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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications.

Réunion de Locarno, 29 et 30 septembre 1940.

La Société mathématique suisse a tenu sa vingt-huitiéme assemblée
annuelle & Locarno, les 29 et 30 septembre 1940, en méme temps que
la 120me session de la Société helvétique des Sciences naturelles. En
ouvrant la séance, le président, M. le Prof. L. KoLLros (Zurich), a
rappelé qu’en raison de la situation internationale et de la mobilisation
de l'armée suisse, la réunion qui devait avoir lieu & Locarno en
septembre 1939 a di étre supprimée, puis il a rendu hommage a la
mémoire des collegues décédés depuis la derniere séance.

Les communications, au nombre de 15, ont été réparties sur deux
séances.

La prochaine réunion aura lieu & Bdle les 7 et 8 septembre 1941.

1. — Mle S, Piccarp (Neuchéatel). — Sur les ensembles de dis-
tances. — Volci quelques propositions concernant les ensembles

de distances des ensembles de points d’un espace euclidien E™ (a un
norabre fini quelconque n de dimensions).

Proposition 1. — Quels que soient le nombre entier n > 1 et le
systeme ay, ay, ..., an(a; < ay < ... < a,) de nombres réels positifs,
I'ensemble {O, Ay, Qgy eeey an} est ’ensemble de distances d’un en-

semble de points, d’ordre n + 1, de espace EM™,

Proposition 2. — 1l existe un ensemble dénombrable de nombres
réels non négatifs comprenant O qui ne saurait étre ensemble de
distances d’'un ensemble de points d’un espace euclidien & un nombre
fini quelconque de dimensions.

Proposition 3. — Quel que soit le nombre entier n > 1, il existe un
systéme fini, d’ordre 2n, de nombres réels positifs a;, @, ..., agy, tel

que l'ensemble {O, ay, @y, ..., Ggn§ Dest Uensemble de distances
d’aucun ensemble de points de espace EM,
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Proposition 4. — Quel que soit le nombre entier n > 1 et <3, il
existe un systeme de n + 1 nombres réels positifs a,, a,, ..., anry, tel

que l'ensemble {O, Ay, Qg ..., anH} n’est I'ensemble de distances
d’aucun ensemble de points de I'espace EM.

Proposition 5. — Quel que soit 'ensemble infini A de points d’un
espace (M les ensembles A et D (A) ont la méme puissance.

Proposition 6. — La puissance de 'ensemble de tous les ensembles

de nombres réels non négatifs qui sont des ensembles de distances
No
d’ensembles de points d’un espace euclidien est 2

Proposition 7. — Soit n un nombre entier > 3, soit a¢; < a, < ...
< ap un systeme quelconque de nombres de la suite 1, 2, ..., n — 2

et soit A = {O, Ay, Uy, ooy Qg }n Iensemble des nombres réels non
négatifs qui, dans le systéme de numération a base n, peuvent s’expri-
mer au moyen des seuls chiffres 0, a,, a,, ..., ax . Les deux ensembles
et D (A) sont parfaits et si D (A) ne comprend pas tous les nombres
réels non négatifs, cet ensemble est de mesure (lebesguienne) nulle.

2. — André Mercier (Berne). — Sur le principe cosmologigue
d’ Einstein-Milne. — Cette communication a présenté tout d’abord
une comparaison entre 'axiomatique de la Théorie cinématique de
Milne et celle de la Relativité (Reichenbach, Carathéodory). La diffé-
rence essentielle réside dans le fait que Milne introduit un ensemble
de « particules-observateurs » susceptibles de convenir de la géométrie
qu’ils veulent, alors qu’en Relativité il est d’emblée question d’un
continuum de points et que la géométrie est prescrite. La Théorie
cinématique contient la Relativité restreinte sous la forme d’un cas
particulier se rapportant a ceux des observateurs qui se meuvent
avec des vitesses relatives constantes (mouvement relatif que 'on
peut définir). En ce point la Théorie cinématique se distingue de la
Relativité ou la Relativité restreinte apparait non pas comme un cas
particulier mais comme le cas-limite ou la gravitation est négligeable.
Cest le postulat d’équivalence des observateurs qui fait que la
Théorie cinématique contient la Relativité restreinte comme cas
particulier, ce qui donne a la propriété d’équivalence définie par Milne
beaucoup d’intérét. A coté de la propriété d’équivalence, on en définit
une seconde, qui est une espece d’équivalence encore plus restrictive
que la premiére. Pour appliquer la Théorie cinématique a la cosmo-
logie, il faut postuler que les galaxies ont & la fois les deux propriétés
d’équivalence: c’est le principe cosmologique d’Einstein-Milne.

