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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications.

Réunion de Locarno, 29 et 30 septembre 1940.

La Société mathématique suisse a tenu sa vingt-huitième assemblée
annuelle à Locarno, les 29 et 30 septembre 1940, en même temps que
la 120me session de la Société helvétique des Sciences naturelles. En
ouvrant la séance, le président, M. le Prof. L. Kollros (Zurich), a

rappelé qu'en raison de la situation internationale et de la mobilisation
de l'armée suisse, la réunion qui devait avoir lieu à Locarno en
septembre 1939 a dû être supprimée, puis il a rendu hommage à la
mémoire des collègues décédés depuis la dernière séance.

Les communications, au nombre de 15, ont été réparties sur deux
séances.

La prochaine réunion aura lieu à Bale les 7 et 8 septembre 1941.

1. — Mlle S. Piccard (Neuchâtel). — Sur les ensembles de
distances. — Voici quelques propositions concernant les ensembles
de distances des ensembles de points d'un espace euclidien EM (à un
nombre fini quelconque n de dimensions).

Proposition 1. — Quels que soient le nombre entier n > 1 et le
système av a2, an(ax < a2 < < an) de nombres réels positifs,
l'ensemble {0, av a2, an} est l'ensemble de distances d'un
ensemble de points, d'ordre n + 1, de l'espace E(nh

Proposition 2. — Il existe un ensemble dénombrable de nombres
réels non négatifs comprenant 0 qui ne saurait être l'ensemble de
distances d'un ensemble de points d'un espace euclidien à un nombre
fini quelconque de dimensions.

Proposition 3. — Quel que soit le nombre entier n > 1, il existe un
système fini, d'ordre 2n, de nombres réels positifs ax, a2, a2n, tel
que l'ensemble {0, av a2, a2n} n'est l'ensemble de distances
d'aucun ensemble de points de l'espace EM.
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Proposition 4. — Quel que soit le nombre entier n > 1 et <3, il
existe un système de n + 1 nombres réels positifs a1? a2, an+i, tel
que l'ensemble {0, a1% a2, an+i} n'est l'ensemble de distances
d'aucun ensemble de points de l'espace E(nb

Proposition 5. — Quel que soit l'ensemble infini A de points d'un
espace E<n), les ensembles A et D (A) ont la même puissance.

Proposition 6. — La puissance de l'ensemble de tous les ensembles
de nombres réels non négatifs qui sont des ensembles de distances

0îKo
d'ensembles de points d'un espace euclidien est 2"

Proposition 7. — Soit n un nombre entier > 3, soit ax < a2 <
< dk un système quelconque de nombres de la suite 1, 2, n — 2

et soit 21 — {0, a11 a2, ak}n l'ensemble des nombres réels non
négatifs qui, dans le système de numération à base n, peuvent s'exprimer

au moyen des seuls chiffres 0, al7 a2, a&. Les deux ensembles 21

et D (21) sont parfaits et si D (21) ne comprend pas tous les nombres
réels non négatifs, cet ensemble est de mesure (lebesguienne) nulle.

2. — André Mercier (Berne). — Sur le principe cosmologique
(TEinstein-MUne. — Cette communication a présenté tout d'abord
une comparaison entre l'axiomatique de la Théorie cinématique de
Milne et celle de la Relativité (Reichenbach, Carathéodory). La
différence essentielle réside dans le fait que Milne introduit un ensemble
de « particules-observateurs » susceptibles de convenir de la géométrie
qu'ils veulent, alors qu'en Relativité il est d'emblée question d'un
continuum de points et que la géométrie est prescrite. La Théorie
cinématique contient la Relativité restreinte sous la forme d'un cas
particulier se rapportant à ceux des observateurs qui se meuvent
avec des vitesses relatives constantes (mouvement relatif que l'on
peut définir). En ce point la Théorie cinématique se distingue de la
Relativité où la Relativité restreinte apparaît non pas comme un cas

particulier mais comme le cas-limite où la gravitation est négligeable.
C'est le postulat d'équivalence des observateurs qui fait que la
Théorie cinématique contient la Relativité restreinte comme cas

particulier, ce qui donne à la propriété d'équivalence définie par Milne
beaucoup d'intérêt. A côté de la propriété d'équivalence, on en définit
une seconde, qui est une espèce d'équivalence encore plus restrictive
que la première. Pour appliquer la Théorie cinématique à la cosmologie,

il faut postuler que les galaxies ont à la fois les deux propriétés
d'équivalence: c'est le principe cosmologique d'Einstein-Milne.

