci une solution continue du
système (1). Alors notre problème s'énonce ainsi: Pour quels nombres n
et m le système a-t-il une solution continue

Des cas particuliers de telles solutions nous sont donnés (pour
m — n — 1 et pour m 2, n 7) par le produit vectoriel connu
de m vecteurs dans l'espace à n dimensions; également on connaît
une solution particulièrement simple pour m — 1 et n pair. On peut,
par contre, en se basant sur des théorèmes topologiques simples,
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démontrer qu'il n'y a pas de solutions continues lorsque n — m est pair.
Mais la réponse complète à notre question nous est inconnue, et elle ne
semble pas être simple pour les cas restants (n — m impair et m > 2).
Pourtant nous pouvons, à l'aide de méthodes topologiques moins
élémentaires, démontrer que le système n'a pas de solutions continues

| pour n — m 3 ou 7 et m > 2.

La démonstration de ce théorème se base sur la théorie générale
des espaces fibrés et comprend surtout la détermination de quelques

| groupes d'homotopie de certaines variétés Yn,m (ce sont les variétés
J de toutes les matrices orthogonales à n colonnes et m lignes); par

exemple le troisième groupe d'homotopie de V5j3 est cyclique d'ordre
' infini, et le septième de V9>3 est cyclique d'ordre 4. Les représentations
| continues des sphères, les propriétés d'homotopie des groüpes ortho-
| gonaux et le parallélisme bien connu sur les sphères à trois et sept
' dimensions y jouent un certain rôle. D'ailleurs, tout notre problème

a de nombreux rapports avec des questions topologiques et algébriques
:| actuelles, entre autres avec la suivante: sur quelles sphères est-il

possible d'introduire une multiplication continue (comme celle dans
I un groupe, mais pas nécessairement associative), possédant un élément

H unité Nous reviendrons sur ces questions ainsi que sur les détails
des énoncés et des démonstrations dans un travail en préparation.

] (Le mémoire paraîtra dans les Comment. Math. Helv., vol. 15.)

4.— Heinz Hopf (Zurich). Sur les espaces qui admettent des groupes
de transformations avec un domaine fondamental compact. — Pour une

J variété ouverte, on peut définir d'une manière naturelle les « points
à l'infini» (H. Freudenthal, Math. Zeitschrift, 33, 1931, 692-713).

] Avec les méthodes du travail cité de Freudenthal, le théorème suivant
| se laisse facilement démontrer:
i Une variété ouverte, qui admet un groupe discontinu de transforma-

lions topologiques avec un domaine fondamental compact, possède ou
!| bien un point à Vinfini, ou bien deux points à Vinfini, ou bien un

j ensemble de points à Vinfini de la puissance du continu.
j|

j En particulier, une variété de recouvrement régulière d'une variété
j close est ou bien close ou bien du type décrit. Par exemple, la sphère
j à n dimensions pointée trois fois ne peut pas se présenter comme

variété de recouvrement universelle d'une variété close — c'est la
;j réponse à une question posée il y a longtemps par M. Threlfall qui

fut à l'origine de la recherche discutée ici.
Ce théorème possède, dans la ligne de la théorie de l'homotopie

de Hurewicz, le corollaire suivant:

Le deuxième groupe d'homotopie dune variété close à trois dimen-
j sions ou bien se réduit à zéro, ou bien est cyclique infini, ou bien est la

somme directe dune infinité dénombrable de groupes cycliques infinis.
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5. — H. Hadwiger (Berne). Sur la convergence et une extension du
théorème (TAbel. — Dans la théorie des procédés de limitation il est
indiqué d'adopter un formalisme permettant de concevoir d'un point
de vue unique les suites et les fonctions. Les suites sont subordonnées

aux fonctions, en ce sens qu'une suite est représentée par une
fonction en escalier. La suite est alors convergente ou divergente en
même temps que la fonction correspondante. Afin de caractériser le

comportement d'une fonction F (£) d'un paramètre réel t lorsque
celui-ci tend vers la frontière supérieure r de l'intervalle dans lequel
F (£) est définie, on introduit la notion de « valeur finale » (Endwert).
Le nombre complexe a est dit valeur finale de F (t) pour t tendant
vers r, lorsque pour un domaine circulaire quelconque U (a) de centre
a, et un intervalle quelconque Y (r) à la gauche de r, il existe toujours
une valeur de t contenue dans V (r), telle que la valeur correspondante
F (2) soit comprise dans U (a).

La fonction F (t) prend des valeurs différant de a d'aussi peu qu'on
veut, un nombre infini de fois, lorsque t tend vers r.

Considérons l'ensemble A des valeurs finales (Endwertmenge).
Nous proposons la classification suivante, basée sur la nature de
l'ensemble A, en ce qui concerne le comportement de la fonction F (t)
lorsque t tend vers r. Il est dit:

a) déterminé (bestimmt) ou indéterminé (unbestimmt) selon que
l'ensemble A se compose d'un ou de plusieurs points;

b) convergent ou divergent selon que l'ensemble A est borné ou
non.

Il en résulte quatre possibilités du comportement de F (t): 1) déterminé

convergent; 2) indéterminé convergent; 3) déterminé divergent;
4) indéterminé divergent.

Sur ces considérations se fonde la perspective d'une extension du
théorème d'Abel (Abelscher Stetigkeitssatz).

Soit la série entière

FW - 5 antn
0

convergente dans un cercle de rayon 1 et telle que

Pour que la série 2 an converge vers l'ensemble des valeurs
o

finales A, il faut et il suffit que la fonction F (t) converge également
vers A lorsque t tend vers 1.

Dans ce théorème, il n'est pas possible de remplacer comme dans
la réciproque du théorème classique la condition o par une condition O.
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6. — R. Wavre (Genève). Sur les opérateurs hermitiens et la
décomposition spectrale. — Nous indiquerons ici, en résumé, les développements

donnés à notre note de la séance de Bâle. On trouvera plus de

détails dans trois notes parues entre temps dans le Compte rendu des

séances de la Société de Physique et d'Histoire naturelle de Genève,

194°.
I Soit A (/) un opérateur hermitien supposé défini pour tout élément
I /0 d'un espace E isomorphe de l'espace d'Hilbert et de l'espace fonc¬

tionnel. Soient Ar (/) ses itérés. Nous les normalisons, en posant:

Zoy2 • • lrfr Ar (/o) ; l0 II So |j > || §r fj ^ *

pour «1,2,....
on a les relations de Kellogg

0 < h < l2 < l3 <
Nous posons:

j l— lim lr;;on a

j 0 < ffi (/o) < l0

Si l'opérateur est complètement continu l'on a dans tout E, sd ^ 0;
j mais cette dernière condition est plus générale et répond à des opéra-
I teurs qui recouvrent une partie de la théorie des équations intégrales
| singulières. On a, en effet, les propriétés suivantes:

j I. Si w (/0) ^ 0, les itérés f2r convergent fortement vers une limite /
I de E qui est solution de l'équation homogène

A2 (/) Pf ;

j nous dirons que / est solution propre, l est donc une valeur propre.
| Si 0) (/0) t= 0, les itérés fr convergent faiblement vers zéro.
j II. Si / (p + des trois nombres l liés à /, <p, aucun n'est
j supérieur aux deux autres.