Un premier intérét de la Théorie cinématique est qu’elle montre
qu’on peut fonder la Relativité restreinte autrement qu'on ne P'a fait
avant. Un second intérét est qu’elle montre qu’on peut expliquer le
déplacement des raies spectrales venant des galaxies lointaines par
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un effet Doppler dont 'origine est autre que celui imaginé dans la
théorie de I'expansion de Punivers. Mais la Théorie cinématique a
certains inconvénients en rapport avec la gravitation et les possibilités
expérimentales de la vérifier. (Ces questions se trouvent développées
dans un article paru dans les Help. Phys. Acta, XIII, 473, 1940.)

3. — Rud. FueTEer (Zurich). — La théorie des fonctions des équations
de Dirac. — A Paide du théoreme de Calcul intégral de Gauss dans
Iespace & quatre dimensions et en introduisant deux systémes appro-
priés de grandeurs hypercomplexes, on peut remplacer les équations
de Dirac par la condition que l'intégrale correspondante s’annule
lorsqu’on I'étend & une hypersurface fermée et bilatére quelconque,
dans l'intérieur de laquelle les fonctions et leurs dérivées sont partout
continues. Ce travail paraitra in extenso dans les Commentarie Mathe-
matict Helvetict.

4. — H. Hopr (Zurich). — Sur la topologie des groupes de Lie. —
On appelle espace homogéne d’un groupe de Lie G toute variété W
transformée en elle-méme d’une maniére transitive par G; si G est
clos, W TI'est aussi. La caractéristique eulérienne d’une variété close M
est, comme on sait, le nombre X (— 1)" a,, a, désignant le nombre
des cellules & r dimensions d’une décomposition polyédrale de M.

Tuktorkme 1. — La caractéristique d’un espace homogéne d'un groupe
de Lie clos est positive ou nulle.

Les transformations de G, qui laissent fixe un point O, forment
un sous-groupe de G, appelé le « groupe d’isotropie » (il ne dépend pas
essentiellement de O). Par le « rang » d’un groupe de Lie clos G, on
entend le nombre maximum de dimensions des sous-groupes abéliens
de G. Le théoréme I peut étre précisé comme suit:

TutoreME 11. — La caractéristique de W est positive ou nulle, selon
que le rang du groupe d’isotropie est égal ou inférieur & celui de G.

La démonstration est basée sur la considération de points fixes.

Les théorémes et les démonstrations sont dus & M. H. Samelson

et & lauteur. Un exposé complet paraitra prochainement dans un
autre recueil.

5. — G. pE Ruam (Lausanne). — Sur I’homéomorphie des rotations
de la sphére a n dimensions. — Deux rotations R, et R, de la sphére
a n dimensions S* sont dites homéomorphes, §’il existe une transfor-
mation topologique T de S” en elle-méme qui transforme R; en R,:
R, = TR; T-1. On sait que la condition nécessaire et suffisante pour
que R, puisse étre transformée en R, par ume rotation, c'est que R,

et Ry aient les mémes racines caractéristiques. Or cette condition est ausst

nécessaire et suffisante pour U'homéomorphie de R, et R,. Par des
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moyens élémentaires, on peut reconnaitre que deux rotations homéo-
morphes ont les mémes racines caractéristiques qui ne sont pas racines
de T'unité et, pour tout entier £, le méme nombre de racines caracté-
ristiques qui sont racines h-iemes de I'unité, et la démonstration de
la proposition générale ci-dessus est ramenée a sa démonstration dans
le cas ou les rotations R, et R, sont d’ordre fini (cas ou toutes leurs
racines caractéristiques sont des racines de 'unité). La démonstration
dans ce cas utilise des moyens difficiles. Un exposé complet sera publié
dans un autre recueil.