Un premier intérêt de la Théorie cinématique est qu'elle montre
qu'on peut fonder la Relativité restreinte autrement qu'on ne l'a fait
avant. Un second intérêt est qu'elle montre qu'on peut expliquer le

déplacement des raies spectrales venant des galaxies lointaines par
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un effet Doppler dont l'origine est autre que celui imaginé dans la
théorie de l'expansion de l'univers. Mais la Théorie cinématique a
certains inconvénients en rapport avec la gravitation et les possibilités
expérimentales de la vérifier. (Ces questions se trouvent développées
dans un article paru dans les Helv. Phys. Acta, XIII, 473, 1940.)

3. — Rud. Fueter (Zurich). — La théorie des fonctions des équations
de Dirac. —- A l'aide du théorème de Calcul intégral de Gauss dans
l'espace à quatre dimensions et en introduisant deux systèmes appropriés

de grandeurs hypercomplexes, on peut remplacer les équations
de Dirac par la condition que l'intégrale correspondante s'annule
lorsqu'on l'étend à une hypersurface fermée et bilatère quelconque,
dans l'intérieur de laquelle les fonctions et leurs dérivées sont partout
continues. Ce travail paraîtra in extenso dans les Commentarii Mathe-
matici Helvetici.

4. — H. Hopf (Zurich). — Sur la topologie des groupes de Lie. —-
On appelle espace homogène d'un groupe de Lie G toute variété W
transformée en elle-même d'une manière transitive par G; si G est
clos, W l'est aussi. La caractéristique eulérienne d'une variété close M
est, comme on sait, le nombre X (— l)r ar, ar désignant le nombre
des cellules à r dimensions d'une décomposition polyédrale de M.

Théorème I. —La caractéristique d'un espace homogène d'un groupe
de Lie clos est positive ou nulle.

Les transformations de G, qui laissent fixe un point 0, forment
un sous-groupe de G, appelé le « groupe d'isotropie » (il ne dépend pas
essentiellement de 0). Par le a rang » d'un groupe de Lie clos G, on
entend le nombre maximum de dimensions des sous-groupes abéliens
de G. Le théorème I peut être précisé comme suit:

Théorème II. — La caractéristique de W est positive ou nulle, selon
que le rang du groupe d'isotropie est égal ou inférieur à celui de G.

La démonstration est basée sur la considération de points fixes.
Les théorèmes et les démonstrations sont dus à M. H. Samelson

et à l'auteur. Un exposé complet paraîtra prochainement dans un
autre recueil.

5. — G. de Rham (Lausanne). — Sur l'homéomorphie des rotations
de la sphère à n dimensions. — Deux rotations Rx et R2 de la sphère
à n dimensions Sn sont dites homéomorphes, s'il existe une transformation

topologique T de Sn en elle-même qui transforme Rx en R2:
R2 TRj T_1. On sait que la condition nécessaire et suffisante pour
que Rx puisse être transformée en R2 par une rotation, c'est que Rx
et R2 aient les mêmes racines caractéristiques. Or cette condition est aussi
nécessaire et suffisante pour l'homéomorphie de Rx et R2. Par des
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moyens élémentaires, on peut reconnaître que deux rotations homéo-
morphes ont les mêmes racines caractéristiques qui ne sont pas racines
de l'unité et, pour tout entier h, le même nombre de racines
caractéristiques qui sont racines A-ièmes de l'unité, et la démonstration de
la proposition générale ci-dessus est ramenée à sa démonstration dans
le cas où les rotations Rx et R2 sont d'ordre fini (cas où toutes leurs
racines caractéristiques sont des racines de l'unité). La démonstration
dans ce cas utilise des moyens difficiles. Un exposé complet sera publié
dans un autre recueil.

