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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications.

Réunion de Bdle, 6 et 7 septembre 1941.

La Société mathématique suisse a tenu sa trentiéme assemblée
annuelle a Bale, les 6 et 7 septembre 1941, sous la présidence de
M. le professeur L. KorLros, président, en méme temps que la
121me gession annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a constitué comme suit son
Comité pour les années 1942 et 1943: MM. les professeurs P. BucHNER
(Bale), président; G. pe Ruam (Lausanne), vice-président; M. Gur
(Zurich), secrétaire-caissier.

La partie scientifigue a été consacrée aux communications ci-apres,
réparties sur trois séances.

1. — Karl Merz (Chur). Kreuzhaube erweitert nach Boy (Calotte
polyédrique d’apres Boy). — Eine einfache Kreuzhaube ! besitzt eine
Doppelstrecke SO = 5, wobei S die gemeinsame Spitze ist, von den
beiden an SO in Scheitellage anstossenden dreiseitigen Pyramiden,
und O der Schnitt der beiden Diagonalen des Quadrates, auf dem
iiber zwei Scheiteldreiecken die beiden Pyramiden errichtet sind.
Wird das unter jenem Quadrat ansetzende Prisma noch durch seine
Grundflache abgeschlossen, so ist das entstandene Polyeder als
11-Flach mit e = 10, k = 20, also ¢ = 1, eine Abbildung der projek-
tiven Ebene, wobei S und O singulére Punkte sind, als Endpunkte der

‘Doppelstrecke.

Diese Kreuzhaube soll nun so erweitert werden, dass dadurch am
Polyeder eine Selbstdurchdringung entsteht, die einen einfachen
geschlossenen Streckenzug bildet, so dass keine Endpunkte mehr an
der Durchdringung bestehen. Um dies zu erzielen, sind zu der Doppel-
strecke OS = 5 noch weitere Doppelstrecken anzufiigen, z. B.
ST = 9 und TO = 3, womit das Doppelstreckendreieck SOT entsteht.
Um dabei die neue Doppelstrecke 9 zu erhalten, hat man die in 9 als

1 K. Merz, Kreuzhaube aus verschiedenen Netzen. Vierteljahrsschrift der Natur-
orschenden Gesellschaft in Ziirich, LXXXYV, 1940 (Seite 51).
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Kante zusammenstossenden beiden Flichen A und E iiber 9 hinaus
zu erweltern und dann noch mittels zwei abschliessenden Flichen
eine neue Scheitelzelle aussen lings 9 anzufiigen. Lings 3 entsteht,
auf entsprechende Weise, eine innere Hohlzelle, die in Scheitellage ist
zu einer dussern Liicke der Kreuzhaube. Von diesem geschlossenen
Polyeder, f = 15, e = 14, k = 28, also auch mit ¢ = 1, mit dem
Dreieck SOT als Selbstdurchdringung, lisst sich ein Netz herstellen
(Vorweisung). Bei der Aufklappung dieses Netzes zum 15 Flach tritt
die Eigentiimlichkeit ein, dass die dabei entstehenden Wende-
strecken, in denen Ober- und Unterseite des Netzes aneinander-
stossen und damit die Einseitigkeit herbeifithren, zugleich in die
Doppelstrecken fallen. Das Dreieck SOT der Doppelstrecken ent-
spricht damit der unendlich fernen Geraden, welche die Wendegerade
der projektiven Ebene ist, und es entspricht daher zugleich auch der
Selbstdurchdringung dieser Ebene. Diese durch die erweiterte Kreuz-
haube erhaltene Abbildung der projektiven Ebene hat allerdings noch
die drei singulidren Punkte S, O, T, die aber von einfacherer Art sind
als die sechs singuldren Punkte am Heptaeder, in denen die drei
Doppelstrecken als Selbstdurchdringungen endigen. Ausserdem fehlt
der dreifache Punkt, wie er am Heptaeder auftritt. Doch tritt dafiir
eine Hohlzelle auf. Dieses Polyeder kann als Zugang zu einer neuen
Boy’schen Fliache dienen.

2. — M. DiernELM (Rickenbach, Schwyz). Ein kurzer Weg zur
Entwicklung der Hyperbelfunktionen. — L’auteur indique un moyen
rapide et élémentaire permettant de présenter, dans une premiere
étude, les propriétés essentielles des fonctions hyperboliques en
partant de ’hyperbole et du secteur hyperbolique. Analogies entre les
fonctions hyperboliques et les fonctions circulaires.

3. — Julien MALENGREAU (Montreux). Euclide ou Pythagore ?
(Dussertation sur le continu et le discontinu.) — Pythagore considérait
la droite comme une somme de points. Cette conception a été aban-
donnée depuis la découverte des irrationnelles. Les données qui
servent de base & la géométrie d’Euclide présupposent que les figures
appartiennent & un espace continu, aussi la géométrie classique
fondée sur la méthode euclidienne ne fait-elle aucune allusion &
Pespace discontinu. L’auteur se propose de montrer qu’il s’agit 1a
d’une lacune & combler et dans ce but il examine de pres la théorie
de I’évaluation des grandeurs. Cette théorie est basée sur la notion
de limite dont ’emploi ne se justifie cependant qu’en cas de nécessité
absolue. Il est donc indispensable de commencer la géométrie par la
recherche du plus vaste des ensembles de points tel que ses grandeurs
puissent toutes étre évaluées au moyen de la seule notion de commune
mesure. Cet ensemble est un espace discontinu auquel 'auteur a donné
le nom d’espace rationnel.
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-L’évaluation des grandeurs de I’espace rationnel est basée sur la
relation de Stewart que auteur établit en partant des conditions
auxquelles il faut satisfaire pour obtenir la compatibilité des postulats
nécessaires a la construction de cet espace. La relation de Stewart
devient ainsi la garantie de stabilité de tout I’édifice euclidien. ‘

L’espace rationnel jouit d’une propriété remarquable d’apres
laquelle non seulement les longueurs d’une méme droite sont toujours
entre elles dans un rapport rationnel, mais aussi les surfaces d’un
méme plan, les volumes d’un méme espace & trois dimensions, et(}.

Ce n’est qu’apres ’étude de cet espace discontinu que ’on devrait
commencer celle de espace continu; composé de I’ensemble de tous
les espaces rationnels simultanément possibles en vertu du postulat
de continuité adopté. Cette seconde étude peut se faire a I’aide de la
notion de limite dont ’emploi est alors justifié du fait qu’avec I’étude
de P'espace rationnel on a utilisé la notion de la commune mesure dans
toute I’étendue possible.

L’auteur montre que la nécessité de commencer la géométrie par
Iespace discontinu apparait encore au cours de la résolution des
problémes que pose la recherche des fondements de la géométrie.
(C’est parce qu’on a toujours abordé le c6té mathématique de cette
question, en partant de I’espace continu qu’elle a fini par apparaitre
inextricable. En réalité la réponse a cette question s’identifie tout
simplement a la géométrie méme, lorsque celle-ci est bien ordonnée,
c’est-a-dire commence par ’édification point par point de I’espace
rationnel. La considération de cette identité permet a 'auteur d’affir-
mer que c’est la possibilité de la géométrie classique qui entraine
celle de la géométrie analytique et non pas I'inverse, comme on I'a
supposé avec le professeur Hilbert.

4. — Johann Jakob BurckuARDT (Zurich). — Les ceuvres posthumes
de Ludwig Schlifli. — Résumé d’un rapport sur la classification et
I'élaboration d’un catalogue des ceuvres posthumes de Ludwig
Schlafli, qui doit étre publié, avec une Table des matiéres et une
Note sur les travaux de Schlifli relatifs a la Théorie des formes
quadratiques, dans les Mitteilungen der Berner Naturforschenden
Gesellschaft.

Les ceuvres posthumes ont été classées sur la base du relevé de Graf
(Mitt. der Berner Naturf. Ges., 1896) avec 1’aide de la Fondation
Escher-Abegg. Nous avons trouvé des manuscrits méritant une mise
au point dans les domaines suivants: 1. Théorie des surfaces du
troisieme ordre. — 2. 25 cahiers de géométrie. — 3. 12 cahiers sur
la théorie d’Hermite des équations modulaires. — 4. Théorie des
formes quadratiques. |

5. — Louis Kovrrros (Zurich). — Généralisation des théorémes de
Miquel et Clifford. — Cinq droites d’un plan, prises quatre a quatre,




72 SOCIETE MATHEMATIQUE SUISSE

déterminent cing paraboles dont les foyers sont sur un cercle (théo-
reme de Miquel). Ce cercle est le lieu géométrique des points P tels
que les pieds des perpendiculaires abaissées de P sur les cinq droites
données et le point P lui-méme soient sur un conique. Pour les points
de Miquel, cette conique dégénére en deux droites.

Six droites d’un plan, prises cinq & cing, déterminent six cercles
de Miquel; ces six cercles passent par un point; sept droites, prises
six a six, déterminent sept de ces points qui sont sur un cercle, et ainsi
de suite (théoreme de Clifford, Math. Papers, p. 38). Les cercles de
Clifford peuvent aussi étre définis comme lieux géométriques; on
trouve le résultat suivant:

On donne 2n -+ 1 droites dans un plan; le lieuw géométrique des
points P tels que les pieds des perpendiculaires abaissées de P sur
ces droites sotent sur une courbe algébrique de degré n ayant en P un
pownt multiple d’ordre n — 1 est un cercle. Si on a 2n + 2 droites, il n’y
a qu’un point jouissant de cette propriété.

Démonstration de deux formules de Steiner. — Une conique est
déterminée par son centre O et trois tangentes. Soient A, B, C les
sommets du triangle formé par les trois tangentes, A’ B’ C’ les
milieux des cOtés opposés «, b, ¢. Les cotés du triangle A" B’ C’ pro-
longés indéfiniment divisent le plan en sept parties: I'intérieur du
triangle A" B’ C’, les trois parties extérieures comprises dans les
angles A’ B’, C’, les trois parties adjacentes aux cotés. La conique
est une ellipse si le centre O est dans 'une des quatre premieres
parties, une hyperbole si O est dans I'une des trois derniéres.

O est aussi le centre d’une conique circonscrite au triangle ABC;
elle est toujours de méme nature que la conique inscrite.

Sir est le rayon du cercle circonserit au triangle ABC, si x, y, z sont
les distances de O aux cotés du triangle ABC et 2’, y’, 2z, les distances
de O aux coOtés du triangle A" B’ C', I'aire E; de Dellipse inscrite est
donnée par la formule:

et aire E. de Pellipse circonscrite, par:

22 y? 22

4

Ei = rczrx V7

Ces deux formules ont été indiquées sans démonstration par
Steiner ((Euvres completes, t. 11, p. 329). On peut les démontrer en
déterminant le produit des puissances des involutions des points
conjugués sur les axes; on voit ainsi que si la conique est une hyper-
bole inscrite ou circonscrite au triangle ABC, chaque formule donne
Paire de I'ellipse qui a les mémes axes que I’hyperbole (voir Steiners
Vorlesungen iiber synthetische Geometrie, 2. Teil, bearbeitet von
Schroter, Anhang, p. 556 a 564).
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Mais on peut aussi transformer les formules en expressions inva-
riantes par affinité en multipliant et divisant la premiere par abc
et la seconde par a2 b2 2. Si 'on désigne laire du triangle ABC par T
(= abc : 4r) et les doubles des aires des triangles OBC, OCA, OAB
respectivement par t = ax, t’' = by, t'' = ¢z, on aura: ar’ =T —1,
by =T —1t', ¢z’ =T —1t" et les deux formules deviendront:
221272

ﬁzﬂﬂ—ﬂﬂ~mﬁ—ﬂ)

E. = :
T Y T BT (T —1) (T—1) (T—1)
11 suffit alors de les démontrer pour le cercle inscrit ou le cercle
circonscrit & un triangle, ce qui est élémentaire.

Une conique est aussi déterminée par son centre O et un triangle
polaire ABC, mais elle n’est pas de méme nature que la conique de
méme centre inscrite ou circonscrite & ABC; elle est imaginaire s1 O
est a 'intérieur du triangle ABC; c’est une ellipse si O est en dehors
et dans un des angles A, B, C; c¢’est une hyperbole si O est dans 'une
des trois parties extérieures adjacentes aux coOtés. Dans le cas de
lellipse, I'aire E,, est donnée par la formule:

tt/ z//
2T

2 .

42
B, =2rrays = =

Mais dans tous les cas, la valeur absolue du produit des puissances
des involutions des points conjugués sur les deux axes est 2rayz. On a
donc toujours en valeur absolue:

El = E; B,

=W

ou, si « et 3 sont les demi-axes de la conique circonscrite, et o', B’
ceux de la conique inscrite:

2reys = af o'B .
En particulier, si la conique inscrite est un cercle de rayon »’, on a:
2rr" = af et o+ B = 2r.

Donc, les ellipses de centre O circonscrites a tous les triangles inscrits
au cercle (r) et circonserits au cercle (r') sont égales.