III. Soient \>i une suite de valeurs propres distinctes, vleur borne
j supérieure, et ^ les vecteurs propres correspondants. Posons:

J OO

9=2 aiVi ' 2 | ai |2 convergente ; alors l (<];) v
i= 1

Si v à un vî, borne atteinte, ® (<J>) ^ 0, sinon m (<p) 0. Il
résulte de là que pour un opérateur où w 0 dans tout E, les valeurs
propres peuvent être « bien ordonnées » par ordre de grandeurs
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décroissantes. Elles forment donc une suite numérotable au moyen
d'une infinité dénombrable d'ordinaux transfmis de Gantor de la
classe II.

IV. La parenthèse indiquant le produit scalaire, on a (/, /0) W (/0)
et /0 — w (//) / est orthogonal à /. Si g est un vecteur propre
quelconque et si /0 est orthogonal à g, tous les itérés fr sont orthogonaux
à g ainsi que leur limite forte (ou faible). Ces lemmes précisés, voici
comment peut se faire une décomposition d'un élément quelconque
/ f0 suivant les éléments propres pour un opérateur à 0) ^ 0. On
posera:

f ® (/°)/° + z\ © (/")/<* + za+1,...; 0 Y Q' 0 0 V 0 ' 0

transfmiment s'il le faut a 1, 2, 3, co, co + 1, 2oo, 2co -f 1

On a Za+1 < Za, pour les valeurs propres liées aux /a. Puis:

/ 2®(0/a + h '
a

am/)

(1)

(2)

/z étant un antécédent de zéro: A (h) 0. Ainsi nous mettons en
évidence directement les fonctions /a en lesquelles / se décompose
effectivement, et des restes successifs /a.

0

Si, poursuivant la réduction, l'un des restes est nul, alors h — 0, la
réduction s'arrête d'elle-même; dans le cas contraire seulement on a
lim la 0. Dans le cas des opérateurs complètement continus, il n'y
a pas lieu d'introduire les nombres transfmis et l'on a lim ln 0
dans le cas où il y a une infinité de valeurs propres.

Donc, la décomposition spectrale d'un élément de E peut se faire,
pour tout opérateur « régulier » (w =£ 0) par simple itération de cet
élément et de ses restes successifs. Dans le cas des opérateurs complètement

continus (1) exprime le théorème d'Hilbert-Schmidt de la
théorie des équations intégrales.

Si l'on considère maintenant l'équation linéaire non homogène:

9 — / + 7a(9) on a 9 f+ iA2(cp) avec fx f + ^-A(f)

(3)

Une solution est donnée par:

7a2 jxa
cp /x + 2 ' aveC fx ^fx<x f* + h A (h) 0 ;

a
v2 ~ 1

a

(4)
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a parcourant encore ici la suite (éventuellement transfinie) des

valeurs a. Si |e| est différent des l2 et de leur point d'accumulation, (4)

fournit la solution de (1), qui est unique. Si | v | répond à une valeur

propre qui n'est pas un U, alors on peut ajouter à cp tout élément

propre de valeur propre v. Si | v | est point d'accumulation des la sans

que | v | soit un U, alors la série (4) fournit encore une solution, pourvu
que la série suivante converge:

jXa 2

v | — u

Et si v est une valeur propre autre qu'un des Za, alors on peut encore
ajouter la solution la plus générale correspondant à v.

Avec le paramètre habituel de Fredholm, on aurait donc

fXCC

Ç(x) f +
a a

en X cette solution admet comme seules singularités, les pôles Xa et
les points singuliers limites des pôles, correspondant à l'épuisement
d'une suite dans les transfinis. Ces singularités seront, au total, encore
numérotables par les ordinaux transfinis de classe II. M. J.-P. Vigier
a étendu cette méthode aux opérateurs hermitiens gauches et a
reconstruit de cette manière, très rapide, les développements en
série de fonctions biorthogonales. Notre méthode permet donc de
retrouver très rapidement une grande partie de la théorie des équations

intégrales et de la théorie des systèmes d'équations linéaires
à matrices hermitiennes et se trouve dépouillée de tout appareil
algébrique.

Il est intéressant aussi d'étudier les fonctionnelles l (f) et w (f) qui
sont semi-continues dans tout l'espace E.

7. — Max Gut (Zurich). Zur Theorie der Klassenkörper der
Kreiskörper, insbesondere der Strahlklassenkörper der quadratisch-imaginären

Zahlkörper. — Paraîtra dans les Commentarii Mathematici
Helvetici, vol. 15.

8. — Sophie Piccard (Neuchâtel). Intersection (Tun ensemble
linéaire parfait avec Vune quelconque de ses translations.

9. — Ed. Batschelet (Bâle). Ueber den absoluten Betrag der
Wurzeln algebraischer Gleichungen.

10. — E. Stiefel (Zurich). Ueber die Berechnung der Charaktere
in kontinuierlichen Gruppen.

11. — K. Bleuler (Genf). Ueber die Positivität von Green'schen
Funktionen.

a
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Réunion de Schaffhouse, 29 août 1943.

La Société mathématique suisse a tenu sa 32e assemblée annuelle
à Schaffhouse, le 29 août 1943, sous la présidence de M. le professeur
P. Büchner, en même temps que la 123e session annuelle de la
Société helvétique des sciences naturelles.

Séance administrative. — Le Comité pour les années 1944 et 1945
a été constitué comme suit: MM. G. de Rham (Lausanne), président;
M. Gut (Zurich), vice-président; H. Hadwiger (Berne), secrétaire-
caissier.

MM. A. Speiser, R. Fueter et R. Wavre ont été confirmés, pour
une nouvelle période de six ans, dans leurs fonctions de président,
de secrétaire général et de secrétaire adjoint du Comité de rédaction
des Commentarii Mathematici Helvetici.

Pour cette même période 1944-1949, le Comité Steiner-Schläfli
se composera de MM. L. Kollros (Zurich), président, J. J.
Burkhardt (Zurich), F. Gonseth (Zurich), H. Hadwiger (Berne),
A. Linder (Berne), W. Scherrer (Berne), E. Stiefel (Zurich),
A. Stoll (Zurich) et de M. A. Häusermann (Zurich), suppléant.

La Société a conféré le titre de Membre honoraire à M. le professeur

C. Carathéodory, à l'occasion du 70e anniversaire du savant
mathématicien.

La partie scientifique de la réunion a été consacrée aux neuf
communications ci-après.

1. — Beno Eckmann (Lausanne). Sur les groupes monothétiques. —
S'il existe dans le groupe topologique G un élément x tel que ses

puissances soient partout denses dans G, ce groupe est dit monothé-
tique, et on appelle x un générateur de G; il est clair qu'un tel groupe
est abélien. Pour un groupe discret, « monothétique » a la même
signification que « cyclique ».

Si G est un groupe abélien compact, on peut se servir des caractères

de G (ce sont les homomorphismes continus de G dans le groupe
multiplicatif K des nombres complexes de module 1; le caractère
qui est identiquement 1 sera dit trivial) et on trouve facilement:
SHl y a dans G un élément x tel que pour tout caractère non-trivial f de G

on ait f (x) ^ 1, alors le groupe G est monothétique, engendré par x.
Ce critère nous permet, par exemple, de démontrer d'une manière

très simple que le toroïde Tn est monothétique. Tn est le produit
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direct de n groupes isomorphes au groupe des rotations du cercle (ou
de n groupes K); tout élément de ce groupe est donné par n angles

2nxv 2Tcxn, donc par n nombres réels %, xn (mod. 1), et si on les

choisit tels qu'ils soient incommensurables (mod. 1), on obtient un
élément générateur de Tn. C'est un théorème classique, le célèbre
«théorème d'approximation de Kronecker »1; notre méthode en
donne une démonstration nouvelle et simple.