6. — Louis Kollros (Zurich). — Une propriété des variétés du
second ordre. — Cette propriété est une généralisation dans l'espace
à n dimensions du théorème suivant que Steiner a énoncé sans
démonstration pour n 2 (0. c., II, p. 341): « Si l'on trace un cercle c

tangent à une conique en l'un de ses points P et orthogonal à son
cercle orthoptique, le diamètre de c est égal au rayon de courbure de
la conique en P ».

Pour n 3, elle s'énonce ainsi: « Le diamètre de la sphère tangente
à une quadrique Q en l'un quelconque de ses points P et orthogonale à

la sphère orthoptique de Q est égal à la somme des deux rayons de
courbure principaux de la quadrique en P (donc aussi égal à la somme
des rayons de courbure des sections normales de Q menées par deux
diamètres conjugués quelconques de l'indicatrice de Q en P) ».

Dans le cas général, le diamètre en question est la somme des

(n — 1) rayons de courbure principaux de l'hyperquadrique au point
considéré.

Cette propriété caractérise les variétés du second ordre: Si (pour
n 2) on donne un cercle fixe c dans le plan et si l'on cherche toutes
les courbes planes telles que — P étant un point quelconque de la
courbe, M le centre de courbure en P, et P' le symétrique de M par
rapport à P — le cercle de diamètre PP' soit orthogonal au cercle
donné c, on trouve une équation différentielle dont les intégrales sont
les équations des coniques dont c est le cercle orthoptique. Cette
équation différentielle est particulièrement simple si l'on considère la
courbe comme enveloppe de la droite p x cos il + y sin u\ la
fonction p de u satisfait alors à l'équation pp" + p'2 + 2p2 — r2 qui
devient t" + 41 2r2 par la substitution p2, t.

Pour n — 3, on considère la surface comme enveloppe du plan

p x cos u cos v -\~ y sin u cos v + z sin v

La fonction p de n et v satisfait alors à une équation aux dérivées
partielles du second ordre qui, pour p2 t, prend la forme:

4 +sec2 * • *uu — te * • 4+ - 2'2
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En particulier, si r2 A + B + G, les intégrales de cette équation
représentées par les quadriques rapportées à leurs axes sont:

t p2 (A cos2 u + B sin2 u) cos2 v + G sin2 v

Les autres intégrales sont les équations tangentielles de ces mêmes

quadriques après une rotation quelconque autour de leur centre.

(Voir Comm. Math. Helv., tome 13.)

7. — A. Ostrowski (Bale). — Sur quelques transformations
différentielles dans Vespace à trois dimensions. — Line transformation

5 f &, Vi > y%, y[, y'2),

Si (x> Vi > 2/2, y[) » % ^2 («, 2/i, 2/2, y[ »
2/^) »

2/2 étant des fonctions indéterminées de la variable est appelée

réversible si l'on peut exprimer rr, ^(^c), //2(^) Par Tii: ^27

au moyen des équations de la transformation donnée et celles qu'on en
dérive par difïérentiations et éliminations. Dans le cas d'une fonction
dépendant d'une ou de plusieurs variables indépendantes, les
transformations réversibles définies d'une manière analogue coïncident avec
les transformations de contact. De l'autre côté, dans le cas considéré
ici, il s'agit d'une nouvelle classe de transformations différentielles.
L'auteur esquisse plusieurs méthodes pour déterminer toutes les
transformations de cette classe et pour en étudier les propriétés. Ces
recherches seront exposées en détail dans un mémoire de l'auteur,
intitulé: Sur une classe de transformations différentielles dans l'espace
à trois dimensions, qui paraîtra dans les Commentant Mathemalici
Helvetici.