6. — H. Hopr (Zurich). Sur certaines relations entre la Théorte des
Groupes et la Topologie. — On sait que le premier groupe de Betti B!
d’un complexe est déterminé par son groupe fondamental G: il est le
groupe quotient (x/Cg, ou Cg est le groupe des commutateurs (Kom-
mutatorgruppe, ou groupe dérivé) de G. Les recherches communiquées
ici concernent l'influence du groupe fondamental G sur le deuxiéme
groupe de Betti B2.
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TukoreME I: A tout groupe G est attaché, par une opération algé-
brique bien déterminée, un groupe abélien G7; st G est le groupe
fondamental d’un complexe K et si S? est le sous-groupe de B2

composé des classes d’homologie qui contiennent des images conti-
nues de la surface de la sphére, on a:

B2/S® = @) .

Corollaire : G} est image homomorphe de B2; le deuxiéme groupe
de Betti n’est donc en ce sens pas « plus petit » que le groupe G}, qui

est déterminé par le groupe fondamental.

Complément au théoréeme I: Pour chaque groupe G (avec un
nombre fini de générateurs et de relations) il y a un complexe K dont
le groupe fondamental est G et pour lequel S? = 0; G} est par suite

la «borne inférieure exacte » des groupes B2 qui sont compatibles,
en tant que deuxiémes groupes de Betti, avec le groupe fondamental G.

Pour caractériser G algébriquement, nous utilisons le procédé

suivant de formation de groupes: F étant un groupe quelconque,
R un sous-groupe de F, soit Gy (R) le sous-groupe de F engendré par
tous les éléments x . r . a' . r* avec xe F, re R; C?(F) = C; est
par exemple le groupe des commutateurs, Gy (Cp) = C; est le

« deuxiéme groupe des commutateurs » de F.

Tuktoreme I1: Etant donné un homorphisme du groupe libre ¥ sur
le groupe G ou Uimage inverse de Uélément unité de G est le
sous-groupe wnvariant R de ¥, on a:

Gi = (C, N R)/CL(R) .

Le fait que le groupe qui apparait au second membre de cette
isomorphie ne dépend pas des groupes F et R, mais seulement du
groupe quotient F/R, donc seulement de G, constitue un théoréme
de théorie des groupes.

Ezemple : Si G est le groupe abélien libre de rang p, G] est le groupe

abélien libre de rangp_(l’z;“

en se basant sur le théoreme I ou algébriquement en se basant sur
le théoréeme II.

Les groupes Cgy (R) jouent un role important dans la nouvelle
théorie des groupes, en particulier dans des travaux de Hall, Magnus,
Witt; il convenait de souligner ici la relation entre ce procédé de
formation de groupes et des concepts topologiques.

Un exposé complet paraitra dans les Commentarit Mathematici
Helyetict, vol. 14, pp. 257-309.

. On peut le voir géométriquement
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7. — Pierre Humbert + (Lausanne). Polyédre sans singularités
topologiques homéomorphe au plan projectif dans U'espace a trots dimen-
stons. (Présenté par H. Hopf, Zurich.) — Par des modifications

apportées 4 un polyedre que K. Merz a obtenu & partir de I'hep-
taedre, un polyedre est construit dans I'espace euclidien & trois dimen-
sions, qui est un modeéle du plan projectif dans le sens suivant: Il est
I'image uniforme et continue du plan projectif, et chaque point du
plan projectif posséde un voisinage dans lequel la correspondance est
biunivoque. Ce modele possede la méme symétrie que la surface connue
de Boy et peut étre considéré comme une approximation polyédrale
de cette surface, qui est ainsi obtenue par une voie nouvelle et intui-
tive. La description exacte de ce modeéle paraitra dans les Comment.

Math. Helo., vol. 14, en méme temps que la construction mentionnée
de K. Merz.

8. — G. pE Ruam (Lausanne). Sur une décomposition des chaines
d’un complexe. — Soit un complexe & n dimensions G, et soient
al(t=1, 2, ..., ag; O < ¢< n) ses cellules a ¢ dimensions, prises
avec une orientation déterminée. On appelle produit scalaire des
deux chaines

I

q — - ad q . adq
C_Zy” et d_}_’]yli
1 (A

le nombre

.90 — NV
¢ d__‘_/'_ixly.i.

2

A toute chaine ¢? correspond une chaine a une dimension de moins,
sa frontiere & ¢4, et une chaine a une dimension de plus, (D ¢2™, que
nous appellerons sa cofrontiére, selon I’expression proposée par
M. Whitney.

Quelles que soient les chaines ¢?t! et ¢4, on a la relation
Sredtl o8 — 0T D (1)

Cette relation peut servir de définition de la cofrontiére. On a d’ail-
leurs une définition équivalente en considérant le complexe réciproque
de C; a chaque chaine & ¢ dimensions de C correspond, comme on
sait, une chaine & n— ¢ dimensions du complexe réciproque, sa
duale, et la cofrontiere n’est pas autre chose que la duale de la
frontiére de la duale. On dit que la chaine c? est fermée si F c? = 0,
cofermée si (M ¢? = 0, homologue a zéro s’il existe une chaine ¢2+1
telle que & c1t! = ¢7, cohomologue & zéro s’il existe une chaine
e+l telle que (M ¢! = ¢2. Nous appellerons harmonigue toute chaine
a la fois fermée et cofermée. On a le théoréme suivant:
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Toute chaine ¢4 peut étre décomposée, d’une maniére unique, en la
somme d’une chaine homologue a zéro, d’une chaine cohomologue & zéro
et d’une chaine harmonique.

La démonstration résulte tres simplement de la formule (1), en
remarquant que, pour qu'une chaine soit cofermée, il faut et il suffit
qu’elle soit orthogonale a toute chaine homologue a zéro, et pour
qu’elle soit fermée, il faut et il suffit qu’elle soit orthogonale a toute
chaine cohomologue a zéro. Deux chaines sont dites orthogonales si
leur produit scalaire est nul. On admet que le domaine des coefficients
des chaines est un corps; si la chaine ¢? est a coefficients entiers, il
peut arriver que les chaines composantes ne soient pas a coefficients
entiers. :

Corollaire: Dans chaque classe d’homologie de cycles, comme dans
chaque classe de cohomologie de cocycles, il y a une chaine harmonique
et une seule.

Ces propositions présentent une analogie parfaite avec la théorie
des formes harmoniques sur un espace de Riemann, considérées par
M. Hodge. Aux chaines de dimension ¢ correspondent les formes
différentielles extérieures de degré ¢, & I'opération (0 correspond la
dérivation extérieure, qui associe a chaque forme une autre forme
de degré inférieur d’une unité; chaque forme w de degré ¢ posséde,
dans un espace de Riemann & n dimensions, une forme adjointe »*
de degré n — ¢, analogue a la chaine duale, ce qui permet de définir
le produit scalaire de deux formes w, et w, par I'intégrale

? *
/"01 Wy
t

étendue a tout 'espace de Riemann et une opération analogue a
Popération & par la formule JF w = [(Dw*]*.

9. — H. Hapwicer (Bern). Bemerkung iiber bedingt konvergente
Vektorrethen. — Paraitra dans Math. Zeutschr.; vol. 47.

10. — Ch. Braxc (Lausanne). Les polyédres et les théorémes d’ A bel
et de Riemann-Roch. — Paraitra dans les Comment. Math. Hely.,
vol. 14, pp. 212-229.

11. — F. Fiavra (Geneve). Sur le probléeme isopérimétriqgue 1. — On
considére une surface homéomorphe au plan euclidien et normale au
sens de Cartan. On peut démontrer les deux théoremes suivants 2:

1 Le mémoire paraitra dans le vol. XV des Comment. Math. Helv.
2 Voir aussi: F. Fiara, Le probiéme des isopérimétres sur les surfaces ouvertes i
courbure positive. Commenl. Math. Ilelv., vol. XIII, 1941, pp. 293-346.
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A. — Si la courbure totale est partout positive, parmi toutes les
courbes simplement fermées de longueur donnée, il en ex1ste au
moins une quil contlent un domaine d’aire maximum.

B. — Si la courbure totale est partout négative, et si I'intégrale
de cette courbure est bornée inférieurement, parmi toutes les courbes
simplement fermées de longueur donnée, il n’en ex1ste aucune qui
contienne un domaine d’aire maximum. ' :

12. — B. EckMANN (Zurich). Vektorfelder auf Sphdren (Champs de
vecteurs sur les sphéres). — Par un champ de vecteurs (ou un champ
de directions) sur une sphére, nous entendons un champ continu de -
vecteurs-unité tangents & cette sphére. D’aprés un théoreme connu de
Poincaré et Brouwer, il n’existe pas de champs de vecteurs sur les
sphéres a dimension paire (tandis qu’il existe un tel champ sur toute
sphere a dimension impaire). Un k-champ sur une sphére est un sys-
téme de k-champs de vecteurs tel qu'en tout point de la sphere les
k-vecteurs du systéme soient linéairement indépendants, ou bien, ce
qui revient au méme, forment un systéme orthogonal. S’il existe
sur une sphére a n dimensions un n-champ, on dit que cette sphére
est parallélisable®; les sphéres de dimension 1, 3, 7 ont cette pro-
priété, comme on sait 1, mais on ne sait pas s’il existe d’autres sphéres
parallélisables. Les méthodes de Stiefel 1, qui dans le cas des espaces
projectifs réels ont conduit a bien des résultats, ne sont plus appli-
cables dans le cas des spheres. Cependant nous pouvons montrer:

Sur les sphéres & 4s + 1 dimensions il n’existe pas de 2-champ.
Une telle sphéere ne peut donc étre parallélisable.

La démonstration de ce théoréme, qui sera publiée prochainement,
fait usage des « groupes d’homotopie » introduits par Hurewicz et de
quelques résultats de la théorie des « espaces fibrés » 2, et de plus de
certaines propriétés du groupe fondamental des groupes orthogonaux.
Dans cette démonstration on réduit le théoréeme énoncé au suivant:

Soit v un nombre impair ; st on a r fonctions complexes 1y, f,, ..., f,
de r variables complexes uq, u,, ..., Uy, continues pour. toutes les valeurs
des vartables # (0, 0, ..., 0), et si la relation

L E. ST1EFEL, Comm. Math. Helv., vol. 8 (1935), 305-351 et vol. 13 (1941), 201-218.

2 B. ECKMANN, Zur Homotopletheorle gefaserter Rdume, Comm. Math. Helv., 14
(1943)
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a liew pour toutes les valeurs des ut, alors les fonctions fj, f,, ..., £, ont
au moins un zéro commun (différent de (0, 0, ..., 0)).

On déduit de ce résultat trouvé par une voie purement topologique
de nouveaux théorémes algébriques (en choisissant pour les fonctions
f; des formes ou des polynomes en u,, ..., u,). On peut poser le pro-
bléme de les démontrer par des méthodes algébriques L.

13. — P. BERNAYS (Zurich). A propos des nouvelles recherches de
Gadel. — Dans son mémoire « The consistency of the axiom of choice
and of the generalized continuum-hypothesis with the axioms of set
theory » (Annals of Mathematics Studies, n° 3, Princeton, 1940; voir
aussi le rapport dans le Journal of Symbolic Logic,vol. VI, pp. 112-114),
Godel a prouvé qu’a la base de la théorie axiomatique des ensembles,
y compris la délimitation exacte de la notion « definite Eigenschaft »
et aussi I’axiome du remplacement, mais non pas ’axiome du choix,
on peut établir un modele de la théorie des ensembles pour lequel
Passertion de ’axiome du choix ainsi que celle de I'hypothése géné-
ralisée du continu sont des théorémes démontrables. La construction
de ce modele comprend la définition par un procédé récurrent d’une
représentation univoque des nombres ordinaux sur les ensembles.

A ces résultats de Godel on peut ajouter la remarque qu’il est pos-
sible d’éliminer de toute la considération I’axiome sur I’ensemble de
tous les sous-ensembles. (Il s’entend que I'hypothése généralisée du
continu doit alors &tre restreinte a des nombres cardinaux pour
lesquels il existe un plus haut nombre cardinal.)

On peut d’ailleurs montrer généralement qu’au sein d’une axioma-
tique des ensembles, pour déduire les théoremes généraux (bon ordre
et récurrence transfinie) ainsi que I'analyse infinitésimale, on peut se
passer de I'axiome sur I’ensemble de tous les sous-ensembles.

En écartant cet axiome de la théorie axiomatique des ensembles,
nous gagnons une plus grande liberté en regard des modeles — tout
en conservant ’opposition soulignée par Zermelo entre la théorie
axiomatique des ensembles et ses modéles. (Le role des « Grenzzahlen »
de Zermelo devient maintenant commun a tous les ordinaux « régu-
liers » au sens de Hausdorff.)

De cette maniere, nous échappons & I'obligation de choisir entre un
cadre axiomatique trop restreint et un cadre dépassant deéja les
besoins de l'analyse en nous engageant dans la progression illimitée
des nombres cardinaux transfinis.