6. — Louis Kovrrros (Zurich). — Une propriété des variétés du
second ordre. — Cette propriété est une généralisation dans Pespace
a n dimensions du théoréme suivant que Steiner a énoncé sans dé-
monstration pour n = 2 (0. c., 11, p. 341): «Si 'on trace un cercle ¢
tangent a une conique en I'un de ses points P et orthogonal & son
cercle orthoptique, le diamétre de ¢ est égal au rayon de courbure de
la conique en P ».

Pour n = 3, elle s’énonce ainsi: « Le diametre de la sphéere tangente
a une quadrique Q en 'un quelconque de ses points P et orthogonale &
la sphére orthoptique de  est égal a la somme des deux rayons de
courbure principaux de la quadrique en P (donc aussi égal a la somme
des rayons de courbure des sections normales de () menées par deux
diametres conjugués quelconques de I'indicatrice de Q en P) ».

Dans le cas général, le diametre en question est la somme des
(n — 1) rayons de courbure principaux de 'hyperquadrique au point
considéré.

Cette propriété caractérise les variétés du second ordre: Si (pour
n = 2) on donne un cercle fixe ¢ dans le plan et si 'on cherche toutes
les courbes planes telles que — P étant un point quelconque de la
courbe, M le centre de courbure en P, et P’ le symétrique de M par
rapport a P — le cercle de diamétre PP’ soit orthogonal au cercle
donné ¢, on trouve une équation différentielle dont les intégrales sont
les équations des coniques dont ¢ est le cercle orthoptique. Cette
équation différentielle est particuliérement simple si 'on considére la
courbe comme enveloppe de la droite p = z cos u + y sin u; la
fonction p de u satisfait alors a I'équation pp”’ + p'2 + 2p? = r? qui
devient ¢’ 4+ 4t = 2r% par la substitution p? = .

Pour n = 3, on considére la surface comme enveloppe du plan

p=2xcosucosy + ysinucosy 4+ zsiny .

La fonction p de u et ¢ satisfait alors & une équation aux dérivées
partielles du second ordre qui, pour p? = t, prend la forme:

o 9 . / . 9
Lyp T S€C* 9 . 1., tgo.t, + 6= 2r".
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En particulier, si 72 = A + B + C, les intégrales de cette équation
représentées par les quadriques rapportées a leurs axes sont:

t = p2 = (A cos? u + B sin? u) cos? p 4+ Gsin? ¢ .

Les autres intégrales sont les équations tangentielles de ces mémes
quadriques aprés une rotation quelconque autour de leur centre.

(Voir Comm. Math. Hely., tome 13.)

7. — A. Ostrowskl (Bale). — Sur quelques transformations diffé-
rentielles dans Uespace @ trois dimensions. — Une transformation

E,-—— f(x, Y15 Yo, yla yz}a
Yllzgl(xv y17y27y17 y;)? 7)2:g2(xay1ay2,ylay2) ’

Y1, Yo 6tant des fonctions indéterminées de la variable z, est appelée
dn, - d1y
dt’ d&
au moyen des équations de la transformation donnée et celles qu’on en
dérive par différentiations et éliminations. Dans le cas d’une fonction
- dépendant d’une ou de plusieurs variables indépendantes, les trans-
formations réversibles définies d’une maniére analogue coincident avec
les transformations de contact. De autre coté, dans le cas considéré
icl, 1l s’agit d’une nouvelle classe de transformations différentielles.
L’auteur esquisse plusieurs méthodes pour déterminer toutes les
transformations de cette classe et pour en étudier les propriétés. Ces
recherches seront exposées en détaill dans un mémoire de 'auteur,
intitulé: Sur une classe de transformations différentielles dans ['espace
& trois dimenstons, qui paraitra dans les Commentarii Mathematict
Helpetict.