Le critère s'applique aussi, surtout si on utilise encore la théorie
des caractères de Pontrjagin 2, à d'autres groupes abéliens compacts.
On démontre ainsi que tout groupe connexe de ce genre est
monothétique, et qu'il en est de même pour les groupes ^-adiques (qui
forment des espaces complètement discontinus).

Weyl a précisé le théorème de Kronecker, en introduisant la notion
d'équipartion 3; d'une manière analogue on peut démontrer que les

puissances d'un générateur du groupe monothétique compact G sont
toujours également réparties dans G, c'est-à-dire ne sont pas seulement
partout denses dans G, mais ont partout la même densité, au sens du
volume invariant de G. On peut même établir le théorème suivant, où
on ne suppose pas d'avance que le groupe G soit monothétique, ni
même qu'il soit abélien: Si toute représentation irréductible (non
triviale) du groupe compact G fait correspondre ci Vélément x de G une
matrice qui n'a pas la valeur propre 1, alors les puissances de x sont
également réparties dans G (donc partout denses, G est donc
monothétique). — La démonstration utilise le fait que les représentations
irréductibles forment un système complet (théorème de Peter-Weyl) ;

elle se simplifie naturellement, si on se borne au cas d'un groupe fini,
où notre théorème présente encore un certain intérêt.

2. — Max Gut (Zürich). Zur Theorie der Strahlklassenkörper der
quadratisch reellen Zahlkörper. — Si l'on choisit convenablement le
nombre entier, rationnel et positif m, tout corps de nombres absolument

abélien est sous-corps du corps des rnièmes racines de l'unité
et nous appelons dès lors un tel corps un corps circulaire. Soit k un
corps circulaire, f un idéal entier de &, nous désignons par K(f) le
corps abélien relatif, qui appartient au groupe multiplicatif complet
mod. f des idéaux de k, et par k (f) le plus grand sous-corps circulaire
contenu dans K(f). En particulier K (1) désigne le corps de classes
de Hilbert, k (1) son plus grand sous-corps circulaire. Dans un
travail antérieur (« Zur Theorie der Klassenkörper der Kreiskörper,
insbesondere der Strahlklassenkörper der quadratisch imaginären
Zahlkörper », Comment. Math. Helvet., vol. 15, 1942/43, p. 81) nous

e Voir par exemple J. F. Koksma, DiophanUsche Approximalonen (Berlin, 1936).
p. 83.

e L. Pontrjagin, Topological groups (Princeton, 1939), chap. V.
e H. Weyl, Ueber die Gleichverteilung von Z.ahlen mod. Eins. Math. Annalen

Bd. 77 (1916), p. 313.
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avons déterminé k{1) pour un corps circulaire k quelconque. Dans le
cas où k est un corps quadratique imaginaire, nous avons de plus
déterminé k(\) pour un idéal quelconque f, indiqué des théorèmes
relatifs à la structure de K (f), enfin appliqué cette théorie à la
décomposition des équations de division de la multiplication complexe des
fonctions elliptiques. Dans un travail ultérieur qui est dédié à
M. G. Carathéodory à l'occasion de son 70e anniversaire et qui
paraîtra dans les Comment. Math. Helvet., vol. 16, 1943/44, nous avons
effectué les recherches analogues pour un corps de base quadratique
réel k. Dans ce cas k contient une unité fondamentale, c'est pourquoi
la structure de K(f) est en général de toute autre nature que dans le
cas d'un corps de base quadratique imaginaire.

3. — H. Hadwiger (Bern). Ein Ueherdeckungssatz des Rn.

4. — R. Wavre (Genève). Les hermitiens limites d^hermitiens
réguliers. Spectre et théorie du rang. — Soient x un point de l'espace E
de von Neumann (espace d'Hilbert, espace fonctionnel) et A(x) un
opérateur hermitien borné; enfin ses itérés.

Il existe un nombre l qui jouit des propriétés suivantes

et l « 0 si y Ax ||=0. Nous appellerons l (x) le rang de x. Chaque
point de E possède un rang et un seul, et nous avons montré que l (x)
est une fonctionnelle de x semi-continue inférieurement1.

Soit, alors, Ev l'ensemble des points de E de rang l < v. Ev est
une variété linéaire fermée (un sous-espace) et nous désignerons
également par Ev le projecteur de E sur Ev.

On a alors

C'est la décomposition spectrale de l'opérateur A2. La décomposition

de A ne présente pas de difficulté, mais exige des explications
plus longues.

Le spectre de A2 est la fermeture e + e' de Vensemble e des rangs l2.

Cette proposition, évidente pour les opérateurs « réguliers », affirmée

pour les opérateurs bornés par M. J.-P. Vigier, s'établit très rapidement

à partir de la théorie du rang.

il a^II + *> si 0 < X < l
hm h L' — /

Xq nombre fini si 0 c l — 1

0

i R. Wavre, L'itération directe des opérateurs hermitiens, Commentant Mathe-
matici Helvetici, vol. 16, fasc. 1.
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5. — W. Scherrer (Bern). Zum Problem der Trägheit in der

Wellenmechanik.

6. — W. Habicht (Schaffhausen). Ueber Lösungen von
algebraischen Gleichungssystemen.

7. — Walter Nef (Zürich). Hyperkomplexe Methoden zur
Integration partieller Differentialgleichungen. — Auf einer (n — l)-dimen-
sionalen Fläche R seien die Werte

der Ableitungen eines Integrals der hyperbolischen oder ultrahyperbolischen

Differentialgleichung

A ö2

S XJ T-Î 0 (XJ ±
3-1 0xi

gegeben. Gesucht ist ff> in einer noch zu beschreibenden Umgebung U
von R.

Wir führen eine Cliffordsche Algebra ein, in welcher n Basisgrössen
ev en liegen, die den Relationen genügen:

U x. (/ 1, n) e.ek — ekej (/, k 1, », / # k)

Eine Funktion

/w 2 • • • ' xn)ej
J 1

der Variabein

heisst regulär, wenn

z Evi

s %•»-«
fc=l

ist. Man kann beweisen, dass für jedes Integral <D von (1) die Funktion
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regulär ist. Hiervon gilt auch die Umkehrung. Rie Randwertaufgabe
ist also gelöst, wenn wir in U eine reguläre Funktion finden können,
die auf R die Randwerte

+ 2 ei
j=i

annimmt.
Nun sei R eine (n — l)-dimensionale Hyperfläche und U eine

Umgebung von R von der Art, dass jeder erzeugende Strahl des
charakteristischen Kegels irgendeines Punktes von U genau einen
Schnittpunkt mit R gemeinsam hat und so, dass der zwischen der
Spitze des ch. K. und dem Schnittpunkt mit R gelegene Teil des
Strahls ganz zu U gehört. Dann gilt, wenn f(z) eine in U und auf R
reguläre Funktion ist, für jeden Punkt z von U :

Hz) a//kms K t, + B fg z|2-

S(z)
1 ^ "I K(z)

1 ^ " 1

(2)

Dabei ist S (z) der Durchschnitt des zu z gehörigen ch. K. mit R und
K {z) das zwischen S (z) und R gelegene Stück des ch. K. A und B sind
Konstanten. Umgekehrt ist jede Funktion / (z), die der letzten
Gleichung genügt, regulär. Die von uns gesuchte Funktion ist also
eine Lösung der linearen Integralgleichung

f(z) J (z) + B j do f(z)2>,'!;_Z)|n+1K~ (3)

K(z)
I ^ 2 I

wenn wir setzen:

\ (z) A f ^
S(2)

I ^ Z I
171-1

Wenn die Lösung / (z) von (3) auf R mit ^ übereinstimmt, so ist / (z)

zugleich eine Lösung von (2), also regulär und die Aufgabe ist gelöst.
Stimmt die Lösung / (z) von (3) auf R nicht mit ^ überein, so ist die
Aufgabe nicht lösbar.