14. — W. ScHERRER (Bern). Zur Theorte der Elementarteilchen. —
Veranlasst durch neue Ansédtze zu einer skalaren relativistischen
Wellenmechanik ? diskutiert der Referent folgenden Ansatz zu einer

1 Voir B. E. EckMANN, Comm. Math. Helveti,ci vol. 15, 1-26.
2 Vgl. Helv. Phys. Acta, XIV, 1, 81, und XIV, 2.
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Gravitationstheorie mit einer skalaren und durchwegs positiven

Wirkungsdichte
T:T(xo,xl,xz,x;,) (1)

und dem Linienelement

/QTR \/ G dz, dz, dz, dz, = Extremum |, (3)
mit der Nebenbedingung
f T /G dz, dz, dz, dx, = konst. , (&)

wo R den Riemannschen Kriimmungsskalar darstellt.
Bezeichnet man mit A die wegen (4) sich ergebende kosmologische
Konstante und benutzt man die Abkiirzung

T o 3T

Tik = 52,82, "3 (5)
so ergeben sich die Gleichungen

zur Bestimmung der 11 Grossen Gy, und T. |
Als Folgerung aus (6) ergibt sich die Gleichung

DT:%T. (7)

Sie darf nicht unmittelbar als Wellengleichung angesprochen werden,
da nicht T? sondern T die Materiedichte darstellt.

Das zugehorige kosmologische Problem ist eindeutig bestimmt und
liefert eine Welt, die sich aus einer Einsteinschen Zylinderwelt fir
x, = — o0 1in eine De-Sitter-Welt fiir z;, = 4 o0 entwickelt.

Einen allgemeinern Ansatz erhélt man, wenn man in (3) R ersetzt
durch

R 4+ k(grad) Lg T)* . (8)

15. — L. Locrer (Winterthur). Ueber projekiive Linien- und
Ebenenkoordinaten. — Homogene projektive Koordinaten bildet
man, indem die nichthomogenen K als Quotienten mit derselben
Hilfsvariablen im Nenner dargestellt werden. Zur Einfiihrung stellt
sich die didaktische Frage, ob diese homogenen K nicht unmittelbar
anschaulich gelesen werden konnen. Das geht sehr einfach und wird
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doch in der Lehrbuchliteratur unterlassen. Fithrt man das K-System
entsprechend ein, so lassen sich die K u, ¢.,... des Punktes Uu -+
Vo + ... = 0 und des mit ihm inzidierenden dualen Elementes U, V, ...
unmittelbar anschaulich fassen. Sind im metrischen Falle u, ¢, w, ...
rechtwinklige Punktkoordinaten, so stellen U, V, W, ... diejenigen
dazu dualen K dar, welche sich aus der pseudoeuklidischen Metrik
ergeben. Die vorgetragene Bemerkung ist in meinem Buche Pro-
jektive Geometrie (Orell-Fiissli, 1940, S. 215 f.) angewendet.

16. — Sophie Piccarp (Neuchdtel). Sur une catégorie d’ensembles
parfaits et leur application a divers problémes métriques. Quelques
propositions concernant les ensembles de sommes et les ensembles de
différences de nombres d’un ensemble linéaire. — Soit n un entier > 2,
soit £ un entier tel que 1< k < n et soient a¢; = 0, a4, a, ..., a
(0 <@, <ay, <..<a)k nombres donnés (distincts, quelconques)
de la suite 0,1, 2, ..., n — 1. L’ensemble P des nombres > qui peuvent
s'exprimer dans le systéme de numération & base n a laide des
seuls chiffres a,, a;, ... ar est un ensemble parfait non dense de
mesure nulle. La famille & de tous les ensembles P est dénombrable.
Nous avons étudié la structure des ensembles de cette famille & qui
fournit de nombreux et instructifs exemples pour des théoremes
d’existence dans la théorie des ensembles linéaires. Un ensemble P
peut étre de premiére espece . La condition nécessaire et suffisante
pour qu’il en soit ainsi est que a;.y —a; =1 (@ =0,1, 2, ..., k—1)
et que 2a, >n—1, s1 ap <n—1, ou que lensemble K =
{ao, By ssss ak} contienne, avec tout couple de nombres a;, a; ., tels
que a;yy — a; = [ > 1, les nombres ¢; — 1, a; — 2, ..., a; — 1 4+ 2
et a1 + 1, a1 + 2, ., i 12

A et B étant deux ensembles linéaires, désignons par o (A, B)
Pensemble des sommes a + b, ac A, beB, et par d (A, B) 'ensemble
des différences a — b, ac A, beB. En particulier, si A = B,
posons ¢ (A, A) = o (A) et 3 (A, A) = 3 (A). :

On. a les propositions suivantes:

1. Si A est ouvert, ¢ (A) est ouvert et 3 (A) est un Gs.

2. Si A est fermé, borné ou semi-borné, ¢ (A) est fermé. Il en est
de méme de & (A), si 'ensemble A est borné.

3. Si A est dense en soi, il en est de méme de ¢ (A) et de d (A).
Il résulte de 2 et de 3 que si A est parfait (borné ou semi-borné),
o (A) est parfait. Si A est parfait et borné, & (A) est parfait.

t Terminologie de M. Mirimanoff (voir D. MIRIMANOFF, Sur un probléme de la
théorie de 1a mesure, II, Fund. Math., t. IV, p. 118); M. Denjoy qualifie ces ensembles
d’ensembles présentant le caractére A (voir A. DENJOY, Sur une classe d’ensembles
parfaits discontinus, Comptes rendus du Congrés international des Mathémalticiens,
Strasbourg, 1920).
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4. Si A est un F,, chacun des ensembles 6 (A), 3 (A) est aussi un Fi.
5. Si A est un Gy, o (A), aussi bien que d(A), peut ne pas étre un Gs.

6. St A et B sont deux ensembles linéaires de mesure intérieure
positive, ou §’ils sont tous deux de seconde catégorie de Baire et
jouissent de la propriété de Baire, ou encore. s’ils sont tous deux de§
ensembles parfaits de premiére espéce, I'ensemble o (A, B), aussi
bien que 3 (A, B), contient un intervalle.

Les parties des énoncés 1-5 relatives aux ensembles & (A, B) sont
connues.

7. 11 existe deux ensembles linéaires A, B, tels que d(A, B) =
(—o0, o) alors que mes ¢ (A, B) = 0. Il existe aussi deux ensembles
linéaires C, D tels que ¢ (C, D) = ( < 0, oo, c0) alors que mes
3 (G, D) = 0.

8. Il existe deux ensembles linéaires A et B, tels que mes ¢ (A) = 0
mes o (B) = 0, alors que mes o (A,B) > 0. Il existe aussi deux
ensembles linéaires G et D, tels que mes ¢ (A) > 0, mes ¢ (B) > 0 et
que mes ¢ (G, D) = 0.

Une proposition analogue a, comme on sait, lieu pour les ensembles
de diftérences.

P et K ayant la signification indiquée dans le premier alinéa de ce
résumé, on a les résultats suivants concernant la mesure (lesbesguienne)
des ensembles ¢ (P) et § (P).

9. a) Supposons d’abord que ap < n— 1.

Si tout nombre de la suite 1, 2, ..., n — 1 appartient & ¢ (K), on a
c(P)= (<0, ).

S’1l existe au moins un nombre de la suite 1, 2, ..., n — 1 qui ne
fait pas partie de ¢ (K), on a ¢ (P) 4 (< 0, »).

S’1l existe au moins un entier ¢ de la suite 1, 2, ..., n — 1 qui est

absent dans ¢ (K) en méme temps que le nombre n - i, on a mes
s (P)=0. |

Si quel que soit le nombre i de la suite 1, 2, ..., n — 1 qui fait défaut
dans ¢ (K) (et nous supposons qu'il existe au moins un tel nombre),
le nombre n + i appartient & ¢ (K), on a mes ¢ (P) > 0 et en méme
temps mes [( < 0, ©0)—c (P)] > 0.

b) Supposons maintenant que a = n — 1.

Si deux nombres consécutifs de la suite 1, 2, ..., 27 — 2 ne font pas
simultanément défaut dans o (K) ou si aucun nombre de la suite
1,2, ..., n—1 ne fait défaut dans ¢ (K), on a ¢ (P) = ( < 0, ).

Si deux nombres consécutifs de la suite 1, 2, ..., n — 2 ou si un
nombre au moins de la dite suite et deux nombres consécutifs de la
suite n, n + 1, ..., 2n—2 font défaut dans o (K), on a o (P) e
<0, ) et mes [( <0, ©)—c(P)]> 0. Dans ce cas, o (P) est
de mesure nulle §’il existe au moins un entier (1 < i < n— 2) qui

[L’Enseignement mathém., 39™e année, 1942-1950. 6
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fait défaut dans ¢ (K) en méme temps que n -+ i. Par contre, si quel
que soit le nombre i de la suite 1, 2, ..., n — 2 qui fait défaut dans
6 (K), on a n 4+ ieo (K), I'ensemble ¢ (P) est de mesure positive.

10. Désignons par K, ’ensemble des nombres n — d, ol d est un
¢lément non nul quelconque de I’ensemble des distances D (K) de K.

Si D (K) + Klz{O, 1, 2, .., n——1} et si 1D (K), on a
3(P) = (— w0, ).

Siap <n—1, on a soit § (P) = (— o0, %), soit mes & (P) = 0.

Si ap=n—1, D(K)+ K, :{O, 1, 2, ..., n—i}, 1 D (K),
mais s’il n’existe aucun nombre ¢ de la suite 0, 1, 2, ..., n — 2, tel que
12D (K), t+zD (K), on a 3 (P) = (—oo,oo>.

S1 ak:n—i,D(K)J;—Kl:{O, 1, 2, . 1} D (K),
mais s’1l existe un nombre ¢ de la suite 1, 2, ..., n — 2 telquete D (K),
t + 1¢e (D) (K), onameSS()>Oetmes[( w)— 3 (P)]> 0.

St ap, = n— 1 et §’il existe au moins un nombre de la suite O 1, 2,

n — 2 qui fait défaut dans D (K) 4+ K, on a soit 6(P) = (—o0, o)

's.oit mes § (P) = 0.

11. P. étant un ensemble parfait de la famille &, I’ensemble & (P),
aussi bien que 3 (P), peut également faire partie de la famille F.

12. 11 existe des ensembles de la famille & qui ne sauraient étre
les ensembles de distances d’un ensemble linéaire.

17. — A. SpEeIsgRr (Ziirich). Ueber geoddtische Linien.

18. — R. WAVRE (Geneve). L’itération au moyen des opérateurs
hermitiens. — Pour les définitions fondamentales on consultera
I Introduction mathématique & la Mécanique quantiqgue de G. JULIA,
t. I1.

Soit A un opérateur linéaire, (x, y) le produit scalaire, 1l peut étre
défini dans I’espace d’Hilbert ou dans I’espace fonctionnel. On a, s1 A
est hermitien,

(Az, y) = (z, Ay) .

Considérons la suite

Yy, = Az, , Ly = o s ny, = ||y, || nrmede y, ,
1
)
Yy, = Az, Ty = ’—{LE ; ng = H?/z” ¥ o0 Ys »
2
Yy = Ady , Ty == A, , ete.
ng

Les z, sont donc les itérés de xz, ramenés sur la sphere unitc:
H In l]2 = (Tn, Tn) = 1.
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On a
1 ' 1
(@, 0, 2) = ——(Ax, 4, B,) = (€, 1, Az)) =
q-+27 7q nq_{_2 q-+ q ]7,q+2 q

n . n
1 — ‘q+1

= (@, Tgpn) = ~
Tyt q+2

et en vertu de l'inégalité de Schwartz, ces produits scalaires, ou cosi-

nus, sont < 1.
Douny < ng L oo o .
On trouverait sans peine la relation

_ e+t Tadw
o+p+1 | g+2p

X

Enfin 'on a

| Zgpap — @ |IP = 2 — 2(2g10p, %

Soit n = lim n;, n est fini ou infini, et posons

Dés lors, deux cas sont possibles:

a) @ s 0 alors

Hm (g 5, 2o = ——

pP—>®©
et

l@yop — 2l < e

pourvu que ¢ soit assez grand quel que soit p. La suite des 1térés xqy,
pairs et la suite des itérés impairs 9,41 convergent fortement.

b) @ = 0; alors, que r soit fini ou infini, I'on a
Iim ||z , 20 > 2
S “ qg+2p q H \/ K

quel que soit ¢. L’ensemble des itérés n’est pas compact, il n’admet
aucun point d’accumulation pour la convergence forte.
En résumé, deux cas seulement sont possibles:

ou bien les suites xq, et x9,41 convergent fortement (@ £ 0),
ou bien I'ensemble x;, n’est pas compact pour la convergence forte.
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Si opérateur A est « complétement continu », alors w # 0.

Cette étude sera développée dans un article a paraitre dans les
Commentarii  Mathematict Helpetici (vol. 15). Quant au produit
infini & nous I'avions déja introduit dans le cas particulier des noyaux
symétriques de Fredholm dans un article paru en 1925.

19. — A. PrrucEer (Fribourg). Sur la répartition des zéros des
fonctions entiéres. — Soit G (z) une fonction entiére du type moyen
de T'ordre p, H (¢) son type angulaire (Strahltypus). La famille de
droites . cos pO 4 y.sin p = H () (0 variable) enveloppe une
courbe convexe, appelée diagramme indicateur (Indikatordiagramm).
Soit £’ (p) la longueur de l'arc 0 < 6 < @. Nous considérons les
ensembles de zéros de la fonction entiére pour lesquels |

lim 77, @) _ N (¢)

—> 0 ,,.p

existe quel que soit ¢; n (r, @) désigne le nombre des zéros de I'en-
semble en question qui sont situés dans le secteur 0 < arg z < o,
| 2| << r. Nous prenons celui de ces ensembles qui est le plus ample
et nous Pappelons la partie mesurable des zéros, N (@) est appelé sa
mesure. On a alors:

2 Ng) < (),

c’est-a-dire le produit par 21 de la mesure des zéros dans un angle ne
dépasse pas Uarc correspondant du diagramme indicateur.