réversible s1 'on peut exprimer x, y,(z), ¥, (%) par &, 0, 1,

8. — R. WAVRE (Genéve). — Sur le mouvement avec frottement de
n sphéres concentriques et le passage d la limite. — Le géologue francais
Marcel Bertrand a émis, autrefois, ’hypothése que la Terre est formée
d’un noyau et d’une écorce animés chacun d’un mouvement propre.
Dans une recherche antérieure j’avais exprimé ce que serait le mou-
vement des deux axes instantanés de rotation. Nous considérerons
icl le cas de n couches sphériques homogénes, puis d’une infinité de’
couches infiniment minces. Il n’y a, je tiens & le dire, aucune difficulté
mathématique spéciale dans la résolution de ce probleme, il pourrait
étre posé comme sujet d’un travail écrit d’une cinquantaine de pages
a tout étudiant avancé qui possederait des éléments solides d’algébre
et d’analyse. Je le recommande méme a ce titre.

Le frottement sera supposé proportionnel a la vitesse relative. La
somme des moments des forces de frottement est dirigée suivant le




338 SOCIETE MATHEMATIQUE SUISSE

vecteur rotation instantanée relative des deux couches consécutives.
Les équations régissant les rotations sont

5 1
ki (g — a7 ) r Ziq Py —p) +ailpi,—p) 5 (1)

k; est une constante, z; le rayon de la i — 1*® couche de séparation
- ,
et p; la rotation de la ¢*™ couche. Ce systéme peut donc s'écrire:

dp;

L

T %, i P T4 i Pyt @ 0 Py 2)

Considérons le déterminant

r+a; @i i41 0
a. - r+ a : a; ; 0
Ai (,) — 14+1,1 141, 1+1 1+1, 142 (3)
0 Bite, ity
r + an’ n

et I’équation caractéristique A, (r) = 0 du systéme (2). La solution
donnant le mouvement des axes sera

n
Ai+1(rk) rpt
p. =1 ¢, ———— € ) ([_I:)
l kgi A (0)

les r; étant les racines toutes négatives, sauf r;, = 0, de I'équation
caractéristique. On peut aussl se passer des déterminants comme on
le fait de plus en plus sous 'inspiration du calcul matriciel et écrire le
systeme sous la forme

dp
dr =P (5)

et sa solution
p=c¢%py ; (6)

a, p désignant ici des matrices, p, étant la distribution initiale des
vitesses de rotation. Cette résolution par le calcul matriciel consti-
tuerait la voie pour les cas d’une infinité dénombrable de couches.

Si, maintenant, on suppose les couches infiniment minces I'équa-
tion (1) devient une équation aux dérivées partielles

op  0%p 4 Op




CONFERENCES ET COMMUNICATIONS 339

voisine de celles qui se présentent dans différents prf)blémes c‘las-
siques du type hyperbolique: refroidissement de la sphére, probleme
de 'armille,...

Si le corps est tout entier homogene, £ est constant; on peut l(?
supposer égal & I'unité. L'intégration de (7)'se fait al(_)rs sans dlfﬁc}llte
par séparation des variables et conduit & I'introduction des fonctions
de Bessel J,(z):

) 3
3 s
ple, t) = 2 LT 2 I, (n,x)e e (8)
k=1 2
L’on a
© 3
0 Y 52
SE=— Dlanz T, ya) e
k=1 2

. . . op
et Pon doit avoir sur la surface extérieure (x = R), qui est libre, 3 = 0

quel que soit ¢ (condition & la limite). Les valeurs propres A, sont donc
les racines en nombre infini de I'équation

Iy R) =0 .
2

Quant aux constantes cx, elles seront déterminées par les données
initiales p (z, 0) = f(z), comme des coefficients de Fourier.

On peut aussi se donner le mouvement de la surface extérieure,
condition aux limites, p (R, ¢) = o (¢), et résoudre par les procédés
classiques.

Enfin, dans le cas d’une surface extérieure libre, mais d’'un champ
de forces extérieures agissant sur chaque sphere, on est conduit aux
systémes (2) ou (b) avec seconds membres ou apres le passage a la
limite & une équation de la forme

équations résolubles encore par des procédés classiques. Ce qu’il faut
remarquer, croyons-nous, dans le passage a la limite, ¢’est la persis-
tance du spectre discret a I’exclusion d’un spectre continu et le fait
que (8) est limite de (4), les fonctions de Bessel apparaissant comme
limites d’expressions algébriques.