8. — Edith Müller (Zürich). Maurische Ornamentik. —
Gruppentheoretische Untersuchungen der Maurischen Ornamente aus der
Alhambra in Granada (Inaugural Dissertation, Universität Zürich,
Buchdruckerei Baublatt AG., Rüschlikon, 1944).
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9. — A. Häusermann (Zürich). Ueber die Berechnung singulärer
Moduln bei Ludwig Schläfli. — In diesem Referat wurde auf bisher

völlig unbekannte allgemeine und numerische Resultate des Berner
Mathematikers L. Schläfli (1814-1895) im Gebiet der singulären
Moduln hingewiesen.

Auf Anregung von Herrn Prof. Fueter wurde der Nachlass
Schläflis noch einmal gesichtet und alle Manuskripte sorfältig
zusammengestellt, die allgemeine Betrachtungen und numerische Berechnungen

von singulären Moduln, von Modulgleichungen und von
Modularfunktionen enthielten. Das erste Aussondern geschah mit
dem neuen Sachkatalog von Herrn Prof. Burckhardt.

Die Ergebnisse dieser Untersuchungen sind in der auf den Herbst
erscheinenden Inaugural-Dissertation des Referenten ausführlich
dargestellt3.

Réunion de S ils, en Engadine, 3 septembre 1944.

La Société mathématique suisse a tenu sa 33e assemblée annuelle
; le 3 septembre 1944, à Sils, en Engadine/sous la présidence de
F M. le professeur G. de Rham, en même temps que la 124e session

annuelle de la Société helvétique des Sciences naturelles.
| Dans sa séance administrative, la Société a conféré le titre de

membre honoraire à M. Gustave Dumas, professeur honoraire à
l'Université de Lausanne.

1. — Julien Malengreau (Bruxelles). Sur quelques relations entre
; grandeurs de Vespace euclidien. — L'auteur montre, par des exemples,
\ que si en partant des postulats classiques de la géométrie élémentaire
t on arrive à démontrer la relation de Stewart, réciproquement en

partant de cette dernière on arrive à-démontrer les postulats
classiques. Cette réversibilité de la géométrie est mise en évidence en

j utilisant la notion du w-point parfait, ensemble de n points tels que
la distance éntre deux d'entre eux est toujours la même. Une formule
très simple relie cette distance commune aux distances entre un point

i quelconque de l'espace déterminé par le n-point parfait considéré et
l les points de ce dernier. De cette formule on peut déduire que l'espace

i Inaugural-Dissertation, Universität Zürich, Gebr. Leemann & Co., 1944.

L'Enseignement mathém., 39me année, 1942-1950. 7
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déterminé par un n -f- 1 — point parfait est plus vaste que celui
déterminé par un ft-point parfait. L'auteur déduit de ces considérations

que l'on peut commencer la géométrie analytique, indépendamment
de la géométrie élémentaire, en définissant l'espace euclidien

déterminé par un /2-point parfait comme le lieu de tous les points S

tels que si Am, An et Ap sont trois de ses points reliés entre eux par
la relation S =b Am An) 0 la valeur absolue de la somme des

SA
quotients ± Am An) X a a es^ égale à la valeur absolue du

m X n
produit de ces quotients.

L'étude analytique de ce lieu intégral peut se faire sans emploi
de coordonnées, dont la notion sera introduite seulement à partir de
l'étude des lieux qui ne comprennent qu'une partie des points de

l'espace euclidien.

2. — Sophie Piccard (Neuchâtel). — Sur les couples de substitutions

qui engendrent un groupe régulier. — Soit m un entier > 2, k un
entier > 1, S une substitution régulière d'ordre m et de degré km,
T une substitution régulière du même degré et portant sur les mêmes
éléments que S et soit (S, T) le groupe engendré par les deux
substitutions S et T. Nous dirons que T jouit par rapport à S de la
propriété p s'il existe un entier r (1 < r < m), tel que T transforme les
éléments de chaque cycle de S en éléments de r autres cycles de S et
nous dirons dans ce cas que T jouit par rapport à S de la propriété pr.

Soit

S (1, 2 m) (m + 1, m -J- 2 2 m) (k— 1 )m A 1 (Ä — 1) m + 2... km),

soit

et soit t > 1 l'ordre de T.

I. Les conditions suivantes sont nécessaires pour que le groupe
(S, T) soit régulier:

1. T [S] ne transforme aucun élément d'un cycle de S [T] en un
élément du même cycle.

2. T [S] transforme les éléments de chaque cycle de S [T] en
éléments d'un nombre égal de cycles de S [T], autrement dit chacune des

substitutions S, T jouit par rapport à l'autre de la propriété p.
3. Si T jouit par rapport à S de la propriété pr( 1 < r < m), m est

un multiple de r et, si T transforme au moins un élément d'un cycle G

de S en un élément d'un second cycle G' de S, T transforme au total
mfr éléments de C en éléments de G'. D'autre part, si r > 1, T ne
saurait transformer deux éléments consécutifs d'un cycle de S en deux
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éléments d'un autre cycle de S, ni deux éléments quelconques d'un
même cycle de S en deux éléments consécutifs d'un autre cycle de S.

Quels que soient l'entier r (1 < r < m) le cycle (% oc2
ocm) de S

et l'élément ai (1 < i < m) de ce cycle, T transforme oc* et <xi+r
1 en

deux éléments d'un même cycle de S et oq, oq+1, oq+r-i
1 en

éléments de r cycles différents de S. Il existe un entier (x (1 < a < m),
tel que TSr T"1 S^. Cet entier fx vérifie les congruences

~ 0 (mod m)

et

es r (mod m)

et on a
D (m, jx) r

et
171

aijrjr ai -\-j [i (mod. m2 i c±= 1, 2, km j 1, 2, — — 1

Si un cycle de T contient des éléments de l (1 < l < t) cycles de S

et de l seulement, tout cycle de T jouit de la même propriété.
Si r > 1, quels que soient les cycles (b1 b2 bt) et (cx c2 ct)

de T comprenant deux éléments bu( 1 < u < t) et cv (1 < ç> < t)
d'un même cycle de S, si cv bu (mod. r), quel que soit / 1, 2,

t—1, ls nombres bu+j et cv+j font partie d'un même cycle de S

et sont congruents mod. r. Si T jouit par rapport à S de la propriété
pm, aucun cycle de T ne saurait contenir plus d'un élément d'un
même cycle de S.

II. Quel que soit l'entier r > 1, il existe des couples de substitutions

régulières S, T, tels que T jouit par rapport à S de la propriété
pr et que le groupe (S, T) est régulier.