8. — R. Wavre (Genève). — Sur le mouvement avec frottement de

n sphères concentriques et le passage à la limite. — Le géologue français
Marcel Bertrand a émis, autrefois, l'hypothèse que la Terre est formée
d'un noyau et d'une écorce animés chacun d'un mouvement propre.
Dans une recherche antérieure j'avais exprimé ce que serait le
mouvement des deux axes instantanés de rotation. Nous considérerons
ici le cas de n couches sphériques homogènes, puis d'une infinité de
couches infiniment minces. Il n'y a, je tiens à le dire, aucune difficulté
mathématique spéciale dans la résolution de ce problème, il pourrait
être posé comme sujet d'un travail écrit d'une cinquantaine de pages
à tout étudiant avancé qui posséderait des éléments solides d'algèbre
et d'analyse. Je le recommande même k ce titre.

Le frottement sera supposé proportionnel à la vitesse relative. La
somme des moments des forces de frottement est dirigée suivant le
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vecteur rotation instantanée relative des deux couches consécutives.
Les équations régissant les rotations sont

k K
d —> —> —> —y

h(xi — xi+i) -ir xi+i(pi+i Pi)+xi(Pi-i — Pi) ; (i)

ki est une constante, Xi le rayon de la — lième couche de séparation
et pi la rotation de la iIème couche. Ce système peut donc s'écrire:

dPi
— ai, i-i Pi-i+ ai, i Pi + ai, i+i Pi+i

Considérons le déterminant

(2)

Ai M

r + a- 0

ai + l,i r+ai+ l,i + l 0

i + 2, i+1
r + a

(3)

et l'équation caractéristique A-^r) 0 du système (2). La solution
donnant le mouvement des axes sera

Ai+1(/*ft) r t
(4)

les rh étant les racines toutes négatives, sauf rx 0, de l'équation
caractéristique. On peut aussi se passer des déterminants comme on
le fait de plus en plus sous l'inspiration du calcul matriciel et écrire le
système sous la forme

et sa solution

p e~atPo ; (6)

a, p désignant ici des matrices, p0 étant la distribution initiale des
vitesses de rotation. Cette résolution par le calcul matriciel
constituerait la voie pour les cas d'une infinité dénombrable de couches.

Si, maintenant, on suppose les couches infiniment minces l'équation

(1) devient une équation aux dérivées partielles
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voisine de celles qui se présentent dans différents problèmes
classiques du type hyperbolique: refroidissement de la sphère, problème
de l'armille,...

Si le corps est tout entier homogène, k est constant; on peut le

supposer égal à l'unité. L'intégration de (7) se fait alors sans difficulté

par séparation des variables et conduit à l'introduction des fonctions

de Bessel 3n{x)-

pix, t) 2 chx
2 X/,J

*

h=1 2

L'on a

k l 2

et l'on doit avoir sur la surface extérieure (x R), qui est libre, ^ 0

quel que soit t (condition à la limite). Les valeurs propres X& sont donc
les racines en nombre infini de l'équation

J£(XfeR) - 0

2

Quant aux constantes c&, elles seront déterminées par les données
initiales p{x, 0) — f(x)1 comme des coefficients de Fourier.

On peut aussi se donner le mouvement de la surface extérieure,
condition aux limites, p(R, t) — 9 (£), et résoudre par les procédés
classiques.

Enfin, dans le cas d'une surface extérieure libre, mais d'un champ
de forces extérieures agissant sur chaque sphère, on est conduit aux
systèmes (2) ou (5) avec seconds membres ou après le passage à la
limite à une équation de la forme

*£ %P + *L*£ + 9{x,t),àt dx2 x à x

équations résolubles encore par des procédés classiques. Ce qu'il faut
remarquer, croyons-nous, dans le passage à la limite, c'est la persistance

du spectre discret à l'exclusion d'un spectre continu et le fait
que (8) est limite de (4), les fonctions de Bessel apparaissant comme
limites d'expressions algébriques.