Deux mots encore sur les applications aux figures planétaires. Les
équations de Navier de I'hydrodynamique des fluides visqueux
supposent précisément un frottement proportionnel a la vitesse
relative. Pour des vitesses faibles, astre quasi sphérique, les calculs
précédents peuvent avoir une forte valeur analogique. Pour ce qui est
de la terre supposée fluide, mais visqueuse, le mouvement de préces-
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sion des équinoxes, créé par le moment des forces d’attraction lani-
solaire, ne serait pas, dans cette hypothese, suivi par toutes les
couches en méme temps, il y aurait des courants intratelluriques
comme ceux dont parlait M. Dive il y a quelques années. La recherche
actuelle aurait encore une valeur analogique quoique plus lointaine.

9. — Ambrogio Lonca1 (Lugano). — Sur les involutions elliptiques
appartenant & une courbe elliptique. — 1.’ auteur expose quelques-unes
de ses recherches de géométrie sur les courbes elliptiques, établissant
entre autres les théoremes suivants.

Etant donnée une courbe € de genre p = 1 et de module général :

a) La condition nécessaire et suffisante pour I'équivalence biration-
nelle de deux involutions elliptiques vy, y, appartenant a €, c'est que,

A étant le plus petit commun multiple de leurs ordres o et B, on ait
A:a =02 et A: B =62 avec o et o enliers, et que les groupes des

| , avec p el o entiers, el que les g
potnis p-uples de toutes les séries linéaires g°* composées (sur €) avec
Y., @inst que les groupes des points c-uples des 85, composées avec Y
constituent une méme involution v ;

b) Les involutions elliptiques, primitives ou non, d’'un ordre donné n,
qui existent sur &, sont en nombre égal a la somme de tous les diviseurs
de n;

?

c) La condition nécessaire et suffisante pour qu’il existe sur € un
r-uple d’involutions elliptiques birationnellement identiques et d’ordres
assignés ny, Ng, ..., Dy, c'est que les quotients n;: 6 1 = 1, 2, 3, ..., 1)
sotent des carrés de nombres entiers, 8 désignant le plus grand commun
diviseur des ordres eux-mémes. Cette condition étant satisfaite, le
nombre de tels v-uples d’involutions est égal @ la somme de tous les divi-
seurs de 3.

Un cas trés particulier du théoréme a), pour § = 1, est fourni par
un autre théoreme de Torelli 1; le théoreme b) constitue, d’autre part,
un complément notable & un résultat de Castelnuovo 2 sur I'énumé-
ration des involutions elliptiques primitives, d’'un ordre dooné,
appartenant a €.

Le travail complet sera publié dans les Mémoires de la R. Acca-
demia d’Italia.

10. — M. Gur (Zurich). — Moyennes de séries de Dirichlet. —
Puisque les nombres d’un corps de nombres algébriques ¢ de degré
infini forment un ensemble dénombrable on peut toujours trouver

1 R. TorEeLLI, Sulle superficie algebriche contenenti due fasci ellittici di curve (Rendi-
conti della R. Acc. dei Lincei, 211 (5), 1912, p. 457).

2 G. CASTELNUOVO, Geometria sulle curve ellittiche (Atti della R. Acc. di Torino, 24,
1888, p. 13).
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une suite infinie de corps de nombres algébriques de degré ﬁni.cl,
Coy v Ciy Cit1, .. bels que pour tout i = 1 le corps ¢;y, s0it une extension
effective de ¢; et lim ¢; = ¢. Dans la suite ¢ désignera plus spéciale-
1=00
ment un corps de degré infini qui peut étre engendré de la maniere
suivante: On numérote tous les nombres premiers rationnels dans
un ordre quelconque et soit p; le j-iéme nombre de cette suite. On
choisit ¢, arbitrairement, mais pour tout : =1 le corps c;1, tel que
tous les idéaux premiers de ¢; qui divisent un nombre premier p = p;
se décomposent compléetement dans ¢;1.. Soit n; le degré de ¢; et
Ci(s) la fonction zéta de Dedekind de ¢;. Dans un article de la Furi-
wingler-Festschrift (Monatshefte fiir Math. und Physik, vol. 48,
p. 153, 1939) j’avais démontré que sous ces hypotheéses, si R (s) > 1,