III. Si T jouit par rapport à S de la propriété la condition
nécessaire et suffisante pour que le groupe (S, T) soit régulier c'est
que: 1°

V-Dm+j a(i-i)m+i + (/ — 1) (a (mod. 3 1, 2, k ;

j — 2, 3, m

[x désignant un entier premier avec m, tel que 1 < fx < m et que
[Lh 1 (mod. m), les nombres faisant tous partie d'un
même cycl,e de S.

1 Les indices supérieurs à m doivent être réduits mod. m.
2 Les nombres (j 1, 2, m) font tous partie d'un même cycle de S.
3 L'indice h -j- 1 doit être remplacé par 1.
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2° Il existe une permutation i2, 4 des nombres 2, 3, k
et k nombres jv /2, 4 de la suite 1, 2, m, tels que, en posant
i±— 1, on ait

«(ij-l)m+l (*i + i — 1 )m+ h+1 >

et que

h + + ••• + ^1 1

h Vi + V-!k-2 + ^a/ft-3 + •••

+ /i + fi-4 + [J.24_1 + + 7*2 (mod. m)

IV. Nous avons établi différents critères pour reconnaître si le

groupe (S, T) est régulier, lorsque T jouit par rapport à S de la
propriété pr et r > 1.

3. — Sophie Piccard (Neuchâtel). Systèmes connexes de substitutions

et bases d'un groupe de substitutions. — Soient n un entier > 1,
k un entier > 1 et soient Sl5 S2, S& k substitutions de degré n dont
les éléments sont les nombres 1, 2, n. Désignons par E l'ensemble
de ces éléments. Nous disons que les substitutions Sl7 S2, S& constituent

un système connexe s'il n'existe aucun sous-ensemble propre E
de E composé de l'ensemble des éléments d'un certain nombre > 1

de cycles de chacune des substitutions considérées.

Soit G un groupe transitif de substitutions de degré n. Nous disons

que G est d'ordre de connexion égal à A: si G contient au moins un
système connexe de k substitutions, alors qu'aucun système comprenant

moins de k substitutions de G n'est connexe. Ainsi, le groupe
symétrique ©n de degré n > 2 a un ordre de connexion k — 1 et le

groupe alterné 3ln de degré n > 3 a un ordre de connexion égal à
1 (2) si n est impair (pair). Quel que soit l'entier k > 1, il existe un
groupe transitif G& dont l'ordre de connexion est égal à k. Tout
système connexe de substitutions engendre un groupe transitif.
Réciproquement, tout groupe transitif de substitutions des éléments 1,

2, n contient des systèmes connexes de substitutions. En
particulier l'ensemble de toutes les substitutions d'un groupe transitif qui
ne laissent fixe aucun des éléments 1, 2, n constitue un système
connexe. D'autre part, l'ensemble de toutes les substitutions d'un
groupe transitif constitue un système connexe.

Soit G un groupe de substitutions de degré n et soit l le plus petit
entier positif, tel qu'il existe au moins un système de l substitutions
génératrices du groupe G. Nous appelons base du groupe G un tel
système de l éléments générateurs de G et nous disons que G est à

base d'ordre L Quel que soit l'entier n > 2 (> 3), le groupe symé-

i L'indice k + 1 doit être remplacé par 1.
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trique ©n (alterné 3ïn) est, comme on sait, à base du second ordre.
L'ordre de la base est un invariant d'un groupe.

Soit G un groupe régulier de degré n qui est à base d'ordre l et
soient Sx, S2, St l substitutions de G. La condition nécessaire et
suffisante pour que ces substitutions constituent une base du groupe G
c'est qu'elles constituent un système connexe.

L'ordre de connexion d'un groupe transitif de substitutions est
en général différent de l'ordre de sa base (voir le cas du groupe
symétrique), mais ces deux ordres sont égaux pour un groupe
régulier.

D'après le théorème de Jordan, à tout groupe G de substitutions
correspond un groupe régulier G' de substitutions, simplement iso-
morphe à G et à toute base de G correspond une base de G'. Suppo-

; sons que G est à base d'ordre l et soient S2, Stl substitutions
| de G. Pour reconnaître si ces substitutions constituent ou non une

1 base du groupe G il suffit de voir si les substitutions correspondantes
I du groupe G' constituent ou non un système connexe.

I 4. — S. Bays (Fribourg). Sur la primitivité des groupes de substituai
lions. — On sait dans quelles conditions l'on dit qu'un groupe tran-

I sitif est imprimitif ou primitif pour les éléments. La même question
\ posée pour les couples a un sens, mais du fait que le couple n'est pas
| unique comme l'élément vis-à-vis des substitutions, il en résulte
I l'existence d'imprimitivités nécessaires pour les couples, que nous

écrirons dans un exemple, celui du groupe alterné de degré 4:

I (01,10); (02,20); (03,30); (12,21); (13,31); (23,32), ou...; ab, ba)\

[et

1(01,
02, 03); (10, 12, 13); (20, 21, 23); (30, 31, 32); ou ...; {ax);

(10, 20, 30); (01, 21, 31); (82, 12, 32); (03, 13, 23); ou ...; (xa) ;

et que nous notons à droite d'une manière générale, en n'écrivant
(et sous forme abrégée pour les deux secondes) que le système général
de la répartition. Nous appelons inverses les deux couples ab et ba
et conjuguées les deux répartitions imprimitives que l'on obtient l'une
de l'autre en remplaçant chaque couple par son inverse.

Une répartition en systèmes imprimitifs de couples autre que les
trois ci-dessus exclut, dans un cas la transitivité quadruple, dans un
autre cas la transitivité triple, donc dans les deux cas la transitivité
quadruple. Donc dès que le groupe a cette dernière transitivité, il ne
peut avoir relativement aux couples que les imprimitivités nécessaires
ci-dessus; on peut l'appeler primitif par rapport aux couples.

Par contre, dans les transitivités inférieures, on peut avoir par
rapport aux couples des imprimitivités non nécessaires. Pour le
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même groupe alterné de degré 4, deux fois transitif, ces imprimitivités
sont les suivantes:

(01, 23); (02, 31); (03, 12); (10, 32); (20, 13); (30, 21) (1)

(01, 12, 20); (13, 32, 21): (30, 02, 23); (31, 10, 03) (2)

et la conjuguée de (2) qui est différente; en plus une troisième
répartition, identique encore à sa conjuguée, obtenue de (1) en remplaçant
le premier ou le second couple de chaque système par son inverse. Ce

groupe, qui est primitif pour les éléments, est donc imprimitif pour
les couples.

Nous donnerons ailleurs le résultat plus complet de notre étude;
nous dirons simplement ici que pour les quatre groupes généraux de

degré /2, étudiés à titre d'exemple, cyclique, métacyclique, alterné et
symétrique, la question de leur primitivité ou imprimitivité par
rapport aux couples est fixée. Par rapport aux triples il y a neuf
répartitions en systèmes imprimitifs de triples nécessaires pour le groupe
triplement transitif ; pourtant il y a aussi des groupes imprimitifs (et
évidemment des groupes primitifs) par rapport aux triples.