Deux mots encore sur les applications aux figures planétaires. Les
équations de Navier de l'hydrodynamique des fluides visqueux
supposent précisément un frottement proportionnel à la vitesse
relative. Pour des vitesses faibles, astre quasi sphérique, les calculs
précédents peuvent avoir une forte valeur analogique. Pour ce qui est
de la terre supposée fluide, mais visqueuse, le mouvement de préces-
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sion des équinoxes, créé par le moment des forces d'attraction luni-
solaire, ne serait pas, dans cette hypothèse, suivi par toutes les
couches en même temps, il y aurait des courants intratelluriques
comme ceux dont parlait M. Dive il y a quelques années. La recherche
actuelle aurait encore une valeur analogique quoique plus lointaine.

9. — Ambrogio Longhi (Lugano). — Sur les involutions elliptiques
appartenant à une courbe elliptique. — L'auteur expose quelques-unes
de ses recherches de géométrie sur les courbes elliptiques, établissant
entre autres les théorèmes suivants.

Etant donnée une courbe © de genre p — 1 et de module général :

a) La condition nécessaire et suffisante pour Véquivalence biration-
nelle de deux involutions elliptiques */, appartenant à ©, c'est que7

A étant le plus petit commun multiple de leurs ordres a et ß, on ait
À: a p2 et A: ß a2, avec p et a entiers, et que les groupes des

points p-uples de toutes les séries linéaires composées (sur ©J avec

y^, ainsi que les groupes des points a-uples des g®"1 composées avec y*,
constituent une même involution y^ ;

b) Les involutions elliptiques, primitives ou non, d'un ordre donné n,
qui existent sur ©, sont en nombre égal à la somme de tous les diviseurs
de n;

c) La condition nécessaire et suffisante pour qu'il existe sur © un
r-uple d'involutions elliptiques birationnellement identiques et d'ordres
assignés %, n2, nr, c'est que les quotients n^: S (i 1, 2, 3, r)
soient des carrés de nombres entiers, S désignant le plus grand commun
diviseur des ordres eux-mêmes. Cette condition étant satisfaite, le
nombre de tels r-uples d'involutions est égal à la somme de tous les

diviseurs de S.

Un cas très particulier du théorème a), pour ß 1, est fourni par
un autre théorème de Torelli le théorème b) constitue, d'autre part,
un complément notable à un résultat de Gastelnuovo 2 sur l'énumé-
ration des involutions elliptiques primitives, d'un ordre donné,
appartenant à ©.

Le travail complet sera publié dans les Mémoires de la R. Acca-
demia d'Italia.

10. — M. Gut (Zurich). — Moyennes de séries de Dirichlet. —
Puisque les nombres d'un corps de nombres algébriques c de degré
infini forment un ensemble dénombrable on peut toujours trouver

1 R. Torelli, Sulle superficie algebriche contenenti due fasci ellittici di curve (Rendi-
conti délia R. Acc. dei Lincei, 211 (5), 1912, p. 457).

2 G. Castelnuovo, Geometria sulle curve ellittiche (Atti délia R. Acc. di Torino, 24,
1888, p. 13).
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une suite infinie de corps de nombres algébriques de degré fini cl7

c2,... a, ci+v? ••• l^s fiue pour tout i ü 1 le corps C{+1 soit une extension
effective de Ci et lim ci c. Dans la suite c désignera plus spéciale-

i= oo

ment un corps de degré infini qui peut être engendré de la manière
suivante: On numérote tous les nombres premiers rationnels dans

un ordre quelconque et soit pj le /-ième nombre de cette suite. On
choisit c1 arbitrairement, mais pour tout i ^ 1 le corps ci+1 tel que
tous les idéaux premiers de q qui divisent un nombre premier p =Pi
se décomposent complètement dans Ci+1. Soit ni le degré de C{ et
Çi(s) la fonction zêta de Dedekind de C{. Dans un article de la Furt-
wängier-Festschrift (Monatshefte für Math, und Physik, vol. 48,

p. 153, 1939) j'avais démontré que sous ces hypothèses, si <R(s) > 1,

ni
la suite des fonctions VCî(«?), où pour s réel on prend la détermination
positive de la racine, converge vers une fonction analytique limite Z (s)

qui ne s'annule pas pour toute valeur de 5 pour laquelle <R G) > 1.

