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318 J. HJELMSLEV

V. — Trigonométrie.

35. — Nous appelons angle orienté un système de deux droites
orientées, nommées dans un ordre déterminé. Si les vecteurs
unité correspondants sont a et ô, l'angle est désigné par (a, b).
Par extension naturelle des définitions élémentaires nous
définissons cosinus et sinus ainsi

cos (a b) ab (1)

sin (a b) — ab (2)

Comme tout déplacement direct (rotation et translation) laisse
/\

ab ei ab invariables, l'on voit que les angles directement con-
gruents ont le même cosinus et sinus.

La somme de deux angles (a, b) et (6, c) se définit par l'angle
(a, c). L'angle (a, a), (ou l'angle formé par deux droites parallèles
de même orientation) est désigné aussi par 0 de sorte que
cos 0=1, sin 0 0. On pose l'angle (6, a) — (a, b)

puisque (è, a) -f (a, b) 0, et il en résulte que cos (— u)
/\

— cos k, sin (— u) — sin u. L'on pose encore l'angle (a, a)

égal à R (ou traditionnellement 90°) ce qui entraîne cos R 0,
sin R 1. L'angle (a, — a) est, par conséquent, égal à 2R
(ou 180°) et cos 2 R —-1, sin 2 R 0.

D'ailleurs, par ceci, on n'a nullement introduit une méthode
générale pour mesurer les angles.

36. — Si l'on introduit les coordonnées dans les relations (1)

et (2) l'on a
cos (a b) ax bx + a2b2

sin (a b) ax b2 — a2 bx

d'où résultent directement les relations

cos (u — c) cos u cos c + sin u sin c

sin (u — c) sin u cos c — cos u sin ç

qui fournissent toutes les formules habituelles goniométriques.
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37. — Pour un triangle quelconque ABC l'on a

BC + CÂ + AB 0 (3)

et cette formule contient toute la trigonométrie.
Nous supposons que ABC détermine le sens rotatif positif

dans le plan, et désignons par a, b et c les côtés du triangle

c'est-à-dire les longueurs des vecteurs BC, CA, AB et par a,

ß, y les angles du triangle, a étant l'angle du vecteur AB au

vecteur AC, ß de BC à BA, y de CA à CB. Ceci posé l'on peut
déduire toutes les relations trigonométriques habituelles de (3).

x\
En multipliant par BC l'on obtient, en effet,

ab sin y ac sin ß

OU
b

_ c

sin ß sin y

en élevant (3) au carré après avoir isolé BC l'on obtient

a2 b2 c2 — 2 be cos a

VI. — Le plan arithmétique.

38. — Les recherches précédentes ne visent immédiatement

que la géométrie du réseau quadrillé telle qu'elle se présente
dans un plan à dessiner au réseau millimétrique, limité par un
carré dont le côté est égal à mettons 50 cm. Chaque point est
déterminé par deux nombres, d'abord des nombres entiers,
ensuite — quand l'exigent les problèmes à résoudre — des

nombres fractionnaires; ceux-ci sont ou bien appliqués directement

à un réseau quadrillé plus fin ou bien remplacés par des

nombres approximatifs appropriés; en dernier lieu aussi quelques

nombres irrationnels interprétés de façon correspondante.
Mais tous ces nombres sont limités, et — dans l'exemple présent
— situés entre + 250 et — 250.

Les lignes droites sont représentées par des équations de
premier degré. On trouve le point d'intersection de deux droites
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