La méthode de démonstration repose essentiellement sur I’étude
des fonctions entiéres ayant une répartition mesurable de zéros (Cf.
Comm. Math. Help., 11, 180-214). Soit g (z) une telle fonction, dont la
répartition des zéros coincide avec la partie mesurable de G (z) dans
Iangle en question, et [ (p) I'arc (fonction de ¢) de son diagramme
indicateur. On a alors 2w . dN (¢) = dl (p) et d £ (o) — dl (¢) > 0
G (2)
8(z)

b/

parce que
de la.

est une fonction entiére. Notre affirmation résulte

Remarque : J’ai appris postérieurement que le résultat ci-dessus est
déja démontré par B. LEVINE dans Rec. math. Moscou, t. 2.
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Réunion de Sion, 30 aout 1942.

La Société mathématique suisse a tenu sa 31¢ assemblée annuelle
a Sion, le 30 aolit 1942, en méme temps que la 122¢ session de
la Société helvétique des Sciences naturelles. Les communications
scientifiques, au nombre de onze, ont fait I'objet de deux séances
présidées par M. le professeur G. pE RHAM, vice-président, en rem-
placement de M. le professeur B. BucHNER, président, empéché par
un service militaire.

1. — P. Nowvr1 (Zurich). Ezposé de phénoménes stochastiques a
Paide de la théorie des probabilités. — L’application de la théorie
des probabilités aux problemes de la statistique se heurte a de grosses
difficultés. C’est ainsi que les problémes pratiques ne menent pas a des
probabilités qui sont en tout cas les mémes, comme ’exige la théorie.
Les nombreuses propositions ayant en vue ’élimination de ces insuf-
fisances de la théorie sont encore fort discutées. En outre, Pexposé
courant de la théorie des probabilités de phénoménes statistiques
donne toujours lieu a des contradictions logiques, ainsi par exemple
en ce qui concerne le choix de I'unité de temps. Par une autre inter-
prétation de ’événement réel, qui tient aussi compte des découvertes
les plus récentes relatives a la réalité effective, on acquiert un exposé
mathématique qui ne présente précisément plus les imperfections
mentionnées. En vertu de cette interprétation, une probabilité déter-
minée est adjointe & chaque phénomene présomptif pour chaque
moment de son apparition possible. Par un passage a la limite, sur
la base duquel sont établies les probabilités continues, on acquiert
sous réserve de I’observation des régles générales de ’enchainement,
suivant la maniére dont est posé le probléme, des expressions mathé-
matiques générales, qui permettent de trouver les probabilités cher-
chées pour n’importe quel genre d’ensembles statistiques. En exami-
nant les cas spéciaux, on trouve des formules connues, comme par
exemple celle de Poisson pour I'évaluation de la probabilité d’événe-
ments rares qui, sous ce rapport, apparait comme solution exacte
d’un probléme déterminé, c’est-a-dire par conséquent des résultats
auxquels sont arrivés par d’autres moyens Borel, Lundberg et Khin-
chine. Les résultats obtenus en mathématiques d’assurance a 1'aide
de la conception de lintensité ressortent également, comme cas
spéciaux, de cette fagon générale d’envisager la question.
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2. — Alexandre PrEissmann (Béle). Quelques propriéiés globales
des espaces de Riemann. — Alors que les propriétés globales (connexion
topologique: allure des géodésiques, etc.) des surfaces dont la courbure
garde un signe constant commencent & &tre bien connues; il n’en est
pas de méme des espaces de Riemann. La présente communication
est une contribution & I'étude des espaces de Riemann de courbure
partout négative. Nous sommes parvenus a démontrer dans ce cas les
théoremes suivants:

I[. Un espace de Riemann dont le groupe fondamental est cyclique
possede au plus une géodésique fermée et dans le cas général il existe
au plus une géodésique fermée de chaque classe d’homotopie.

II. Siune géodésique fermée fait partie de la classe d’homotopie «,
tous les sous-groupes abéliens du groupe fondamental qui contien-
nent a sont des groupes cycliques.

III. Tous les sous-groupes abéliens d’'un espace fermé sont
cycliques.

Ce dernier théoreme montre en particulier que le produit topo-
logique de deux variétés fermées ne saurait étre métrisé par une
métrique de courbure partout négative.

Ces théorémes s’appliquent au cas particulier des formes spatiales
hyperboliques.

3. — B. EckMaNN (Zurich). Solutions continues de systéeme d’équa-
ttons linéaires. — Dans un systéme
n
2 . ‘
Dlage, =0, i=1,...,m<n (1)
h::

de m équations linéaires homogeénes a n inconnues, nous donnons aux
coefficients a;;, toutes les valeurs réelles pour lesquelles la matrice
(air) a le rang m. Nous cherchons une solution valable et continue
pour toutes ces valeurs des coefficients et qui ne soit jamais triviale,
c’est-a-dire un systeme de fonctions z, = f (ayy, ..., @nm) réelles et
continues de ces coefficients qui satisfassent, pour toutes les valeurs
admises, aux relations X2 a;; fr = 0, et qui ne s’annulent jamais
simultanément. Nous appelons ceci une solution continue du sys-
teme (1). Alors notre probléme s’énonce ainsi: Pour quels nombres n
et m le systéeme a-t-il une solution continue ?

Des cas particuliers de telles solutions nous sont donnés (pour
m=n—1 et pour m = 2, n = 7) par le produit vectoriel connu
de m vecteurs dans I'espace & n dimensions; également on connait
une solution particulierement simple pour m = 1 et n pair. On peut,
par contre, en se basant sur des théoremes topologiques simples,
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démontrer qu’il 'y a pas de solutions continues lorsque n — m est pair.
Mais la réponse compléte & notre question nous est inconnue, et elle ne
semble pas étre simple pour les cas restants (n — m impair et m > 2).
Pourtant nous pouvons, a 1'aide de méthodes topologiques moins
élémentaires, démontrer que le systéme n’a pas de solutions continues
pourn—m =3 ou 7 et m > 2.

La démonstration de ce théoréme sé base sur la théorie générale
des espaces fibrés et comprend surtout la détermination de quelques
groupes d’homotopie de certaines variétés V., (ce sont les variétés
de toutes les matrices orthogonales & n colonnes et m lignes); par
exemple le troisieme groupe d’homotopie de V; , est cyclique d’ordre
infini, et le septiéme de V, 5 est cyclique d’ordre 4. Les représentations
continues des spheres, les propriétés d’homotopie des groipes ortho-
gonaux et le parallélisme bien connu sur les sphéres & trois et sept
dimensions y jouent un certain réle. D’ailleurs, tout notre probleme
a de nombreux rapports avec des questions topologiques et algébriques
actuelles, entre autres avec la suivante: sur quelles sphéres est-il
possible d’introduire une multiplication continue (comme celle dans
un groupe, mais pas nécessairement associative), possédant un élément
unité ? Nous reviendrons sur ces questions ainsi que sur les détails
des énoncés et des démonstrations dans un travail en préparation.
(Le mémoire paraitra dans les Comment. Math. Hely., vol. 15.)

4.— Heinz Hopr (Zurich). Surlesespaces qui admettent des groupes
de transformations avec un domaine fondamental compact. — Pour une
variété ouverte, on peut définir d’'une maniére naturelle les « points
a I'infini» (H. FreEupENTHAL, Math. Zeitschrift, 33, 1931, 692-713).
Avec les méthodes du travail cité de Freudenthal, le théoréme suivant
se laisse facilement démontrer:

Une variété ouverte, qui admet un groupe discontinu de transforma-
tions topologiques avec un domaine fondamental compact, posséde ou
bien un point & Uinfini, ou bien deux points & Uinfini, ou bien un
ensemble de points a Uinfini de la puissance du continu.

En particulier, une variété de recouvrement réguliére d’une variété
close est ou bien close ou bien du type décrit. Par exemple, la sphére
a n dimensions pointée trois fois ne peut pas se présenter comme
variété de recouvrement universelle d’une variété close — clest la
réponse a une question posée il y a longtemps par M. Threlfall qui
fut & 'origine de la recherche discutée ici.

Ce théoréme posséde, dans la ligne de la théorie de I’homotopie
de Hurewicz, le corollaire suivant:

Le deuzxiéme groupe d’homotopie d’une variété close & trois dimen-
sions ou bien se réduit d zéro, ou bien est cyclique infini, ou bien est la
somme directe d’une infinité dénombrable de groupes cycliques infinis.




88 SOCIETE MATHEMATIQUE SUISSE

5. — H. Habpwicer (Berne). Sur la convergence et une extension du
théoréeme d’Abel. — Dans la théorie des procédés de limitation il est
indiqué d’adopter un formalisme permettant de concevoir d’un point
de vue unique les suites et les fonctions. Les suites sont subordon-
nées aux fonctions, en ce sens qu’une suite est représentée par une
fonction en escalier. La suite est alors convergente ou divergente en
méme temps que la fonction correspondante. Afin de caractériser le
comportement d’une fonction F (¢) d’'un parametre réel ¢ lorsque
celui-ci tend vers la frontiere supérieure r de I'intervalle dans lequel
F (t) est définie, on introduit la notion de « valeur finale » (Endwert).
Le nombre complexe a est dit valeur finale de F () pour ¢ tendant
vers r, lorsque pour un domaine circulaire quelconque U (a) de centre
a, et un intervalle quelconque V (r) a la gauche de r, il existe toujours
une valeur de ¢ contenue dans V (r), telle que la valeur correspondante
F (¢) soit comprise dans U (a).

La fonction F (¢) prend des valeurs différant de a d’aussi peu qu’on
veut, un nombre infini de fois, lorsque ¢ tend vers r.

C0n51der0ns I’ensemble A des valeurs finales (Endwertmenge).
Nous proposons la classification suivante, basée sur la nature de
I’ensemble A, en ce qui concerne le comportement de la fonction I (¢)
lorsque ¢ tend vers r. Il est dit:

a) déterminé (bestimmt) ou indélerminé (unbestimmt) selon que
I’ensemble A se compose d’un ou de plusieurs points;

b) convergent ou divergent selon que I’ensemble A est borné ou
non.

Il en résulte quatre possibilités du comportement de F (¢): 1) déter-
miné convergent; 2) tndéterminé convergent; 3) déterminé divergent;
4) indéterminé divergent.

Sur ces considérations se fonde la perspective d’une extension du
théoreme d’Abel (Abelscher Stetigkeitssatz).

Soit la série entiere

convergente dans un cercle de rayon 1 et telle que

1
an:()(;).

Pour que la série Z a, converge vers l'’ensemble des valeurs
0
finales A, il faut et il suffit que la fonction F (¢) converge également
vers A lorsque ¢ tend vers 1.
Dans ce théoréme, il n’est pas possible de remplacer comme dans
la réciproque du théoréme classique la condition o par une condition O.




CONFERENCES ET COMMUNICATIONS 89

6. — R. WAvVRE (Genéve). Sur les opérateurs hermitiens et la décom-
position spectrale. — Nous indiquerons ici, en résumé, les développe-
ments donnés & notre note de la séance de Bale. On trouvera plus de
détails dans trois notes parues entre temps dans le Compte rendu des
séances de la Société de Physique et d’Histoire naturelle de Genéve,
1940. '

Soit A (f) un opérateur hermitien supposé défini pour tout élément
fo d’'un espace E isomorphe de I'espace d’Hilbert et de I'espace fonc-
tionnel. Soient A" (f) ses itérés. Nous les normalisons, en posant:

Lldy ... lrfr = Ar(fy) ; ly = || 8o

pour = 1,2, ....

o lle =1

on a les relations de Kellogg

0< L <l <ly<.
Nous posons:

l=1liml ; ®=]I

on a

Si 'opérateur est completement continu ’on a dans tout E, @ =~ 0;
mais cette derniére condition est plus générale et répond a des opéra-
teurs qui recouvrent une partie de la théorie des équations intégrales
singulieres. On a, en effet, les propriétés suivantes:

I. S1@ (fy) 5~ 0, les itérés f,,. convergent fortement vers une limite f
de E qui est solution de ’équation homogeéne

A% (f) = Bf
nous dirons que f est solution propre, [ est donc une valeur propre.

S1 @ (f,) = 0, les itérés f. convergent faiblement vers zéro.

II. Si f=¢ + ¢, des trois nombres [ liés & f, @, ¢, aucun n’est
supérieur aux deux autres.

II1. Soient v; une suite de valeurs propres distinctes, vleur borne
supérieure, et {; les vecteurs propres correspondants. Posons:

? = Z a9 2 | @; |2 convergente ; alors I (§) = v .

