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318 J. HIELMSLEV
V. — TRIGONOMETRIE.
35. — Nous appelons angle ortenté un systéme de deux droites

orientées, nommeées dans un ordre déterminé. Si les vecteurs

unité correspondants sont a et b, 'angle est désigné par (a, b).

Par extension naturelle des définitions élémentaires nous

définissons cosinus et sinus ainsi

cos (@, b) = ab , (1)
N
sin (@, b) = ab . (2)

Comme tout déplacement direct (rotation et translation) laisse

N
ab et a b invariables, 'on voit que les angles directement con-

gruents ont le méme cosinus et sinus.

La somme de deux angles (a, b) et (b, ¢) se définit par ’angle
(a, ¢). L’angle (a, a), (ou I'angle formé par deux droites paralléles
de méme orientation) est désigné aussi par 0 de sorte que

cos 0 =1, sin 0 = 0. On pose I'angle (b, a) =—(a, b)
puisque (b, a) + (a, b) = 0, et il en résulte que cos (— u)

N
= coS u, sin (— u) = — sin u. L’'on pose encore 'angle (a, a)

égal & R (ou traditionnellement 90°) ce qui entraine cos R = 0,
sin R = 1. L’angle (a, —a) est, par conséquent, égal a 2R
(ou 180°) et cos 2R = — 1, sin 2 R = 0.

D’ailleurs, par ceci, on n’a nullement introduit une méthode
générale pour mesurer les angles.

36. — Si 'on introduit les coordonnées dans les relations (1)
et (2) I'on a
cos (a, b) = a; b, + ay b,
sin (@, b) = a; by — agz by ,

d’ou résultent directement les relations

cos (u — ¢) = €0s u cos ¢ + sin w sin ¢ ,

sin (u — ¢) = sin w cos ¢ — €Os u sin ¢

qui fournissent toutes les formules habituelles goniométriques.
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37. — Pour un triangle quelconque ABC I'on a
BC + CA + AB = 0 (3)

et cette formule contient toute la trigonométrie.
Nous supposons que ABC détermine le sens rotatif positif
dans le plan, et désignons par a, b et ¢ les cotés du triangle —

c’est-a-dire les longueurs des vecteurs BC, CA, AB — et par «,
B, v les angles du trlangle o étant l’angle du vecteur AB au

vecteur AC B de BC a BA, v de CA a CB. Ceci posé 'on peut

déduire toutes les relations trigonométriques habituelles de (3).
AN

En multipliant par BC I'on obtient, en effet,

absin y = acsin 8
ou
b ¢
sin 8  sin vy’

en élevant (3) au carré aprés avoir isolé BC 'on obtient

a? = b%2 + ¢2—2bc. cos a .
VI. — LE PLAN ARITHMETIQUE.
38. — Les recherches précédentes ne visent immédiatement

que la géométrie du réseau quadrillé telle qu’elle se présente
dans un plan a dessiner au réseau millimétrique, limité par un
carré dont le coté est égal a mettons 50 cm. Chaque point est
déterminé par deux nombres, d’abord des nombres entiers,
ensuite — quand l'exigent les problémes & résoudre — des
nombres fractionnaires; ceux-ci sont ou bien appliqués directe-
ment a un réseau quadrillé plus fin ou bien remplacés par des
nombres approximatifs appropriés; en dernier lieu aussi quel-
ques nombres irrationnels interprétés de fagon correspondante.
Mais tous ces nombres sont limités, et — dans I’exemple présent
— situés entre 4+ 250 et — 250.

Les lignes droites sont représentées par des équations de pre-
mier degré. On trouve le point d’intersection de deux droites
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