Soit q un nombre premier fixe, en particulier l'ensemble de tous les

corps absolument cycliques de degré q engendre un tel corps c. Dans
ce cas l'on peut facilement indiquer explicitement la fonction limite
Zq(s) en tenant compte de la décomposition des nombres premiers
rationnels en idéaux premiers de c.

Puisque Zq(s) n'est essentiellement autre chose que la limite de la
moyenne géométrique de toutes les séries L du corps des nombres
rationnels dont le caractère a la propriété que sa q-ième puissance est
égale à 1 ou à 0 pour tout nombre entier rationnel et positif comme
argument, le problème se pose tout de suite de calculer cette moyenne
sans qu'on utilise la théorie des corps de nombres algébriques de degré
infini. Dans un article de la Fueter-Festschrift (Yierteljahrsschrift der
Naturf. Ges. in Zurich, vol. 85, p. 214,1940), j'ai démontré que, dans
le cas q 2, en appliquant seulement la théorie des corps de nombres
quadratiques ordinaire on peut déterminer la limite de suites
partielles convenables non seulement de la moyenne géométrique mais
aussi de la moyenne arithmétique et de la moyenne harmonique de
toutes les séries L en se basant sur un lemme très simple. Ce lemme
permet en outre de calculer de pareilles moyennes pour de tels types
de séries de Dirichlet à caractère réel tels ils ont été considérés dans
des cas particuliers par Euler et Cesàro.

fk — J.-J. Burckhardt (Zurich). — Démonstration géométrique
d'un théorème de Minkowski concernant les polyèdres convexes. —
L'auteur parle d'une démonstration géométrique du théorème de
Minkowski d'après lequel un polyèdre convexe formé par la
juxtaposition (sans lacunes et sans empiétement) de polyèdres ayant un
centre, les polyèdres élémentaires, a lui-même un centre. Voir le
travail paru dans la Fueter-Festschrift (Beiblatt zur Yierteljahrsschrift
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der Naturforschenden Gesellschaft in Zürich, No. 32, Jahrg. 85, 1940,
pp. 149-154). La démonstration comprend deux parties.

1° Les faces du polyèdre Jk se répartissent en couples, F et F, de
faces congruentes dont les côtés homologues sont parallèles. Pour
démontrer ce fait, on se sert d'un processus de symétrisation, qui
fournit des subdivisions de F et F en polygones v et e, de manière

que chaque polygone v soit équipollent à un e.
Si les v ne peuvent être juxtaposés que d'une seule manière, de

façon à fournir un polygone convexe, il en est de même des e, et
l'assertion est établie. S'il n'en est pas ainsi, il faut modifier les

subdivisions de F et F d'une manière convenable; quelques cas
exceptionnels doivent être discutés à part.

2° Pour prouver que Jv a un centre, supposons que la face F de JC
n'est pas limitée par des couples de côtés égaux. Soit kx un tel côté
de F. En projetant Jv dans la direction de kx sur un plan, on obtient un
polygone convexe P. De la convexité de P, on déduit que, si JC ne
possédait pas de centre, on aurait sur Jv un nombre pair de côtés
k2l A;3, équipollents à kr En supposant qu'aucun des côtés k{ ni
aucune de leurs images ne soit en même temps côté de deux polyèdres
élémentaires, on prouve facilement qu'il n'y a sur «JC qu'une seule
image de kv II est par suite impossible qu'il y ait sur JC un nombre
pair de côtés équipollents à kv Si les hypothèses faites sur les ki ne
sont pas remplies, on peut en général modifier les polyèdres élémentaires

de manière à y satisfaire. Quelques cas exceptionnels doivent
de nouveau être considérés à part. Cette seconde partie de la démonstration

vient combler une lacune qui se trouve dans notre exposé
dans la Fueter-Festschrift.