1=1

Si v=4a un v;, borne atteinte, @ (¢) £ 0, sinon @ (p) = 0. Il
résulte de la que pour un opérateur ot @ = 0 dans tout E, les valeurs
propres peuvent &tre «bien ordonnées» par ordre de grandeurs
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décroissantes. Elles forment donc une suite numérotable au moyen

d’une infinité dénombrable d’ordinaux transfinis de Cantor de la
classe II.

IV. La parenthese indiquant le produit scalaire, on a (f, f,) = @ (f,)
et fo— @ (f/) f est orthogonal a f. Si g est un vecteur propre quel-
conque et si f, est orthogonal & g, tous les itérés f, sont orthogonaux
a g ainsi que leur limite forte (ou faible). Ces lemmes précisés, voicl
comment peut se faire une décomposition d’un élément quelconque
f= f; suivant les éléments propres pour un opérateur & @ % 0. On
posera:

R=af)P+i, ., [*=o()f+ ",
transfiniment §’il le faut « =1, 2, 3, ... 0, ® + 1, ... 20, 200 + 1 ..., .
On a l*+1 < [*, pour les valeurs propres liées aux f*. Puis:

f= 2@+ h, (1)
A2 (f) = E‘za‘zm(f:) > (2)

i étant un antécédent de zéro: A (h) = 0. Ainsi nous mettons en
évidence directement les fonctions f* en lesquelles f se décompose
effectivement, et des restes successifs f*.

Si, poursuivant la réduction, 'un des restes est nul, alors ~ = 0, la
réduction s’arréte d’elle-méme; dans le cas contraire seulement on a
lim [* = 0. Dans le cas des opérateurs completement continus, il n’y
a pas lieu d’introduire les nombres transfinis et I'on a lim " = 0
dans le cas ou il y a une infinité de valeurs propres.

Done, la décomposition spectrale d’'un élément de E peut se faire,
pour tout opérateur «régulier » (@ =~ 0) par simple 1tération de cet
élément et de ses vestes successifs. Dans le cas des opérateurs comple-
tement continus (1) exprime le théoreme d’Hilbert-Schmidt de la
théorie des équations intégrales.

Si I'on considére maintenant I’équation linéaire non homogene:

p—f+Alg), ona g=f + 3Agl, avec fi=[+ Al
(3

Une solution est donnée par:

loﬂ ]cxoc

o= Fa DTG, e Fo S a, A =0
o o4 -

(4)
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= parcourant encore ici la suite (éventuellement transfinie) des
valeurs . Si |¢| est différent des /2 et de leur point d’accumulation, (4)
fournit la solution de (1), qui est unique. Si | ¢ | répond & une valeur
propre qui n’est pas un [*, alors on peut ajouter a ¢ tout élément
propre de valeur propre v. Sl ]v[ est point d’accumulation des [* sans
que | v | soit un I*, alors la série (4) fournit encore une solution, pourvu
que la série suivante converge:

](DCOC

7«—} .fVl“.'la

Et siv est une valeur propre autre qu'un des /%, alors on peut encore
ajouter la solution la plus générale correspondant & v.
Avec le paramétre habituel de Fredholm, on aurait donc

fDCOC

o) = 4+ 2D *“

= — a2

o
en A cette solution admet comme seules singularités, les poles A, et
les points singuliers limites des poéles, correspondant & I’épuisement
d’une suite dans les transfinis. Ces singularités seront, au total, encore
numérotables par les ordinaux transfinis de classe II. M. J.-P. Vigier
a étendu cette méthode aux opérateurs hermitiens gauches et a
reconstruit. de cette maniére, trées rapide, les développements en
série de fonctions biorthogonales. Notre méthode permet donc de
retrouver tres rapidement une grande partie de la théorie des équa-
tions intégrales et de la théorie des systémes d’équations linéaires
a matrices hermitiennes et se trouve dépouillée de tout appareil
algébrique.

I1 est intéressant aussi d’étudier les fonctionnelles [ (f) et @ (f) qui
" sont semi-continues dans tout I'espace E.

7. — Max Gur (Zurich). Zur Theorie der Klassenkorper der Kreis-.
korper, insbesondere der ~Strahlklassenkorper der quadratisch-imagi-
niren Zahlkorper. — Paraitra dans les Commentarii Mathematici
- Helyetict, vol. 15.

8. — Sophie Piccarp (Neuchéatel). Intersection d’un ensemble
linéaire parfait avec U'une quelconque de ses iranslations.

9. — Ed. BarscHerer (Bale). Ueber den absoluten Betrag der
Wurzeln algebraischer Gleichungen.

10. — E. StiereL (Zurich). Ueber die Berechnung der Charaktere
in kontinuterlichen Gruppen.

11. — K. BrLeuLEeRr (Genf). Ueber die Positivitit von Green’schen
Funktionen.
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Réunion de Schaffhouse, 29 aouit 1943.

La Société mathématique suisse a tenu sa 32¢ assemblée annuelle
a Schaffhouse, le 29 aoit 1943, sous la présidence de M. le professeur
P. BucHNER, en méme temps que la 123¢ session annuelle de la
Société helvétique des sciences naturelles.

Séance administrative. — Le Comité pour les années 1944 et 1945
a été constitué comme suit: MM. G. pe Ruam (Lausanne), président ;
M. Gur (Zurich), vice-président; H. Hapwicer (Berne), secrétaire-
caissier.

MM. A. Speiser, R. Fuerer et R. WAVRE ont été confirmés, pour
une nouvelle période de six ans, dans leurs fonctions de président,
de secrétaire général et de secrétaire adjoint du Comité de rédaction
des Commentarit Mathematict Helpetict.

Pour cette méme période 1944-1949, le Comité Steiner-Schlifli
se composera de MM. L. KoLLros (Zurich), président, J. J. Burk-
HARDT (Zurich), F. GonsetrH (Zurich), H. HapwiceEr (Berne),
A. LinpeEr (Berne), W. Scuerrer (Berne), E. StigrerL (Zurich),
A. StorLL (Zurich) et de M. A. HAusErMANN (Zurich), suppléant.

La Société a conféré le titre de Membre honoraire a M. le profes-
seur C. CARATHEODORY, & l'occasion du 70¢ anniversaire du savant
mathématicien.

La partie scientifigue de la réunion a été consacrée aux neuf com-
munications ci-apres.

1. — Beno Eckman~ (Lausanne). Sur les groupes monothétiques. —
S’il existe dans le groupe topologique G un élément x tel que ses
puissances soient partout denses dans G, ce groupe est dit monothé-
tique, et on appelle x un générateur de G; il est clair qu’un tel groupe
est abélien. Pour un groupe discret, « monothétique » a la méme signi-
fication que «cyclique ». |

Si G est un groupe abélien compact, on peut se servir des carac-
teres de G (ce sont les homomorphismes continus de G dans le groupe
multiplicatif K des nombres complexes de module 1; le caractere
qui est identiquement 1 sera dit trivial) et on trouve facilement:
S’tl y a dans G un élément x tel que pour tout caractére non-trivial f de G
on ait f(x) £ 1, alors le groupe G est monothétique, engendré par X.

Ce critére nous permet, par exemple, de démontrer d’une maniere
tres simple que le toroide 1" est monothétique. T? est le produit
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direct de n groupes isomorphes au groupe des rotations du cercle (ou
de n groupes K); tout élément de ce groupe est donné par n fingles
27Ty, ..., 2Ty, done par # nombres réels xy, ..., Zn (mod. 1), et s1on les
choisit tels qu’ils soient incommensurables (mod. 1), on obtient un
élément générateur de T C’est un théoréme classique, le célebre
« théoréme d’approximation de KrRONECKER»!; notre méthode en
donne une démonstration nouvelle et simple.

Le critére s’applique aussi, surtout si on utilise encore la théorie
des caractéres de PoNTrRyAGIN 2 & d’autres groupes abéliens compacts.
On démontre ainsi que tout groupe connexe de ce genre est mono-
thétique, et qu’il en est de méme pour les groupes n-adiques (qui
forment des espaces complétement discontinus).

WEYL a précisé le théoréeme de Kronecker, en introduisant la notion
d’équipartion 3; d’une maniére analogue on peut démontrer que les
puissances d’un générateur du groupe monothétique compact G sont
toujours également réparties dans G, c’est-a-dire ne sont pas seulement
partout denses dans G, mais ont partout la méme densité, au sens du
volume invariant de G. On peut méme établir le théoreme suivant, ou
on ne suppose pas d’avance que le groupe G soit monothétique, ni
méme qu’'il soit abélien: Si¢ toute représentation irréductible (non
triviale) du groupe compact G fait correspondre a U'élément x de G une
matrice qut n’a pas la valeur propre 1, alors les puissances de x sont
également réparties dans G (donc partout denses, G est donc mono-
thétique). — La démonstration utilise le fait que les représentations
irréductibles forment un systéme complet (théoreme de Peter-Weyl);
elle se simplifie naturellement, si on se borne au cas d’un groupe fini,
ou notre théoréme présente encore un certain intérét.

2. — Max Gur (Ziirich). Zur Theorie der Strahlklassenkorper der
quadratisch reellen Zahlkérper. — Si l'on choisit convenablement le
nombre entier, rationnel et positif m, tout corps de nombres absolu-
ment abélien est sous-corps du corps des mitmes racines de l'unité
et nous appelons deés lors un tel corps un corps circulaire. Soit k un
corps circulaire, { un idéal entier de %, nous désignons par K (f) le
corps abélien relatif, qui appartient au groupe multiplicatif complet
mod. { des idéaux de %, et par % (f) le plus grand sous-corps circulaire
contenu dans K (f). En particulier K (1) désigne le corps de classes
de HitBerr, £ (1) son plus grand sous-corps circulaire. Dans un
travail antérieur (« Zur Theorie der Klassenkorper der Kreiskorper,
insbesondere der Strahlklassenkérper der quadratisch imagindren
Zahlkorper », Comment. Math. Helpet., vol. 15, 1942/43, p. 81) nous

¢ Voir par exemple J. F. Koksma, Diophantische Approximatonen (Berlin, 1936).,
p. 83.

¢ L. PonTRJAGIN, Topological groups (Princeton, 1939), chap. V.

¢ H. WeyL, Ueber die Gleichverteilung von Zahlen mod. Eins. Maih. Annalen,
Bd. 77 (1916), p. 313.
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avons déterminé % (1) pour un corps circulaire £ quelconque. Dans le
cas ou k est un corps quadratique imaginaire, nous avons de plus
déterminé % (f) pour un idéal quelconque f, indiqué des théorémes
relatifs a la structure de K (f), enfin appliqué cette théorie a la décom-
position des équations de division de la multiplication complexe des
fonctions elliptiques. Dans un travail ultérieur qui est dédié a
M. C. CaraTHEODORY & l'occasion de son 70¢ anniversaire et qui
paraitra dans les Comment. Math. Helvet., vol.16, 1943/44, nous avons
effectué les recherches analogues pour un corps de base quadratique
réel k. Dans ce cas k£ contient une unité fondamentale, ¢’est pourquoil
la structure de K (f) est en général de toute autre nature que dans le
cas d’'un corps de base quadratique imaginaire.

3. — H. Hapwicer (Bern). Ein Ueberdeckungssatz des Ry.

4. — R. Wavre (Geneve). Les hermitiens limites d’hermitiens
réguliers. Spectre et théorie du rang. — Soient z un point de I'espace E
de vox NEuUMANN (espace d’Hilbert, espace fonctionnel) et A () un
opérateur hermitien borné; enfin A4 ses itérés.

Il existe un nombre [ qui jouit des propriétés suivantes

" | A2z | + oo sl 0< A<

q—> o )\q

_
o

nombre finisi 0 <l = A

et 1 =0 si || Az || = 0. Nous appellerons [ (x) le rang de z. Chaque
point de E posséde un rang et un seul, et nous avons montré que [ (x)
est une fonctionnelle de x semi-continue inférieurement *.

Soit, alors, E, 'ensemble des points de E de rang [ <{v. E, est
une variété linéaire fermée (un sous-espace) et nous demgnerons
également par E, le projecteur de E sur E,.

On a alors

+e
A2(z) = [ V2dE,(2) .

e

0

Cest la décomposition spectrale de I'opérateur A2 L décompo-
sition de A ne présente pas de difficulté, mais exige des explloamons
plus longues.

Le spectre de A2 est la fermeture e + e’ de U'ensemble e des rangs 12.
Cette proposition, évidente pour les opérateurs « réguliers », affirmée
pour les opérateurs bornés par M. J.-P. Vicikr, s’établit trés rapide-
ment & partir de la théorie du rang.

1 R. WAVRE, L’itération directe des opérateurs hermitiens, Commentarii Mathe~
matici Helvetici, vol. 16, fasc. 1.
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5. — W. ScHERRER (Bern). Zum Problem der Trigheit in der
Wellenmechanik.

6. — W. Hasicur (Schaffhausen). Ucber Liosungen von alge-
braischen Gleichungssystemen.

7. — Walter Ner (Zirich). Hyperkomplexe Methoden zur Inte-
gration partieller Differentialgleichungen. — Auf einer (n — 1)-dimen-
sionalen Fliche R seien die Werte

der Ableitungen eines Integrals der hyperbolischen oder ultrahyper-
bolischen Differentialgleichung

= 0 (xj = + 1) (1)

ol K

n

62
D x
i yb.’L'j

-,
[

gegeben. Gesucht ist @ in einer noch zu beschreibenden Umgebung U
von R.