5. H. Bieri (Herzogenbuchsee). Anwendung eines Abbildungssatzes

auf das Randwertproblem der Varationsrechnung, demonstriert

an drei Beispielen vom Typus ^ F (xx, x2, xl5 x2) dt Minimum. —
Ein Satz über die umkehrbar-eindeutige Abbildung zweier
einfachzusammenhängender Gebiete aufeinander ist von Herrn Prof.
W. Scherrer so formuliert worden, dass er mit Erfolg zur Lösung
des Randwertproblems der Variationsrechnung herangezogen werden
kann 1. Das genannte Problem besteht in einem speziellen Falle darin,
durch zwei Punkte P und Q einen Extremalenbogen zu legen, der ein

relatives starkes Minimum von f F (xv xv x2) dt liefert.
Die ausgezeichnere Extremalenschar durch P (a^, #§) schreiben

wir in der Form

X1 — xl(t, y- X1, £2) ; sar x1 (t0 ;

mit 10 0 (1)
u 0 °\ 0 /, \

u x '
x2 x2 [t, x, x± x2) ; x2(t0 ;

Die Enveloppenbedingung lautet:

à (xx, x2)
à (£, x)

A (*, x) 0 (2)

LWerte, die (2) erfüllen, werden mit t bezeichnet. In einer (t, x)-
Ebene wird der Rand C von G definiert durch A(t, x) 0. Für

1 H. Bieri, Beispiele zum Randwertproblem der Variationsrechnung, Diss. 1941.
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innere Punkte von G gibt dann: 0 < t < t. In einer (aq, £2)-Ebene
wird das Bild des Randes G dargestellt durch (1) unter Berücksichtigung

von (2). Es ist die Enveloppe von (1). (1) liefert ferner mit der
Einschränkung 0 < t < t die in Frage stehende Abbildung. A (t, x)
verschwindet bei unserer Koordinatenwahl für t 0; diese höchst
unerwünschte Singularität kann durch Einführung « kartesischer »

Parameter £, sin x £, yj — cos. x t beseitigt werden. Sind nun
alle Voraussetzungen des Satzes erfüllt, so bedeuten die Bilder der
Geradenstücke x konst., 0 < t < t Extremalenbögen, welche die

Jakobische Bedingung erfüllen und ausser P(#J, x%) keinen gemeinsamen

Punkt besitzen. Ein gewisses Gebiet G der (xv £2)-Ebene wird
also von ihnen einfach und lückenlos überdeckt. Ist jetzt Q ein

innerer Punkt von G und sind ausserdem noch die Legendresche- und
die Weierstrassche Bedingung erfüllt, so existiert die Lösung des

Randwertproblems und ist eindeutig.

Die Beispiele mit F 2l£ + \/x\. £2 ; F 2l£ + \/(x\ — 1) £2;

F 21 j; + \/(x\ + 1) £2 ; rot St (0, 0, 1) lassen sich vollständig
durchrechnen. Ä (t, x) 0 hat die Form einer kubischen Gleichung
in t. Diese wird sehr vereinfacht durch den Ansatz

In allen drei Fällen lassen sich die Enveloppen, allerdings erst nach
Einführung geeigneter Hilfsgrössen soweit als gerade nötig
diskutieren.

Resultate : Die ersten zwei Beispiele 1 sind im wesentlichen äquivalent

mit dem klassischen Problem der Rotationsfläche kleinster
Oberfläche. Das dritte ist komplizierter. Man schneide von der (xv x2).
Ebene zwei einfachzusammenhängende Gebiete von der Form einer
Spitze weg. Im abgeschlossenen Restgebiet besitzt dann das
Randwertproblem immer genau eine Lösung.

Für das erste Beispiel gibt es noch eine individuelle Lösungsmethode
: Der Ansatz t k (x) T, wo T den £-Wert im Scheitel in

Bezug auf die x2-Achse bedeutet, gestattet den Nachweis, dass die
Enveloppe nicht nur einfach, sondern durchwegs nach der gleichen
Seite gekrümmt ist.

6. — J. Bucher (Luzern). Die Lösung einer von Gauss gestellten
Aufgabe und die elementare Berechnung der Klassenzahl nach dem

i Die ersten zwei Beispiele gestatten eine direkte Enveloppendiskussion, ebenso
das dritte für den Spezialfall xj 0 ; für ^ 0 wird mit Erfolg der Abbildungssatz
verwendet.
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Modul 4 für gewisse Zahlkörper von ungerader Klassenzahl. — Ist p
eine Primzahl der Form Mi + 1 a2 + &2, a ungerade. Bezeichnen
wir das Produkt: (n + 1) 2n mit r und mit X eine der Zahlen + 1

oder— 1, dann besteht nach Gauss die Kongruenz:

r2,

~ \b mod. p) b positiv.

X wurde von Gauss, Dirighlet, Dedekind für den Fall einer
Primzahl der Form 8/2 + 5 bestimmt, im allgemeinen Fall einer
Primzahl der Form 4/2 + 1 scheint X bisher nicht bestimmt worden

zu sein. Es wird gezeigt, dass allgemein X =» ^^ ist, wog die

Anzahl der reduzierten Zahlen in k(s/p) ist. Aus X und der Gliederzahl

m der Periode des Kettenbruches für die reduzierte ganze Zahl
C 2^P ^c ungerade Zahl < \fp lässt sich die Klassenzahl h

für den Körper k(\/p) nach dem Modul 4 bestimmen. Es ist

h =£ x(—-) (mod. 4).
\ ma /

Für den speziellen Dirichlet'sehen Körper k{\/p V— p) wo p
eine Primzahl der Form 8/2 + 5 ist, ergibt sich einfacher für die

Klassenzahl H: H ^ (m°d. 4) (a und b positiv).

7. — P. Nolfi (Zürich). —Die Sterblichkeit im Februar und März
1944 in mathematischer Beleuchtung. — Die im Februar und März 1944
in der Schweiz beobachtete Übersterblichkeit gab Anlass zur Prüfung
der Frage, inwieweit angenommen werden muss, dass dieses etwas
sonderbare Ereignis rein zufällig oder durch kausale Ursachen
hervorgerufen worden ist. Die Beantwortung dieser Frage auf Grund der
Wahrscheinlichkeitsrechnung bietet insofern Schwierigkeiten, als die
Sterbenswahrscheinlichkeiten der einzelnen Personen einer
Bevölkerung grosse Unterschiede aufweisen, so dass es nicht zulässig wäre,
nach dem üblichen Verfahren mit einer durchschnittlichen
Wahrscheinlichkeit zu rechnen.

Wenn man jedoch von der Vorstellung ausgeht, dass jeder der
beobachteten Personen eine Urne zugeordnet ist, enthaltend schwarze
und weisse Lose und dass der Tod ständig aus diesen Urnen Lose zieht,
wobei das Erscheinen eines schwarzen Loses das Ableben, das Erscheinen

eines weissen Loses das Weiterleben der Person, aus dessen Urne
das Los gezogen wurde, bedeutet, so gelingt es, eine
Wahrscheinlichkeitsbestimmung durchzuführen, die den ins Gewicht fallenden
Besonderheiten Rechnung trägt. Die mathematische Formulierung
gestaltet sich überraschend einfach. Die Wahrscheinlichkeit w {r)
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dafür, dass in einer Personengruppe, r Todesfälle eintreten, lässt sich

auf die einfache Formel

zurückführen, wobei u die erwartete Zahl der Todesfälle bedeutet.
Mit Hilfe der Brunschen Reihe gelingt es, auf Grund dieser Formel die

j numerischen Werte für die Wahrscheinlichkeit bestimmter Abwei-
j chungen zu berechnen. Auf Grund der vom statistischen Amt der
;j Stadt Zürich mitgeteilten Zahlen ergab sich, dass praktisch mit

Sicherheit angenommen werden kann, dass die in den Monaten
:| Februar und März beobachtete Übersterblichkeit durch besondere

I Ursachen hervorgerufen worden ist.
j

8. — Georges Vincent (Lausanne). Sur les groupes de rotations
sans point fixe. (Présenté par M. G., de Rham.) — Toute substitution

I linéaire, homogène, orthogonale, à coefficients réels, suivant les n + 1

j variables x0, xv xn, transforme en elle-même la sphère Sn définie
j par xl + x\ + + x2 1 dans l'espace euclidien réel En+1. Une

telle substitution est dite sans point fixe si elle n'admet pas la valeur
j propre + 1. La rotation correspondante ne laisse alors sur Sn aucun

point invariant. On se propose de déterminer les groupes finis formés,
| à part l'identité, uniquement de substitutions de cette nature.