12. — Pierre Humbert. — Réduction des formes quadratiques
indéfinies dans un corps algébrique fini. — Les résultats démontrés par
M. Siegel dans son mémoire intitulé: «Einheiten quadratischer
Formen 1 » s'étendent en prenant pour domaine de rationalité un corps
algébrique fini K. On démontre qu'il existe seulement un nombre fini
de classes de formes quadratiques à coefficients entiers dans K et dont
la norme du déterminant est donnée. Dans le cas où K est totalement
réel, une forme quadratique dans K, dont les conjuguées ne sont pas
toutes définies positives, possède une infinité d'unités, c'est-à-dire de

substitutions à coefficients entiers dans K, de déterminant unité,
laissant cette forme invariante.

1 Abhandlungen aus dem mathematischen Seminar der hansischen Universität, Bd. 13,
3/4 (1940).
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13. — Félix Fiala. — Sur les surfaces ouvertes à courbure positive.
(Note présentée par M. H. Hopf.) — Nous allons indiquer, en attendant

un exposé plus complet x, comment nous avons pu généraliser
Y inégalité isopérimétrique du plan euclidien

L2 ^4ttA
'

(1)

où L désigne la longueur d'une courbe fermée et A l'aire comprise
à l'intérieur de S7. Pour les surfaces analytiques ouvertes à courbure non
négative (par exemple paraboloïde elliptique) nous avons pu établir
la formule

L2^2A(j)*ds (2)

où (fikcLs représente l'intégrale de la courbure géodésique k le long

de 3*. L'égalité n'a lieu que si la surface est un plan euclidien et la
courbe S7 un cercle.

En tenant compte du signe de la courbure et en désignant par G

l'intégrale de cette courbure étendue à toute la surface, on obtient

L2^2A(2tt — G) (3)

Nous avons réussi à montrer que cette formule ne peut pas être
améliorée en général; dans ce but nous avons introduit la notion
de vrai cercle, défini comme le lieu des points dont la plus courte
distance à un point fixe est constante.

C'est sur une généralisation de la notion de vrai cercle que repose
la démonstration de la formule (2) : nous avons défini la vraie parallèle
à distance p de la courbe S7 comme le lieu des points dont la plus
courte distance à la courbe est égale à p (p est compté positivement
vers l'extérieur de S7, négativement vers l'intérieur). L'étude des
vraies parallèles est naturellement basée sur une connaissance approfondie

de la famille des lignes géodésiques normales à la courbe S7.

Soit L(p) la longueur de la vraie parallèle à distance p de S7. Nous
avons montré que L (p) est une fonction continue de p et dérivable
sauf éventuellement pour une suite divergente de valeurs de p.
L'aire A s'exprime alors comme

o

J L (p)d,V

où p est une constante négative dépendant de S7. Une inégalité pour
la dérivée de L (p) provenant du signe de la courbure conduit à la
démonstration.

i Voir aussi une Note parue dans les C. R., 209 (1939), p. 821-823.
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14. — Carl Merz (Coire). — Calotte polyédrique à connexion
multiple. — Soit un prisme droit, dont la base est un polygone régulier
de 2n côtés, surmonté d'une pyramide droite dont la base est égale à
celle du prisme. On mène les n surfaces diagonales déterminées par
deux arêtes opposées et appelées surfaces sécantes, ce qui partage la
pyramide en deux n pyramides partielles; on en ôte la moitié de telle
façon qu'une pyramide partielle soit toujours suivie et précédée d'un
vide volumétrique et vice-versa. Le corps ainsi formé, appelé calotte
polyédrique, est limité par les surfaces suivantes:

1° Les n surfaces sécantes, qui se coupent suivant une droite (la
hauteur de la pyramide primitive) dont l'ordre de multiplicité est
égal à n. C'est également le long de cette droite, qui n'est pas une
arête, que les n pyramides partielles se touchent; chaque surface
sécante se compose donc de deux demi-surfaces, qui se raccordent le

long de la droite de multiplicité n\
2° Les n surfaces latérales (faces) de la pyramide primitive, qui

joignent chacune deux demi-surfaces consécutives;
3° il surfaces appelées surfaces intermédiaires et situées chacune

entre deux pyramides partielles; ces surfaces appartiennent à la
surface commune de séparation du prisme et de la pyramide primitive;
par contre, les n surfaces des bases des pyramides partielles sont
supprimées; de cette façon, les n surfaces intermédiaires alternent
avec n vides superficiels;

4° Les 2n surfaces latérales du prisme;
5° La surface de base du prisme qui ferme la calotte.

Soient alors, comme d'habitude, F le nombre de faces, S le nombre
de sommets et A le nombre d'arêtes. Pour le corps ainsi formé, on a:

F 5TÎ. -f- 1 ; S — 47% -f- 2 ; A IOTÏ.

(Donc, comme il est dit plus haut, la droite de multiplicité n n'est
pas considérée comme arête.)

On obtient ainsi:
F + A — N 3 — n

où 7% est l'ordre de connexion de la surface.
D'après la théorie générale des polyèdres f on sait que, si le polyèdre

est à un seul côté, le nombre n peut être pair ou impair; et impair
seulement, si le polyèdre est à deux côtés.

Donc, pour n pair, la calotte polyédrique est à un seul côté; pour
n impair, elle pourrait être à un ou deux côtés. Or, il est facile de

montrer que, dans ce dernier cas, la surface est à deux côtés. Pour le

i Voir le traité de Max Brückner. Vielecke und Vielflache, p. 56, n° 54.
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voir, il suffît, par exemple, de reconstituer la calotte à partir de son
développement, qui est facile à obtenir. Pour n pair, on s'aperçoit que
le côté supérieur du développement se raccorde avec le côté inférieur
le long de la droite de multiplicité n. qui devient ainsi un changement

de côté ramification de degré n. Pour n impair, ce phénomène
ne se produit pas et la surface est à deux côtés.

Pour plus de détails, consulter ma Note dans la Vierteljahrsschrift
der Naturf. Gesellschaft in Zurich, t. 85, 1940, ainsi que mon ouvrage
Vielflache aus Scheitelzellen u. Hohlzellen, F. Schuler, édit., Coire, 1939.

15. — M. Diethelm (Rickenbach-Schwytz). —La notion de dérivée
dans Venseignement secondaire. — Considérations d'ordre didactique
sur la première initiation à la notion de dérivée envisagée sous ses
divers aspects géométrique, algébrique et physique.

MÉLANGES ET CORRESPONDANCE

A propos de mon article

« Sur quelques théorèmes géométriques de Charles Sturm »1.

1. — En relisant l'Ouvrage classique de Moritz Cantor 2 sur
Y Histoire des mathématiques, je constate que Matthew Stewart3 a publié
en 1746, sans démonstration, deux formules qui coïncident essentiellement

avec les théorèmes de L'Huillier et Sturm désignés dans mon
article par les lettres A et C.

En effet, ces formules expriment (avec les notations adoptées par
moi) :

a) La somme des puissances rnmes des distances d'un point fixe
aux côtés d'un ft-gone régulier pour m < n.

b) La somme des puissances des distances d'un point fixe
au sommet d'un ft-gone régulier pour m < n.

1 L'Ens. mathém., tome 37, p. 275-291, 1938.
2 Vorlesungen über Geschichte der Mathematik, t, III, p. 546 (2me édit., 1901).3 Les recherches de Stewart sont aussi mentionnées par Chasles, dans son Aperçuhistorique, p. 177-179, 2« édition, Paris, 1875. [Note de la Réd., H. F,]
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