Wir fithren eine Cliffordsche Algebra ein, in welcher n Basisgrossen
ey, -, n liegen, die den Relationen geniigen:

e. — %. (]:1, .__,n,), ejek::———ekej (]’ ]f:i, ...,n,j#k) .

n
W:f(Z)ZEfy(xla 7xn)ej
j=1
der Variabeln
- \V
j=1
heisst reguldr, wenn
n
o/,
—J Ox “k

ist. Man kann beweisen, dass fiir jedes Integral ® von (1) die Funktion

<
I
J:

0P
T :

'Q
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regulér ist. Hiervon gilt auch die Umkehrung. Rie Randwertaufgabe
1st also geldst, wenn wir in U eine regulére Funktion finden konnen,
die auf R die Randwerte

n

- N\
Yy = . ‘-l’j €;
j =

1

annimmt.

Nun se1 R eine (n— 1)-dimensionale Hyperfliche und U eine
Umgebung von R von der Art, dass jeder erzeugende Strahl des
charakteristischen Kegels irgendeines Punktes von U genau einen
Schnittpunkt mit R gemeinsam hat und so, dass der zwischen der
Spitze des ch. K. und dem Schnittpunkt mit R gelegene Teil des
Strahls ganz zu U gehort. Dann gilt, wenn f(z) eine in U und auf R
reguldre Funktion ist, fir jeden Punkt z von U:

(E—3)(E—3) —|8—32

lc___zln+1

fe) = [feas =2 4w [aif

S(z) |1C—= K(2)
(2)

Dabei ist S(z) der Durchschnitt des zu z gehorigen ch. K. mit R und
K (z) das zwischen S (z) und R gelegene Stiick des ch. K. A und B sind
Konstanten. Umgekehrt ist jede Funktion f(z), die der letzten
Gleichung geniigt, reguldr. Die von uns gesuchte Funktion ist also
eine Losung der linearen Integralgleichung

(E—2)(€—23) —[|C—3f
C— [

,  (3)

fla) = J(z) + B [ dof(3)

K(2)
wenn wir setzen:

C—3
IC____Zln—i

Jz) =A [ bd=

S(2)

Wenn die Losung f(z) von (3) auf R mit ¢ iibereinstimmt, so ist f(2)
zugleich eine Liosung von (2), also reguldr und die Aufgabe ist geldst.
Stimmt die Lésung f(z) von (3) auf R nicht mit ¢ iberein, so ist die
Aufgabe nicht losbar.

8. — Edith MivvLEr (Zirich). Maurische Ornamentik. — Grup-
pentheoretische Untersuchungen der Maurischen Ornamente aus der
Alhambra in Granada (Inaugural Dissertation, Universitdt Ziirich,
Buchdruckerei Baublatt AG., Riischlikon, 1944).
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9. — A. HiusErMANN (Ziirich). Ueber die Berechnung singuldrer
Moduln bei Ludwig Schlifli. — In diesem Referat wurde auf bisher
vollig unbekannte allgemeine und numerische Resultate des Berner
Mathematikers L. ScHLAFLI (1814-1895) im Gebiet der singuléren
Moduln hingewiesen.

Auf Anregung von Herrn Prof. Fuerer wurde der Nachlass
Schliflis noch einmal gesichtet und alle Manuskripte sorféltig zusam-
mengestellt, die allgemeine Betrachtungen und numerische Berech-
nungen von singuldren Moduln, von Modulgleichungen und von
Modularfunktionen enthielten. Das erste Aussondern geschah mit
dem neuen Sachkatalog von Herrn Prof. BuRCKHARDT.

Die Ergebnisse dieser Untersuchungen sind in der auf den Herbst
erscheinenden Inaugural-Dissertation des Referenten ausfiihrlich
dargestellt 1.

Réunion de Sils, en Engadine, 3 septembre 1944.

La Société mathématique suisse a tenu sa 33¢ assemblée annuelle
le 3 septembre 1944, a Sils, en Engadine, sous la présidence de
M. le professeur G. pE RuAM, en méme temps que la 124¢ session
annuelle de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a conféré le titre de
membre honoraire & M. Gustave Dumas, professeur honoraire a
I’Université de Lausanne.

1. — Julien MALENGREAU (Bruxelles). Sur quelques relations enire
grandeurs de Uespace euclidien. — L’auteur montre, par des exemples,
que si en partant des postulats classiques de la géométrie élémentaire
on arrive & démontrer la relation de Stewart, réciproquement en
partant de cette derniére on arrive a-démontrer les postulats clas-
siques. Cette réversibilité de la géométrie est mise en évidence en
utilisant la notion du n-point parfait, ensemble de n points tels que
la distance éntre deux d’entre eux est toujours la méme. Une formule
trés simple relie cette distance commune aux distances entre un point
quelconque de 'espace déterminé par le n-point parfait considéré et
les points de ce dernier. De cette formule on peut déduire que 'espace

1 Inaugural-Dissertation, Universitat Ziirich, Gebr: Leemann & Co., 1944.

I’Enseignement mathém., 39™me année, 1942-1950, . 7
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déterminé par un n + 1 — point parfait est plus vaste que celui
déterminé par un n-point parfait. L’auteur déduit de ces considéra-
tions que 'on peut commencer la géométrie analytique, indépendam-
ment de la géométrie élémentaire, en définissant 1’espace euclidien
déterminé par un n-point parfait comme le lieu de tous les points S
tels que si A, Ay, et A, sont trois de ses points reliés entre eux par
la relation 2 (-4 A, A,) = 0 la valeur absolue de la somme des

| S
: p ’ by
quotients ( 4+ AnA,) X SA % SA_ est égale a la valeur absolue du

m n
produit de ces quotients.
L’étude analytique de ce lieu intégral peut se faire sans emploi
de coordonnées, dont la notion sera introduite seulement a partir de
I'étude des lieux qui ne comprennent qu’une partie des points de

Pespace euclidien.

2. — Sophie Prccarp (Neuchatel). — Sur les couples de substitu-
tons qui engendrent un groupe régulier. — Soit m un entier > 2, k un
entler > 1, S une substitution réguliere d’ordre m et de degré km,
T une substitution réguliere du méme degré et portant sur les mémes
éléments que S et soit (S, T) le groupe engendré par les deux substi-
tutions S et T. Nous dirons que T jouit par rapport a S de la pro-
priété p s’il existe un entier r (1 << r < m), tel que T transforme les
éléments de chaque cycle de S en éléments de r autres cycles de S et
nous dirons dans ce cas que T jouit par rapport & S de la propriété p,.

Soit

S=(1,2..m)m+1,m+2..2m)..(k—1)m+1(k—1)m+ 2... km),

12 ... km
T —
alaz akm

et soit £ > 1 I'ordre de T.

soit

I. Les conditions suivantes sont nécessaires pour que le groupe
(S, T) soit régulier:

1. T[S] ne transforme aucun élément d’un cycle de S[T] en un
élément du méme cycle.

2. T[S] transforme les éléments de chaque cycle de S[T] en élé-
ments d’un nombre égal de cycles de S[T], autrement dit chacune des
substitutions S, T jouit par rapport & ’autre de la propriété p.

3. Si T jouit par rapport a S de la propriété p,.(1 < r < m), m est
un multiple de r et, s1'T transforme au moins un élément d’un cycle C
de S en un élément d’un second cycle C’ de S, T transforme au total
m/r éléments de C en éléments de C’. D’autre part, si r > 1, T ne
saurait transformer deux éléments consécutifs d’un cycle de S en deux
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¢léments d’un autre cycle de S, ni deux éléments quelconques d’un
méme cycle de S en deux elements consécutifs d’un autre cycle de S.
Quels que soient I'entier r (1 < r < m) le cycle (a; oy ..." om) de S
et Pélément o; (1 << i < m) de ce cycle, T transforme o; et “z+r 1en
deux éléments d’un méme cycle de S et o, oipq, ..., Kigrq * €N élé-
ments de » cycles différents de S. Il existe un entier u (1 < p < m)
tel que TS" T-! = Sv. Cet entier p vérifie les congruences

T-M = 0 (mod m)
P

et

t -
£ =7 (modm)
1
et on a
D(m, p) =r
et ~
: : Y, : . m
ai+er“i+JH(m0d-m“, r=1,2,....,km , j]=1,2,.., 7_1'

Si un cycle de T contient des éléments de [(1 << <t) cycles de S
et de [ seulement, tout cycle de T jouit de la méme propriété.

Si r> 1, quels que soient les cycles (by b, ... ;) et (c1 c2 .c)
de T comprenant deux éléments b, (1 < u <<i) et cv( < ?)
d’un méme cycle de S, si ¢, = b, (mod. r), quel que soit ] = '1, 2,
t—1, Is nombres b,; et c,o; font partie d'un méme cycle de S
et sont congruents mod. . Si T jouit par rapport & S de la propriété
Pm, aucun cycle de T ne saurait contenir plus d’un élément d’un
meme cycle de S.

II. Quel que soit I'entier r > 1, il existe des couples de substitu-
tions régulieres S, T, tels que T ]0u1t par rapport a S de la proprlete
pr et que le groupe (S, T) est régulier.

IIT. Si T jouit par rapport a S de la propriété p,, la condition
nécessaire et suffisante pour que le groupe (S, T) soit régulier c’est
que: 19

Titymti = Yitymet T T — Dwp (mod.m)3 , i=1,2, .., k;

] = 2,3, .., m,

w désignant un entier premier avec m, tel que 1 < < m et que

wt=1 (mod. m), les nombres a@g;_1y,.; faisant tous partie d’un
méme cycle de S.

1 Les indices supérieurs & m doivent étre réduits mod. m.
2 L.es nombres @ (i—1 ym 4 (3 =1, 2,..m) font tous partie d’un méme cycle de S.
3 L’indice & + 1 doit étre remplacé par 1.
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20 Il existe une permutation i,, i, ..., iz des nombres 2, 3, ..., &
et £ nombres jy, jo, ..., jr de la suite 1, 2, ..., m, tels que, en posant
iy =1, on ait

Ciptymit = g —Hm +Jy, (=12, k1,

§

et que

% B » }._1 . . . .
g + Wlpy + U~21k_2 + ..o+ P-% v = Jpqg T Ulp_g + (12];1_3 + .

=14, (mod. m) .

+ ka—i Jp = - =11+ pjp + 2y + o+ @

IV. Nous avons établi différents critéeres pour reconnaitre si le
groupe (S, T) est régulier, lorsque T jouit par rapport & S de la pro-
priété p, et r > 1.

3. — Sophie Piccarp (Neuchdatel). Systemes connexes de substitu-
tions et bases d’un groupe de substitutions. — Soient n un entier > 1,
k un entier > 1 et solent Sy, S,, ..., Sy & substitutions de degré n dont
les éléments sont les nombres 1, 2, ..., n. Désignons par E I’ensemble
de ces éléments. Nous disons que les substitutions Sy, S, ..., Sy consti-
tuent un systéme connexe §’il n’existe aucun sous-ensemble propre E
de E composé de I'’ensemble des éléments d’un certain nombre > 1
de cycles de chacune des substitutions considérées.

Soit G un groupe transitif de substitutions de degré n. Nous disons
que G est d’ordre de connexion égal a k£ si G contient au moins un
systeme connexe de & substitutions, alors qu’aucun systéme compre-
nant moins de % substitutions de G n’est connexe. Ainsi, le groupe
symétrique ©, de degré n > 2 a un ordre de connexion k£ =1 et le
groupe alterné U, de degré n > 3 a un ordre de connexion égal a
1 (2) si n est impair (pair). Quel que soit ’entier £ > 1, il existe un
groupe transitif G, dont 'ordre de connexion est égal a k. Tout sys-
teme connexe de substitutions engendre un groupe transitif. Réci-
proquement, tout groupe transitif de substitutions des éléments 1,
2, ..., n contient des systémes connexes de substitutions. En parti-
culier 'ensemble de toutes les substitutions d’un groupe transitif qui
ne laissent fixe aucun des éléments 1, 2, ..., n constitue un systéme
connexe. D’autre part, I'ensemble de toutes les substitutions d’un
groupe transitif constitue un systeme connexe.

Soit G un groupe de substitutions de degré n et soit [ le plus petit
entier positif, tel qu’il existe au moins un systéme de [ substitutions
génératrices du groupe G. Nous appelons base du groupe G un tel
systeme de [ éléments générateurs de G et nous disons que G est &
base d’ordre I. Quel que soit I'entier n > 2 (> 3), le groupe symé-

1 I2indice k2 + 1 doit étre remplacé par 1.
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trique &, (alterné U,) est, comme on sait, a base du second ordre.
L’ordre de la base est un invariant d’un groupe.

Soit G un groupe régulier de degré n qui est a base d’ordre [ et
soient S;, S,, ..., S; [ substitutions de G. La condition nécessaire et
suffisante pour que ces substitutions constituent une base du groupe G
c’est qu’elles constituent un systéme connexe.

L’ordre de connexion d’un groupe transitif de substitutions est
en général différent de I'ordre de sa base (voir le cas du groupe
symétrique), mais ces deux ordres sont égaux pour un groupe
régulier.

