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44 T. BANA CHIEWICZ

Si l'on veut calculer j k j, la méthode de décomposition s'y
prête parfaitement, parce que

|k j {§1182,2 8mm) (^11^22 ••• • (t$)

§ 7. — Remarque finale. — Le lecteur demandera peut-être
pourquoi nous n'avons pas employé les matrices dont l'algèbre
est pourtant plus simple. Ce n'est pas ici le lieu de discuter les

différents avantages et désavantages relatifs des matrices et des

cracoviens, mais l'essentiel c'est la grande facilité des calculs
effectifs, tant numériques que littéraux, des produits des cracoviens,

grâce à la conformité de ces opérations fondamentales au
principe de la juxtaposition des éléments correspondants. La
difficulté presque prohibitive de pareils calculs avec les matrices
semble avoir retardé sensiblement l'emploi tellement utile des

nombres tabulaires dans les différents domaines des Mathématiques.

Cracovie, mars 1941.

ADDENDA

Dans le laps du temps de sept années qui durent s'écouler,

par suite de la guerre, entre la composition et l'impression de

cet article, l'auteur a développé différents résultats ci-dessus.
La supposition (p. 4) que les équations soient spécialement

arrangées et puissent être résolues univoquement n'est point
nécessaire, parce que la solution s'applique dans le cas le plus
général de n équations à m inconnues. Il suffît de chercher la
décomposition du k en un produit de deux facteurs « élémentaires

». Un cracovien est élémentaire si dans chacune de ses

lignes « s'éteint » au moins un colonne, et l'on dit qu'une colonne
d'un cracovien s'éteint dans la ligne s, si l'élément de cette
colonne dans la ligne s est différent de zéro, les éléments suivants
dans cette colonne étant zéros ou n'existant pas (si la ligne est la
dernière).

On démontre facilement le théorème (fondamental) que
chaque cracovien k (carré ou non) non zéro peut être décomposé
en un produit k g. h de deux cracoviens élémentaires g et h.
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Le nombre de pareilles décompositions peut être très grand

(sans compter le facteur banal de proportionnalité), mais le

nombre r de lignes du g et h est le même pour toutes ces

décompositions: c'est le rang du k. On a dès lors une méthode très

simple de la détermination de ce qu'on appelle le rang d'une

matrice.
Avec la nouvelle définition du quotient § 1, fin du passage 4),

en posant

{k l} g', h x' ;r2 xm } — 1 }

la solution (8) se simplifie encore et devient

x' 0 : g' (8*)

x' existe si g et g' sont du même rang, c'est-à-dire ont le même
nombre de lignes, et n'existe pas dans le cas contraire. La solution,

quand elle existe, a m — r + i degrés de liberté.
On évite ainsi complètement l'emploi des déterminants dans

la résolution numérique d'équations linéaires arbitraires, ainsi

que dans la détermination du rang d'un tableau.
Quant à la propagation non astronomique des cracoviens,

notons que le Conseil national de l'Office central des mesures du

pays en Pologne les a recommandés, en 1946 et 1947, pour les

calculs géodésiques, et ils sont enseignés maintenant brièvement
dans les principales écoles polytechniques de Pologne. Dans
son Algèbre nucléaire (non publiée), M. T. Kochmanski (Cra-
covie) donne une application importante des cracoviens aux
calculs des séries; le même auteur publia entre autres plusieurs
exposés didactiques. A Varsovie, M. S. Husbrandt, de la
Polytechnique, les applique aux divers problèmes du calcul numérique

(nombreux manuscrits photocopiés). Le livre Scienza délie

Costruzioni, vol. 2, Bologne 1946, de M. Odone Belluzzi,
pp. 287-298, enseigne l'emploi des cracoviens dans la résolution
des équations linéaires. M. W. Sierpinski en parle dans plusieurs
endroits de ses Fondements d'Algèbre supérieure, Varsovie 1946
(en polonais).

Cracovie, juillet 1948. T. Banachiewicz.
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