n

la suite des fonctions 'C/ Zi(s), ou pour s réel on prend la détermination
positive de la racine, converge vers une fonction analytique limite Z (s)
qui ne s’annule pas pour toute valeur de s pour laquelle R (s) > 1.
Soit ¢ un nombre premier fixe, en particulier 'ensemble de tous les
corps absolument cycliques de degré ¢ engendre un tel corps c¢. Dans
ce cas 'on peut facilement indiquer explicitement la fonction limite
Z,(s) en tenant compte de la décomposition des nombres premiers
rationnels en idéaux premiers de c.

Puisque Z,(s) n’est essentiellement autre chose que la limite de la
moyenne géométrique de toutes les séries L. du corps des nombres
rationnels dont le caractére a la propriété que sa g-iéme puissance est
égale 4 1 ou & 0 pour tout nombre entier rationnel et positif comme
argument, le probléme se pose tout de suite de calculer cette moyenne
sans qu’on utilise la théorie des corps de nombres algébriques de degré
infini. Dans un article de la Fueter-Festschrift (Vierteljahrsschrift der
Naturf. Ges. in Zurich, vol. 85, p. 214, 1940), j’ai démontré que, dans
le cas ¢ = 2, en appliquant seulement la théorie des corps de nombres
quadratiques ordinaire on peut déterminer la limite de suites par-
tielles convenables non seulement de la moyenne géométrique mais
aussi de la moyenne arithmétique et de la moyenne harmonique de
toutes les séries L en se basant sur un lemme trés simple. Ce lemme
permet en outre de calculer de pareilles moyennes pour de tels types
de séries de Dirichlet & caractére réel tels ils ont été considérés dans
des cas particuliers par Euler et Cesaro.

11. — J.-J. Burckuarot (Zurich). — Démonstration géométrique
d'un théoréeme de Minkowski concernant les polyédres convexes. —
L’auteur parle d’une démonstration géométrique du théoréme de
Minkowski d’apres lequel un polyedre convexe JK, formé par la juxta-
position (sans lacunes et sans empittement) de polyédres ayant un
centre, les polyédres élémentaires, a lui-méme un centre. Voir le
travail paru dans la Fueter-Festschrift (Beiblatt zur Vierteljahrsschrift



342 SOCIETE MATHEMATIQUE SUISSE

der Naturforschenden Gesellschaft in Ziirich, No. 32, Jahrg. 85, 1940,
pp. 149-154). La démonstration comprend deux parties.

10 Les faces du polyédre JU se répartissent en couples, F et F, de
faces congruentes dont les cotés homologues sont paralléles. Pour
démontrer ce fait, on se sert d’un processus de symétrisation, qui

fournit des subdivisions de F et F en polygones ¢ et ¢, de maniére

que chaque polygone ¢ soit équipollent & un .

Si les ¢ ne peuvent étre juxtaposés que d'une seule maniére, de
facon a fournir un polygone convexe, il en est de méme des ¢, et
I'assertion est établie. S’il n’en est pas ainsi, il faut modifier les sub-

divisions de F et F d’une maniére convenable; quelques cas excep-
tionnels doivent étre discutés a part.

20 Pour prouver que JU a un centre, supposons que la face F de J<
n’est pas limitée par des couples de cotés égaux. Soit k; un tel coté
de F. En projetant JU dans la direction de %, sur un plan, on obtient un
polygone convexe P. De la convexité de P, on déduit que, si JL ne
possédait pas de centre, on aurait sur JX un nombre pair de cOtés
ko, kg, ... équipollents & %k,. En supposant qu’aucun des cdtés k; ni
aucune de leurs images ne soit en méme temps coté de deux polyedres
élémentaires, on prouve facilement qu’il n'y a sur K qu'une seule
image de %;. Il est par suite impossible qu’il y ait sur JU un nombre
pair de cotés équipollents a %;. Si les hypothéses faites sur les %; ne
sont pas remplies, on peut en général modifier les polyedres élémen-
taires de maniére & y satisfaire. Quelques cas exceptionnels doivent
de nouveau étre considérés a part. Cette seconde partie de la démons-
tration vient combler une lacune qui se trouve dans notre exposé
dans la Fueter-Festschrift.