D’apres le théoréeme de Jordan, a tout groupe G de substitutions
correspond un groupe régulier G’ de substitutions, simplement iso-
morphe & G et & toute base de G correspond une base de G’. Suppo-
sons que G est & base d’ordre [ et soient Sy, S,, ..., S; [ substitutions
de G. Pour reconnaitre si ces substitutions constituent ou non une
base du groupe G il suffit de voir si les substitutions correspondantes
du groupe G’ constituent ou non un systéme connexe.’

4. — S. Bays (Fribourg). Sur la primitivité des groupes de substitu-
tions. — On sait dans quelles conditions 'on dit qu'un groupe tran-
sitif est imprimitif ou primitif pour les éléments. La méme question
posée pour les couples a un sens, mais du fait que le couple n’est pas
unique comme [’élément vis-a-vis des substitutions, il en résulte
Pexistence d’imprimitivités nécessaires pour les couples, que nous
écrirons dans un exemple, celui du groupe alterné de degré 4:

(01, 10); (02, 20); (03,30); (12, 21); (13, 31); (23, 32), ou...; ab, ba); ...
et

(01, 02, 03); (10, 12, 13); (20, 21, 23); (30, 31, 32); ou ...; (az); ...
(10, 20, 30); (01, 21, 31); (82, 12, 32); (03, 13, 23); ou ...; (za); ...
et que nous notons & droite d’'une maniére générale, en n’écrivant
(et sous forme abrégée pour les deux secondes) que le systéme général
de la répartition. Nous appelons ineerses les deux couples ab et ba
et conjuguées les deux répartitions imprimitives que I’on obtient I'une

de Pautre en remplagant chaque couple par son inverse.

Une répartition en systemes imprimitifs de couples autre que les
trois ci-dessus exclut, dans un cas la transitivité quadruple, dans un
autre cas la transitivité triple, donc dans les deux cas la transitivité
quadruple. Donc dés que le groupe a cette derniére transitivité, il ne
peut avoir relativement aux couples que les imprimitivités nécessaires
ci-dessus; on peut I'appeler primitif par rapport aux couples.

Par contre, dans les transitivités inférieures, on peut avoir par
rapport aux couples des imprimitivités non nécessaires. Pour le
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méme groupe alterné de degré 4, deux fois transitif, ces imprimitivités
sont les suivantes:

(01, 23); (02, 31); (03, 12); (10, 32); (20, 13); (30, 21) (1)
(01, 12, 20): (13, 32, 21): (30, 02, 23); (31, 10, 03) (2)

et la conjuguée de (2) qui est différente; en plus une troisiéme répar-
tition, identique encore & sa conjuguée, obtenue de (1) en remplacant
le premier ou le second couple de chaque systéme par son inverse. Ce
groupe, qui est primitif pour les éléments, est done imprimitif pour
les couples.

Nous donnerons ailleurs le résultat plus complet de notre étude;
nous dirons simplement ici que pour les quatre groupes généraux de
degré n, étudiés a titre d’exemple, cyclique, métacyclique, alterné et
symétrique, la question de leur primitivité ou imprimitivité par
rapport aux couples est fixée. Par rapport aux triples il y a neuf répar-
titions en systémes imprimitifs de triples nécessaires pour le groupe
triplement transitif; pourtant il y a aussi des groupes imprimitifs (et
évidemment des groupes primitifs) par rapport aux triples.

5. H. Bieri (Herzogenbuchsee). Anwendung eines Abbildungs-
satzes auf das Randwertproblem der Varationsrechnung, demonstriert
an drei Beispielen vom Typus /.F(xl, Xy, X1, Xo) At = Minvmum. —
Ein Satz tiber die umkehrbaf-eindeutige Abbildung zweier einfach-
zusammenhéngender Gebiete aufeinander 1ist von Herrn Prof.
W. ScHERRER so formuliert worden, dass er mit Erfolg zur Losung
des Randwertproblems der Variationsrechnung herangezogen werden
kann 1. Das genannte Problem besteht in einem speziellen Falle darin,

durch zwei Punkte P und Q einen Extremalenbogen zu legen, der ein
relatives starkes Minimum von /'F(:cl, Ty, Xy, To)dt liefert.

Die ausgezeichnere Extremalenschar durch P (2}, x3) schreiben
wir in der Form

0 0 . 0
Iy = (tv Ly Ty, (132) ) . Ly = xl(t() ) )

o o mit h=0 . (1)
Lo = Xy (ta H, Ty, ‘7"2) 5 Ly — x2(t0 ) 7

Die Enveloppenbedingung lautet:

0 (xl ’ .CC2) _ .

W—-—A(t,%)——o. (2)
t-Werte, die (2) erfiillen, werden mit t bezeichnet. In einer (¢, x)-

Ebene wird der Rand C von G definiert durch A(r, ») = 0. Fir

1 H. BIERI, Beispiele zum Randwertproblem der Varialionsrechnung, Diss. 1941.
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innere Punkte von G gibt dann: 0 <t < 1. In einer (z,, z,)-Ebene
wird das Bild des Randes C dargestellt durch (1) unter Beriicksichti-
gung von (2). Es ist die Enveloppe von (1). (1) liefert ferner mit der
- Einschrinkung 0 <¢ < 7 die in Frage stehende Abbildung. A (Z, )
verschwindet bei unserer Koordinatenwahl fiir ¢ = 0; diese hdchst
unerwiinschte Singularitét kann durch Einfiihrung «kartesischer »
Parameter £ = sin x ., = — co0s. % . ¢ beseitigt werden. Sind nun
alle Voraussetzungen des Satzes erfiillt, so bedeuten die Bilder der
Geradenstiicke » = konst., 0 <t < v Extremalenbogen, welche die

Jakobische Bedingung erfiillen und ausser E(w?, x9) keinen gemein-
samen Punkt besitzen. Ein gewisses Gebiet G der (zy, #,)-Ebene wird
also von ihnen einfach und liickenlos iiberdeckt. Ist jetzt Q ein

innerer Punkt von G und sind ausserdem noch die Legendresche- und
die Weierstrassche Bedingung erfiillt, so existiert die Losung des
Randwertproblems und ist eindeutig.

Die Beispiele mit F = Ar + |/x§ . g’z B = Ay + l/(xi —1). ijz;

F =9 + V(x% + 1) .52 rot A = (0, 0, 1) lassen sich vollsténdig
durchrechnen. A (t, ») = 0 hat die Form einer kubischen Gleichung
in 1. Diese wird sehr vereinfacht durch den Ansatz

ke ()

_ . | 3
4 COS % . ()

In allen drei Féallen lassen sich die Enveloppen, allerdings erst nach
Einfithrung geeigneter Hilfsgrossen m;, soweit als gerade notig dis-
kutieren. |

Resultate : Die ersten zwei Beispiele ! sind im wesentlichen dquiva-
lent mit dem klassischen Problem der Rotationsfliche kleinster Ober-
flache. Das dritte ist komplizierter. Man schneide von der (z,, ).
Ebene zwei einfachzusammenhéngende Gebiete von der Form einer
Spitze weg. Im abgeschlossenen Restgebiet besitzt dann das Rand-
wertproblem immer genau eine Lésung.

Fir das erste Beispiel gibt es noch eine individuelle Lsungsme-
thode: Der Ansatz v =k (x). T, wo T den ¢-Wert im Scheitel in
Bezug auf die x,-Achse bedeutet, gestattet den Nachweis, dass die
Enveloppe nicht nur einfach, sondern durchwegs nach der gleichen
Seite gekriimmt ist.

6. — J. Bucner (Luzern). Die Losung einer von Gauss gestellten
Aufgabe und die elementare Berechnung der Klassenzahl nach dem

1 Die ersten zwei Beispiele gestatten eine direkte Enveloppendiskussion, ebenso
das dritte fiir den Spezialfall xg = 0; fir x‘l’ # 0 wird mit Erfolg der Abbildungssatz
verwendet.
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Modul 4 fiir gewisse Zahlkorper von ungerader Klassenzahl. — Ist p
eine Primzahl der Form 4n + 1 = a2 4 b2, a ungerade. Bezeichnen
wir das Produkt: (n 4 1) ... 2n mit » und mit A eine der Zahlen + 1
oder — 1, dann besteht nach Gauss die Kongruenz:

2
_’“f = Ab mod. p) , b positiv.

A wurde von Gauss, DiricHLET, DEDEKIND fiir den Fall einer
Primzahl der Form 8n 4+ 5 bestimmt, im allgemeinen Fall einer
Primzahl der Form 4n -+ 1 scheint A bisher nicht bestimmt worden

zu sein. Es wird gezeigt, dass allgemein A = (%gl) ist, wo g die An-

zahl der reduzierten Zahlen in %k (4/p) ist. Aus A und der Glieder-
zahl m der Periode des Kettenbruches fiir die reduzierte ganze Zahl

c—l—\/;

fur den Kérper k(v/p) nach dem Modul 4 bestimmen. Es ist
h—x( a) (mod. 4).

(c grosste ungerade Zahl < 4/p ) lisst sich die Klassenzahl &

Fir den speziellen Dirichlet’schen Korper k& (\/;, v/—_~—[9> , WO p
eine Primzahl der Form 8n + 5 ist, ergibt sich einfacher fiir die

Klassenzahl H: H = (’_;Zi> (ﬁa _1_ b) (mod. 4) (¢ und b positiv).

7. — P. Novr1 (Ziirich). — Dzie Sterblichkeit im Februar und Mdrz
1944 in mathematischer Beleuchtung. — Die im Februar und Méarz 1944
in der Schweiz beobachtete Ubersterblichkeit gab Anlass zur Priifung
der Frage, inwieweit angenommen werden muss, dass dieses etwas
sonderbare Ereignis rein zuféllig oder durch kausale Ursachen hervor-
gerufen worden ist. Die Beantwortung dieser Frage auf Grund der
Wahrscheinlichkeitsrechnung bietet insofern Schwierigkeiten, als die
Sterbenswahrscheinlichkeiten der einzelnen Personen einer Bevol-
kerung grosse Unterschiede aufweisen, so dass es nicht zuléssig wére,
nach dem tiblichen Verfahren mit einer durchschnittlichen Wahr-
scheinlichkeit zu rechnen.

Wenn man jedoch von der Vorstellung ausgeht, dass jeder der
beobachteten Personen eine Urne zugeordnet ist, enthaltend schwarze
und weisse Lose und dass der Tod sténdig aus diesen Urnen Lose zieht,
wobei das Erscheinen eines schwarzen Loses das Ableben, das Erschei-
nen eines weissen Loses das Weiterleben der Person, aus dessen Urne
das Los gezogen wurde, bedeutet, so gelingt es, eine Wahrscheinlich-
keitsbestimmung durchzufuhren die den ins Gewicht fallenden
Besonderheiten Rechnung trdgt. Die mathematische Formulierung
gestaltet sich tberraschend einfach. Die Wahrscheinlichkeit w (r)
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dafiir, dass in einer Personengruppe. r Todesfélle eintreten, lasst sich
auf die einfache Formel

zuriickfiihren, wobei u die erwartete Zahl der Todesfélle bedeutet.
Mit Hilfe der Brunschen Reihe gelingt es, auf Grund dieser Formel die
numerischen Werte fiir die Wahrscheinlichkeit bestimmter Abwei-
chungen zu berechnen. Auf Grund der vom statistischen Amt der
Stadt Ziirich mitgeteilten Zahlen ergab sich, dass praktisch mit
Sicherheit angenommen werden kann, dass die in den Monaten
Februar und Méirz beobachtete Ubersterblichkeit durch besondere
Ursachen hervorgerufen worden ist.

8. — Georges VinceENnT (Lausanne). Sur les groupes de rotations
sans point fize. (Présenté par M. G..pE Ruam:.) — Toute substitution
linéaire, homogene, orthogonale, a coefficients réels, suivant les n + 1
variables x,, Z;, ..., Zn, transforme en elle-méme la spheére S* définie
par x; + 2% + ... + x; = 1 dans l'espace euclidien réel E**!. Une

telle substitution est dite sans point fize si elle n’admet pas la valeur
propre -+ 1. La rotation correspondante ne laisse alors sur S" aucun
point invariant. On se propose de déterminer les groupes finis formés,
a part I'identité, uniquement de substitutions de cette nature.

Le probleme ne présente quelque intérét que pour les spheres de
dimension impaire (pour les dimensions paires, les groupes cherchés
se réduisent & l'identité et au groupe cyclique d’ordre deux formé de
I'identité et de la symétrie relativement & P'origine des coordonnées).
Pour la dimension trois, le probléme a été entiérement résolu par
M. H. Hopr. Voici comment on peut ’aborder pour des dimensions
supérieures.

Les sous-groupes abéliens du groupe G cherché devant étre
cycliques, celui-ci ne peut étre, d’apres un théoréme de Burnside,
que de 'un des deux types suivants:

Type A : Tous les sous-groupes de Sylow de G sont cycliques (a ce
type appartiennent les groupes cycliques eux-mémes).