Le problème ne présente quelque intérêt que pour les sphères de
| dimension impaire (pour les dimensions paires, les groupes cherchés
j se réduisent à l'identité et au groupe cyclique d'ordre deux formé de
j l'identité et de la symétrie relativement à l'origine des coordonnées),
j Pour la dimension trois, le problème a été entièrement résolu par
j M. H. Hopf. Voici comment on peut l'aborder pour des dimensions
| supérieures.
j Les sous-groupes abéliens du groupe G cherché devant être
j cycliques, celui-ci ne peut être, d'après un théorème de Burnside,
j que de l'un des deux types suivants:

j Type A : Tous les sous-groupes de Sylow de G sont cycliques (à ce

j type appartiennent les groupes cycliques eux-mêmes).

j Type B : Les sous-groupes de Sylow de G relatifs à un diviseur
premier p ^ 2 sont cycliques, ceux relatifs au diviseur
premier 2 sont du type des quarternions généralisé (ordre 2m;

TYl—1 tto — 9

A2 E, B2 A2 BAB-1 A-1, m > 2).

L'étude des représentations linéaires irréductibles des groupes du
type A conduit au résultat suivant:

Toute sphère de dimension impaire (supérieure à un) admet une
infinité de groupes non abéliens de rotations sans point fixe.
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Le problème est entièrement résolu pour les sphères de dimension
4m + 1 par le théorème:

Les groupes de rotations sans point fixe Tune sphère de dimension
4m + 1 sont tous du type A.

9. — H. Hadwiger (Bern). Ein Umordnungssatz der Funktionentheorie.

— Nach dem bekannten RiEMANNSchen Umordnungssatz 1

lässt sich jede bedingt (nicht absolut) konvergente Reihe reeller
Zahlen zu jeder beliebigen reellen Zahl als Summe umordnen. Nach
den Ergebnissen von Steinitz 2 gibt es Vektorreihen, die sich zu
jedem beliebigen Summenvektor des endlich dimensionalen Vektorraumes

umordnen lassen. Zu einem analogen Resultat gelangt man
auch in bezug auf Reihen des unendlich dimensionalen Folgenraumes.
Es muss hier darauf hingewiesen werden, dass Wald den STEiNiTzschen
Satz auf den Folgenraum übertragen konnte 3. Dass es auch bedingt
konvergente Reihen des Hilbertschen Raumes gibt, die sich zu jeder
Summe des Raumes umordnen lassen hat der Referent in Rahmen
einer allgemeineren Untersuchung gezeigt 4, durch welche dargetan
wurde, dass sich der STEiNiTZSche Satz (in einer aequivalenten
Formulierung) nicht auf den Hilbertschen Raum übertragen lässt.
Ferner hat der Referent in einer kleinen Note 5 ein Beispiel einer
Reihe reeller Funktionen gegeben, welche die Eigenschaft hat, dass

man sie zu jeder beliebig gewählten stetigen Funktion als Summe
umordnen kann. Eine Erweiterung auf komplexe Veränderliche, d. h.
die Formulierung eines entsprechenden Satzes der Funktionentheorie,
war naheliegend. Nun hat in der Tat S. Rios 6 den in Frage stehenden
Satz formuliert und bewiesen. Bei der Konstruktion des Beispiels hat
er im wesentlichen das nämliche Prinzip befolgt, das auch dem
Referenten bei der Behandlung des reellen Falles gedient hat (dies
wird in einer Fussnote von Rios erwähnt). Mit einigen unwesentlichen
Modifikationen lautet dieser Satz wie folgt:

Es gibt eine Reihe analytischer Funktionen die in der ganzen
Ebene lokal gleichmässig zur Summe Null konvergiert und welche
folgende Eigenschaft hat: Zu jeder analytischen Funktion und
einem schlichten beschränkten Regularitätsgebiet derselben lässt

1 Vgl. K. Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, 1931,
3. Aufl., S. 328.

2 E. Steinitz, Bedingt, konvergente Reihen und konvexe Systeme. Journ. reine u.
angew. Math., 143 (1913), S. 128-175.

3 A. Wald, Reihen in topologischen Gruppen. Ergebnisse eines math. Koll. Wien., 59.
und 60. Koll. (1933).

4 H. Hadwiger, Ueber das Umordnungsproblem im Hilbertschen Raum. Math.
Zeitschr., 46 (1940), S. 79.

5 H. Hadwiger, Eine Bemerkung über Umordnung von Reihen reeller Funktionen.
The Tôhohu Math. Journ., 46 (1939), S. 22-25.

e S. Rios, Sobre la reordenaciön de series funcionales y sus aplicaciones. Abhandli
Math. Seminar der Hansischen Univ., 15 (1943), S. 72-75.
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sich eine Umordnung der gegebenen Reihe finden, welche in dem

gewählten Gebiet lokal gleichmässig gegen die gewählte analytische

Funktion konvergiert.

10. — R. Wavre. Sur quelques hermitiens particuliers. — L'auteur
I applique à quelques opérateurs hermitiens spécialement simples les
1 propriétés concernant les conséquents par l'opérateur d'un élément

H particulier. Ces propriétés ont été démontrées dans deux articles des

Commentarii (vol. 15, fasc. 4 et vol. 16, fasc. 1).
Les opérateurs envisagés dans cette communication étaient:

La détermination des axes d'une quadrique (matrice symé¬
trique).

La multiplication d'une fonction par une autre (domaine réel)
| La dérivation (multipliée par -y/ETi).
| Les projecteurs, les intégrales de Fourier, l'intégrale de Poisson,
j La semi-continuité de la plus haute fréquence considérée comme

fonctionnelle de l'élément initial fut aussi rappelée.
j

j
Séance de printemps, Berne, 6 mai 1945

Conférence de M. le professeur Lars Ahlfors (Zurich) : «Extremal-
j aufgaben und konforme Abbildung ».

Réunion de Fribourg, 2 septembre 1945

(34e assemblée annuelle)

M. Diethelm (Schwyz): Über Anwendungen der Identitätsfunktion
in der Mathematik,

i P. Bidal (Aigle): A propos du théorème d'existence des formes
différentielles harmoniques.

Sophie Piccard (Neuchâtel): Des couples de substitutions qui engen¬
drent un groupe régulier.

Ed. Arnous (Paris et Leysin): Sur les statistiques attachées aux
j opérateurs hermitiens et leurs transformées de Fourier Stielties.