12. — Pierre HuMBERT. — Réduction des formes quadratiques indé-
fintes dans un corps algébrigue fini. — Les résultats démontrés par
M. Siegel dans son mémoire intitulé: « Einheiten quadratischer For-
men ! » s’étendent en prenant pour domaine de rationalité un corps
algébrique fini K. On démontre qu’il existe seulement un nombre fini
de classes de formes quadratiques & coefficients entiers dans K et dont
la norme du déterminant est donnée. Dans le cas ou K est totalement
réel, une forme quadratique dans K, dont les conjuguées ne sont pas
toutes définies positives, posséde une infinité d’unités, c’est-a-dire de
substitutions & coefficients entiers dans K, de déterminant unité,
laissant cette forme Invariante.

1 Abhandlungen aus dem mathematischen Seminar der hansischen Universitdt, Bd. 13,
3/4 (1940).
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13. — Félix FiaLa. — Sur les surfaces ouvertes & courbure posttive.
(Note présentée par M. H. Hopf.) — Nous allons indiquer, en atten-
dant un exposé plus complet 1, comment nous avons pu généraliser
Iinégalité tsopérimétrique du plan euclidien

12>4mA (1)

ou L désigne la longueur d’une courbe fermée & et A I'aire comprise
a I'intérieur de &. Pour les surfaces analyiiques ouvertes & courbure non
négative (par exemple paraboloide elliptique) nous avons pu établir
la formule

L222A§kds , (2)

ou (kds représente Pintégrale de la courbure géodésique % le long

de ¥, 1’égalité n’a lieu que si la surface est un plan euclidien et la
courbe J un cercle.

En tenant compte du signe de la courbure et en désignant par G
Pintégrale de cette courbure étendue a toute la surface, on obtient

L2 > 2A (2n — C) . (3)

Nous avons réussi & montrer que cette formule ne peut pas étre
améliorée en général; dans ce but nous avons introduit la notion
de vrai cercle, défini comme le lieu des points dont la plus courte
distance & un point fixe est constante.

(C’est sur une généralisation de la notion de vrai cercle que repose
la démonstration de la formule (2): nous avons défini la vraie paralléle
a distance p de la courbe & comme le lieu des points dont la plus
courte distance a la courbe & est égale & p (p est compté positivement
vers l'extérieur de &, négativement vers Dlintérieur). L’étude des
vrales paralleles est naturellement basée sur une connaissance appro-
fondie de la famille des lignes géodésiques normales & la courbe .
Soit L (p) la longueur de la vraie parallele & distance p de &. Nous
avons montré que L (p) est une fonction continue de p et dérivable
sauf éventuellement pour une suite divergente de valeurs de p.
L’aire A s’exprime alors comme

i
JLipiap

D

ou p est une constante négative dépendant de &. Une inégalité pour
la dérivée de L (p) provenant du signe de la courbure conduit a la
démonstration.

1 Voir aussi une Note parue dans les C. R., 209 (1939), p. 821-823.
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14. — Carl MEerz (Coire). — Calotte polyédrique & connexion mul-
tiple. — Soit un prisme droit, dont la base est un polygone régulier
de 2n cotés, surmonté d’une pyramide droite dont la base est égale &
celle du prisme. On mene les n surfaces diagonales déterminées par
deux arétes opposées et appelées surfaces sécantes, ce qui partage la
pyramide en deux n pyramides partielles; on en dte la moitié de telle
facon qu'une pyramide partielle soit toujours suivie et précédée d’un
vide volumétrique et vice-versa. Lie corps ainsi formé, appelé calotte
polyédrique, est limité par les surfaces suivantes:

10 Les n surfaces sécantes, qui se coupent suivant une droite (la
hauteur de la pyramide primitive) dont l'ordre de multiplicité est
égal a n. Cest également le long de cette droite, qui n’est pas une
artte, que les n pyramides partielles se touchent; chaque surface
sécante se compose donc de deux demi-surfaces, qui se raccordent le
long de la droite de multiplicité n;

20 Les n surfaces latérales (faces) de la pyramide primitive, qui
joignent chacune deux demi-surfaces consécutives;

3° n surfaces appelées surfaces intermédiaires et situées chacune
entre deux pyramides partielles; ces surfaces appartiennent a la
surface commune de séparation du prisme et de la pyramide primitive;
par contre, les n surfaces des bases des pyramides partielles sont
supprimées; de cette facon, les n surfaces intermédiaires alternent
avec n vides superficiels;

40 Les 2n surfaces latérales du prisme;
50 La surface de base du prisme qui ferme la calotte.

Soient alors, comme d’habitude, F le nombre de faces, S le nombre
de sommets et A le nombre d’arétes. Pour le corps ainsi formé, on a:

F=5n+1; S = 4n 4 2 ; A =10n .

(Done, comme il est dit plus haut, la droite de multiplicité n n’est
pas considérée comme areéte.)
On obtient ainsi:
F+A—N=3—n,

ou n est ordre de connexion de la surface.

D’apres la théorie générale des polvedres 1, on sait que, sile polyedre
est & un seul coté, le nombre n peut étre pair ou impair; et impair
seulement, si le polyédre est & deux cotés.

Done, pour n pair, la calotte polyédrique est & un seul coté; pour
n impair, elle pourrait étre a un ou deux cotés. Or, il est facile de
montrer que, dans ce dernier cas, la surface est & deux cotés. Pour le

1 Voir le traité de Max BRUGKNER. Vielecke und Vielflache, p. 56, n° 54,
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voir, il suffit, par exemple, de reconstituer la calotte & partir de son
développement, qui est facile & obtenir. Pour » pair, on s’aper:gm}t que
le c6té supérieur du développement se raccorde avec le coté inférieur
le long de la droite de multiplicité n, qui devient ainsi un change-
ment de coté ramification de degré n. Pour n impair, ce phénomeéne
ne se produit pas et la surface est a deux cotés. _ .
Pour plus de détails, consulter ma Note dans la Vierteljahrsschrifs
der Naturf. Gesellschaft in Ziirich, t. 85, 1940, ainsi que mon ouvrage
Vielflache aus Scheitelzellen u. Hohlzellen, F. Schuler, édit., Coire, 1939.

15. — M. DierrELM (Rickenbach-Schwytz). — La notion de dérivée
dans Penseignement secondaire. — Considérations d’ordre didactique
sur la premiére initiation a la notion de dérivée envisagée sous ses
divers aspects géométrique, algébrique et physique.

MELANGES ET CORRESPONDANCE

A propos de mon article

« Sur quelques théorémes géométriques de Charles Sturm »1,

1. — En relisant 1’Ouvrage classique de Moritz CANTOR 2 sur
U Hustoire des mathématiques, je constate que Matthew Stewart3 a publié
en 1746, sans démonstration, deux formules qui coincident essentielle-
ment avec les théorémes de L’Huillier et Sturm désignés dans mon
article par les lettres A et C.

En effet, ces formules expriment (avec les notations adoptées par
moi):

a) La somme des puissances mmes des distances d’un point fixe
aux cotés d’un n-gone régulier pour m < n.

b) La somme des puissances 2mmes des distances d’un point fixe
au sommet d’un n-gone régulier pour m < n. |

L L’Ens. mathém., tome 37, p. 275-291, 1938.
2 Vorlesungen tiber Geschichte der Mathematik, t. II1, p. 546 (2me édit., 1901).
3 Les recherches de Stewart sont aussi mentionnées par CHASLES, dans son Apercu

historique, p. 177-179, 2¢ édition, Paris, 1875. [Note de la Reéd., H. F,]
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