Type B: Les sous-groupes de Sylow de G relatifs & un diviseur
premier p 7 2 sont cycliques, ceux relatifs au diviseur pre-

mier 2 sont du type des quarternions généralisé (ordre 2m;

AT g B2 — A2 BAB — AL m > ),

L’étude des représentations linéaires irréductibles des groupes du
type A conduit au résultat suivant:

Toute sphére de dimension tmpaire (supérieure & un) admet une
infinité de groupes non abéliens de rotations sans point fize.
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Le probléme est entierement résolu pour les sphéres de dimension
4m + 1 par le théoréme:

Les groupes de rotations sans point fixe d’une sphére de dimension
4m + 1 sont tous du type A.

9. — H. Hapwicer (Bern). Ein Umordnungssatz der Funktionen-
theorte. — Nach dem bekannten Riemannschen Umordnungssatz?!
lasst sich jede bedingt (nicht absolut) konvergente Reihe reeller
Zahlen zu jeder beliebigen reellen Zahl als Summe umordnen. Nach
den Ergebnissen von Steinitz 2 gibt es Vektorreihen, die sich zu
jedem beliebigen Summenvektor des endlich dimensionalen Vektor-
raumes umordnen lassen. Zu einem analogen Resultat gelangt man.
auch in bezug auf Reihen des unendlich dimensionalen Folgenraumes.
Es muss hier darauf hingewiesen werden, dass WALD den STEINITZSChen
Satz auf den Folgenraum iibertragen konnte 3. Dass es auch bedingt
konvergente Reihen des Hilbertschen Raumes gibt, die sich zu jeder
Summe des Raumes umordnen lassen hat der Referent in Rahmen
einer allgemeineren Untersuchung gezeigt 4, durch welche dargetan
wurde, dass sich der SteiniTzsche Satz (in einer aequivalenten For-
mulierung) nicht auf den Hilbertschen Raum iibertragen lasst.
Ferner hat der Referent in einer kleinen Note ® ein Beispiel einer
Rethe reeller Funktionen gegeben, welche die Eigenschaft hat, dass
man sie zu jeder beliebig gewihlten stetigen Funktion als Summe
umordnen kann. Eine Erweiterung auf komplexe Verédnderliche, d. h.
die Formulierung eines entsprechenden Satzes der Funktionentheorie,
war naheliegend. Nun hat in der Tat S. Rios 6 den in Frage stehenden
Satz formuliert und bewiesen. Bei der Konstruktion des Beispiels hat
er im wesentlichen das namliche Prinzip befolgt, das auch dem
Referenten bei der Behandlung des reellen Falles gedient hat (dies
wird in einer Fussnote von Rios erwiihnt). Mit einigen unwesentlichen
Modifikationen lautet dieser Satz wie folgt:

Es gibt eine Reihe analytischer Funktionen die in der ganzen
Ebene lokal gleichmissig zur Summe Null konvergiert und welche
folgende Eigenschaft hat: Zu jeder analytischen Funktion und
einem schlichten beschrinkten Regularitdtsgebiet derselben lasst

1 Vgl. K. Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, 1931,
3. Aufl., S. 328.

2 . STEINITZ, Bedingt. konvergente Reihen und konvexe Systeme. Journ. reine .
angew. Math., 143 (1913), S. 128-175.

3 A. WaLD, Reihen in topologischen Gruppen. Ergebnisse eines math. Koll. Wien., §9.
und 60. Koll. (1933). ) _

4 . HaApwIGER, Ueber das Umordnungsproblem 1m Hilbertschen Raum. Math.
Zeilschr., 46 (1940), S. 79. ) _

5 H. HapwIcER, Eine Bemerkung iiber Umordnung von Reihen reeiler Funktionen.
The Toéhoku Math. Journ., 46 (1939), S. 22-25.

6 S. Rios, Sobre la reordenacion de series funcionales y sus aplicaciones. Abhandli
Math. Seminar der Hansischen Univ., 15 (1943), S. 72-75.
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sich eine Umordnung der gegebenen Reihe finden, welche in dem
gewihlten Gebiet lokal gleichméssig gegen die gewéhlte analy-
tische Funktion konvergiert.

10. — R. WavRE. Sur quelques hermitiens particuliers. — L’auteur
applique & quelques opérateurs hermitiens spécialement simples les
propriétés concernant les conséquents par I'opérateur d’un élément
particulier. Ces propriétés ont été démontrées dans deux articles des
Commentarii (vol. 15, fase. 4 et vol. 16, fasc. 1).

Les opérateurs envisagés dans cette communication étaient:

La détermination des axes d’'une quadrique (matrice syme-
trique). |
La multiplication d’une fonction par une autre (domaine réel)
 La dérivation (multipliée par 4/—1).
Les projecteurs, les intégrales de Fourier, I'intégrale de Poisson.
La semi-continuité de la plus haute fréquence considérée comme
fonctionnelle de I’élément initial fut aussi rappelée.

Séance de printemps, Berne, 6 mair 1945

Conférence de M. le professeur Lars AurLroRrs (Zurich): «Extremal-
aufgaben und konforme Abbildung ».

Réunion de Fribourg, 2 septembre 1945
(34¢ assemblée annuelle)

M. DieraeLM (Schwyz): Uber Anwendungen der Identititsfunktion
in der Mathematik.

P. Bipar (Aigle): A propos du théoréeme d’existence des formes
différentielles harmoniques.

Sophie Piccarp (Neuchétel): Des couples de substitutions qui engen-
drent un groupe régulier.

Ed. Arnous (Paris et Leysin): Sur les statistiques attachées aux
opérateurs hermitiens et leurs transformées de Fourier Stielties.

B. Eckmann (Lausanne): Der Homologiering einer beliebigen Gruppe.

R. WaAvVRE (Geneve): Curiosité géométrique.

M. PLaNCHEREL (Zurich): Sur la convergence en moyenne d’une suite
de solutions d’une équation aux dérivées partielles linéaire de
type elliptique.
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F. Fiara (Neuchatel): Sur les réseaux riemanniens.

P. BErNAYs (Zirich): Bemerkungen zum Satz iiber symmetrische
Funktionen.

H. Hapwicer (Bern): Mittelbarkeit und Integration in Gruppen.

Ch. Branc (Lausanne): Sur I'intégration des équations aux dérivées
partielles a caractéristiques réelles.

M. Gur (Zirich): Zur Theorie der Normenreste einer relativ
zyklischen Erweiterung von ungeradem Primzahlgrade.

L. Locuer (Winterthur): Bericht iiber die neue Zeitschrift « Die
Elemente der Mathematik ».

R. Wavre et R. Soupan (Geneve): Sur les fonctions polyharmo-
niques.

J. O. FLEckENSTEIN (Basel): Die genaue Datierung der erstmaligen
analytischen Formulierung des Prinzips der virtuellen Verriik-
kungen durch Johann I. Bernoull.

Séance administrative. — Le Comité pour 1946 et 1947 a été cons-
titué comme suit: Max Gur, président; H. HApDWIGER, vice-prési-
dent: Ch. BiranNc, secrétaire-trésorier.

Séance de printemps, Bienne, 26 mai 1946.

Conférence de M. le professeur Jean LEray (Paris): La Topologie
algébrique.

Réunion de Zurich, 8 septembre 1946.
(35¢ assemblée annuelle.)

J.-P. SypLEr (Zurich): Hyperquadratiques de révolution et droites

associées.

E. Specker (Ziirich): Uber den Zusammenhang zwischen Funda-
mentalgruppen und zweiten Homotopiegruppen dreidimensio-
naler Manigfaltigkeiten.

. Bierr (Bern): Eine neue Methode zur Loésung von Randwert-
problemen der Variationsrechnung.

BipaL (Lausanne): Déterminants dont les éléments sont des
formes a multiplication extérieure.
VinceEnT (Lausanne): Sur les groupes de rotations sans points
fixes de la sphére a n dimensions.
Eckmann (Lausanne): Polyeder und Operatoren.

® @ o
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Sophie Piccarp (Neuchétel): I. Les systémes de substitutions qui
engendrent un groupe régulier. — II. Quelques propositions
concernant les groupes d’ordre fini.

J. de SieBENTHAL (Zurich-Lausanne): Sur la théorie globale des
groupes de Lie compacts.

J. O. FLeckeNnsTEIN (Basel): Ein Problem der sphamschen Astro-

nomie aus dem Nachlass von Joh. I. Bernoulli.

M. DieraeELM (Schwyz): Originelle Differentialquotient-Ableitungen.

M. Gur (Zirich): Uber die Klassenanzahlen der reellen Unterkérper
des Korpers der l-ten Einheitswurseln.

Séance de printemps, Berthoud, 18 mai 1947 .

Conférence de M. le professeur O. Ore (New Haven, Conn.):

Entwicklungen aus dem Jordan-Holderschen Satz.

Réunion de Geneéve, 31 aoiit 1947.
(37¢ assemblée annuelle.)

Th. Reicu (Glarus): Das Verhalten der reguliren Quaternionen-
funktionen in der Né&he isolierter unwesentlich singulérer Punkte,
Kurven und Fléachen.

KriszTeEN (Ziirich): Areolar monogene Funktionen.

pE Ruam (Lausanne): Sur la théorie des distributions de

M. Laurent Schwartz.

Korrros (Zurich): Solution d’un probleme de Steiner.

. Hapwicer (Bern): Eine elementare Herleitung der isoperime-

trischen Ungleichung im Raum.

Sophie Piccarp (Neuchéatel): I. Un théoreme concernant le nombre
total des bases d’un groupe d’ordre fini. — II. Sur les bases du
groupe symétrique.

A. AmMaNN (Genéve): Sur la répartition des nombres modulo un.

A. CEALLAND (Berne): Qu’est-ce qu'un grand nombre ? La notation
de grand nombre dans le calcul des probabilités.

M. DietaeLm (Schwyz): Uber Anwendungen des Lehrsatzes von
Ptolemaus.

- o

Séance administrative. — Comité pour les années 1948 et 1949:
H. HapwiGer, président; Ch. Branc, vice- pr931dent A. PELUGER,
secrétaire- tresomer
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Séance de printemps, Soleure, 9 mai 1948.

Conférence de M. le Prof. André WeiL (Chicago): L’hypothese
de Rieman dans les corps de fonctions.

Séance administrative. — A la suite de la démission de M. Had-
wiger le Comité a été constitué comme suit: Ch. BLanc, président;
A. PFLUGER, vice-président; F. FrarLa, secrétaire-trésorier,

Réunton de Saint-Gall, 5 Septémbre 1948.
(37¢ assemblée annuelle.)

H. P. Kunzi (Olten): Der Fatou’sche Satz bei harmonischen und

subharmonischen Funktionen in Rdumen von der Dimension >2.
A. PrLUGER (Ziirich): Quasikonforme Abbildung und Kapazitit.
W. Baum (Ziirich): Nullwege im Komplexen.

E. Specker (Zirich): Nicht konstruktiv beweisbare Sitze der

Analysis. :
Sophie Piccarp (Neuchéatel): 1. Les bases du groupe v,. — 2. Sur
les bases du groupe alterné. — 3. Quelques propositions de la

théorie des substitutions.

H. Hapwicer (Bern): Zerlegungsgleichheit und additive Polyeder-
funktionale.

M. Ruerr (Zirich): Allgemeine Sétze iiber Reduktionen quadra-
tischer Formen von 4 Variablen.

W. ScHERRER (Bern): Zur Theorie der Materie.

M. Jeger (Olten-Ziirich): Affine Zusammenhinge und Gewebe.

H. E. Ravca (Princeton-Ziirich): Einige Séatze iiber Funktionen
mehrerer Verdnderlichen.

Séance de printemps, Berne, 22 mai 1949.

Conférence de M. le professeur G. PorLya (Stanford University):
Die Steinersche Symmetrisierung in der mathematischen Physik.

S e R  Tu iy
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Réunion de Lausanne, 4 septembre 1949.
(38¢ assemblée annuelle.)

F. Fiara (Neuchatel): Quelques généralisations de la symétrisation
de Steiner.

H. GucGENHEIMER (Basel): Uber die Bettischen Zahlen Riemannscher
Manigfaltigkeiten.

B. Eckmann (Ziirich): Analytische und harmonische Differentiale
in komplexen Manigfaltigkeiten.

Sophie Piccarp (Neuchéatel): 1. Les diverses groupes que peut engen-
drer un systéme connexe et primitif de cycles du 6¢ ordre et les
bases de ce groupe. — 2. Les sous-groupes primitifs d’ordre 1344
du groupe alterné de degré 8.

M. Gur (Ziirich): Eulersche Zahlen und grosser Fermatscher Satz

Ch. Branc (Lausanne): A propos de la théorie des plaques élastiques.

H. Bier1 (Bern): Die erste Variation der Masszahlen eines Elementar-
kegels.

R. ZwaHLEN (Ziirich): Eigenwertprobleme mit dreigliedrigen Rekur-
sionsformeln zwischen den Eigenwerten.

W. Kapran (Ziirich-Ann Arbor). ... ?

Séance administrative. — Comité pour les années 1950 et 1951:
A. PrrLucGEr, président; F. Fiava, vice-président; J. J. Burck-
HARDT, secrétaire-trésorier.

Séance de priﬁtemps, Bienne, 14 mai 1950.

Conférence de M. le professeur R. NEvANLINNA (Ziirich-Helsing-
fors): Probleme der offenen Riemannschen Flachen.
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