B. Eckmann (Lausanne) : Der Homologiering einer beliebigen Gruppe.
• R. Wavre (Genève): Curiosité géométrique.
f M. Plancherel (Zurich) : Sur la convergence en moyenne d'une suite
I de solutions d'une équation aux dérivées partielles linéaire de
l type elliptique.
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F. Fiala (Neuchâtel): Sur les réseaux riemanniens.
P. Bernays (Zürich): Bemerkungen zum Satz über symmetrische

Funktionen.
H. Hadwiger (Bern): Mittelbarkeit und Integration in Gruppen.
Gh. Blanc (Lausanne): Sur l'intégration des équations aux dérivées

partielles à caractéristiques réelles.
M. Gut (Zürich): Zur Theorie der Normenreste einer relativ

zyklischen Erweiterung von ungeradem Primzahlgrade.
L. Locher (Winterthur): Bericht über die neue Zeitschrift «Die

Elemente der Mathematik ».

R. Wavre et R. Soudan (Genève): Sur les fonctions polyharmo-
niques.

J. 0. Fleckenstein (Basel): Die genaue Datierung der erstmaligen
analytischen Formulierung des Prinzips der virtuellen Verrük-
kungen durch Johann I. Bernoulli.

Séance administrative. — Le Comité pour 1946 et 1947 a été constitué

comme suit: Max Gut, président; H. Hadwiger, vice-président;

Ch. Blanc, secrétaire-trésorier.

Séance de printemps, Bienne, 26 mai 1946.

Conférence de M. le professeur Jean Leray (Paris): La Topologie
algébrique.

Réunion de Zurich, 8 septembre 1946.

(35e assemblée annuelle.)

J.-P. Sydler (Zurich): Hyperquadratiques de révolution et droites
associées.

E. Specker (Zürich): Über den Zusammenhang zwischen
Fundamentalgruppen und zweiten Homotopiegruppen dreidimensionaler

Manigfaltigkeiten.
H. Bieri (Bern): Eine neue Methode zur Lösung von Randwertproblemen

der Variationsrechnung.
P. Bidal (Lausanne): Déterminants dont les éléments sont des

formes à multiplication extérieure.
G. Vincent (Lausanne): Sur les groupes de rotations sans points

fixes de la sphère à n dimensions.
B. Eckmann (Lausanne): Polyeder und Operatoren.
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Sophie Piccard (Neuchâtel): I. Les systèmes de substitutions qui
engendrent un groupe régulier. — II. Quelques propositions

I concernant les groupes d'ordre fini.
I J. de Siebenthal (Zurich-Lausanne): Sur la théorie globale des
j groupes de Lie compacts.

J. 0. Fleckenstein (Basel): Ein Problem der sphärischen Astro-
} nomie aus dem Nachlass von Joh. I. Bernoulli.
I M. Diethelm (Schwyz): Originelle Differentialquotient-Ableitungen.
| M. Gut (Zürich): Über die Klassenanzahlen der reellen Unterkörper

des Körpers der 1-ten Einheitswurseln.

Séance de printemps, Berthoud, 18 mai 1947.

Conférence de M. le professeur 0. Ore (New Haven, Conn.):
Entwicklungen aus dem Jordan-Hölderschen Satz.

Réunion de Genève, 31 août 1947.

(37e assemblée annuelle.)

Th. Reich (Glarus): Das Verhalten der regulären Quaternionen-
funktionen in der Nähe isolierter unwesentlich singulärer Punkte,

| Kurven und Flächen.
| A. Kriszten (Zürich): Areolar monogene Funktionen,
j G. de Rham (Lausanne): Sur la théorie des distributions de
j M. Laurent Schwartz.
j L. Kollros (Zurich): Solution d'un problème de Steiner,
j H. Hadwiger (Bern): Eine elementare Herleitung der isoperime-
j trischen Ungleichung im Raum.
j Sophie Piccard (Neuchâtel): I. Un théorème concernant le nombre
j total des bases d'un groupe d'ordre fini. — II. Sur les bases du
| groupe symétrique.
I A. Ammann (Genève): Sur la répartition des nombres modulo un.
j A. Challand (Berne): Qu'est-ce qu'un grand nombre La notation

de grand nombre dans le calcul des probabilités.
M. Diethelm (§chwyz): Über Anwendungen des Lehrsatzes von

Ptolemäus.

] Séance administrative. — Comité pour les années 1948 et 1949:
H. Hadwiger, président; Ch. Blanc, vice-président; A. Peluger,
secrétaire-trésorier.
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Séance de printemps, Soleure, 9 mai 1948.

Conférence de M. le Prof. André Weil (Chicago): L'hypothèse
de Rieman dans les corps de fonctions.

Séance administrative. — A la suite de la démission de M. Had-
wiger le Comité a été constitué comme suit: Ch. Blanc, président;
A. Pfluger, vice-président; F. Fiala, secrétaire-trésorier.

Réunion de Saint-Gall, 5 septembre 1948.

(37e assemblée annuelle.)

H. P. Kunzi (Ölten): Der Fatou'sche Satz bei harmonischen und
subharmonischen Funktionen in Räumen von der Dimension >2.

A. Pfluger (Zürich): Quasikonforme Abbildung und Kapazität.
W. Baum (Zürich): Nullwege im Komplexen.
E. Specker (Zürich): Nicht konstruktiv beweisbare Sätze der

Analysis.
Sophie Piccard (Neuchâtel): 1. Les bases du groupe y7. — 2. Sur

les bases du groupe alterné. — 3. Quelques propositions de la
théorie des substitutions.

H. Hadwiger (Bern): Zerlegungsgleichheit und additive Polyeder-
funktionale.

M. Rueff (Zürich): Allgemeine Sätze über Reduktionen quadra¬
tischer Formen von 4 Variablen.

W. Scherrer (Bern): Zur Theorie der Materie.
M. Jeger (Olten-Zürich) : Affine Zusammenhänge und Gewebe.
H. E. Rauch (Princeton-Zürich) : Einige Sätze über Funktionen

mehrerer Veränderlichen.

Séance de printemps, Berne, 22 mai 1949.

Conférence de M. le professeur G. Polya (Stanford University):.
Die Steinersche Symmetrisierung in der mathematischen Physik.
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Réunion de Lausanne, 4 septembre 1949.

(38e assemblée annuelle.)

F. Fiala (Neuchâtel) : Quelques généralisations de la symétrisation
de Steiner.

H. Guggenheimer (Basel) : Über die Bettischen Zahlen Riemannscher
Manigfaltigkeiten.

B. Eckmann (Zürich): Analytische und harmonische Differentiale
in komplexen Manigfaltigkeiten.

Sophie Piccard (Neuchâtel): 1. Les diverses groupes que peut engen¬
drer un système connexe et primitif de cycles du 6e ordre et les
bases de ce groupe. — 2. Les sous-groupes primitifs d'ordre 1344
du groupe alterné de degré 8.

M. Gut (Zürich): Eulersche Zahlen und grosser Fermatscher Satz.
Gh. Blanc (Lausanne): A propos de la théorie des plaques élastiques.
H. Bieri (Bern): Die erste Variation der Masszahlen eines Elementarkegels.

R. Zwahlen (Zürich): Eigenwertprobleme mit dreigliedrigen
Rekursionsformeln zwischen den Eigenwerten.

W. Kaplan (Zürich-Ann Arbor).

Séance administrative. — Comité pour les années 1950 et 1951:
A. Pfluger, président; F. Fiala, vice-président; J. J. Burck-
hardt, secrétaire-trésorier.

Séance de printemps, Bienne, 14 mai 1950.

Conférence de M. le professeur R. Nevanlinna (Zürich-Helsing-
fors): Probleme der offenen Riemannschen Flächen.
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