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IV. — Longueur et aire.

24. — Si deux vecteurs a et b ont le même carré, c'est-à-dire
si a a b à, ou comme on peut aussi l'écrire a2 «= à2, ils
satisfont aussi à la relation

a2 — b2 0 ou ^ (a + b) (a — b) 0

Il s'ensuit que les deux vecteurs a et b ont un axe de symétrie
\

qui passe par l'origine et le milieu -^(a + b) du segment entre

les extrémités des vecteurs. Les deux vecteurs sont donc égaux
(congruents).

S'il existe un nombre rationnel a(> 0), qui est égal à

vV + les deux vecteurs a et (oc, 0) seront congruents ; l'on
peut donc dire que le vecteur « a » a la longueur a. S'il n'existe

au contraire aucun nombre rationnel qui soit égal à VV + a*,
l'on fixe ce dernier nombre irrationnel comme longueur fictive
du vecteur a. Ceci est une façon de parler que nous avons déjà
introduite pour maintenir un algorithme destiné à fournir des

nombres-mesure corrects du vecteur a. Mais nous lui donnerons
maintenant une importance plus grande.

En effet, attribuons dans tous les cas au vecteur a la longueur
fictive Va* + aou Va2, ce qui revient à attribuer plus généralement

la longueur fictive V(a — à)2 au vecteur du point a au

point b du réseau quadrillé; par là nous n'obtenons pas seulement

un algorithme pratique pour déterminer des nombres-mesure;
cet algorithme attribue en outre à tous les segments entre les

nœuds du réseau des longueurs qui se prêtent aux mêmes calculs

que les simples longueurs d'une échelle, car
1° les segments congruents ont les mêmes longueurs;
2° lorsqu'un segment est divisé en deux parties, sa longueur

est égale à la somme des longueurs des parties.
Ceci se vérifie ainsi: le vecteur a se divise au point b Xa

(0 < X < 1) en deux vecteurs dont la longueur est Vx2 a2 \Va2
et V(1 — X)2a2 (1 — X) Va2, et la somme de ceux-ci est

justement Va2.
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25. — Le rapport ou le produit de deux vecteurs a et b qui se

trouvent sur la même droite est égal respectivement au rapport ou

au produit de leurs longueurs, précédé du signe Ar ou — suivant

que les vecteurs ont la même orientation ou Vorientation opposée ;
on le vérifie immédiatement lorsqu'on pose b X a.

26. — Si l'on désigne par ba le vecteur obtenu par projection
de b sur a, l'on a

a b a ba

En appliquant la relation précédente (25) au produit ci-dessus,
l'on voit que la longueur de ba, muni de signe en concordance avec

Vorientation de a, est égale à ^. Si a est un vecteur d'unité,

c'est-à-dire un vecteur dont le carré est égal à 1, la longueur
trouvée ci-dessus devient simplement ab.

27. — Si l'on multiplie un vecteur par un nombre positif X,

sa longueur sera aussi multipliée par X.

Si l'on multiplie tous les points d'une figure par X(> 0), l'on
obtient une nouvelle figure dont les distances seront X fois les
distances correspondantes de la figure primitive (figures homo-
thétiques de rapport X).

Dans deux triangles à côtés parallèles deux à deux, les

longueurs des côtés correspondants sont proportionnelles (cf. § 15,
application 5°).

28. — A un vecteur a dont la longueur est rationnelle

correspond un vecteur unité e -^= aux coordonnées frac-
Va2

tionnaires 7
0/1 - et —7

0,2 et de la même orientation1/2 2 1/2 2

y CL A Q> y Ci A Cir 1 2 r 1 2

que a. Mais lorsque la longueur est irrationnelle nous
calculerons aussi, pour plus de commodité, avec un vecteur unité
formel e ~= correspondant à a, et ayant les coordonnées

irrationnelles
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Tout vecteur qui se trouve sur la même ligne que a (ou parallèle

à a) peut dans tous les cas être représenté par Ae, où A exprime
la longueur du vecteur, muni de signe en concordance avec le

vecteur a.
Une ligne droite par le point p et parallèle au vecteur a peut

dans tous les cas s'exprimer au moyen du point variable

x p -j- \e

où le paramètre A donne la longueur de la distance de a à x,
muni de signe conformément à l'orientation du vecteur a\ en
d'autres termes A détermine les chiffres d'une échelle sur la ligne
avec p comme origine et e comme unité; e s'appelle le vecteur
d'orientation de la ligne ou le vecteur d'unité.

L'équation de la ligne est

/\
e (x — p) 0 ; (1)

/\
e s'appelle le vecteur normal de la ligne tandis que l'équation (1)
s'appelle la forme normale de l'équation de la ligne.

On obtient la distance de la ligne droite à un point y par
projection du vecteur y — p sur la normale de la ligne, et sa lon-

/\ /\
gueur calculée conformément à l'orientation de e (ou a) est donc
/\
e(y — p). C'est-à-dire, l'on obtient la distance en remplaçant x

par y dans le premier membre de (1).

Lorsqu'une ligne droite sans orientation est donnée par une
équation de la forme

b (x — p) — 0

on peut la mettre sous la forme normale en la divisant par

± Vb2, en choisissant ± comme vecteur normal.
Vb2

29. — Un cercle de centre a et de rayon p a pour équation

(x — a)2 p2

En un point quelconque p du cercle la tangente a la
représentation paramétrique

/\ /\
X p + l(p — a)

et l'équation
(x — p)(a — p) 0
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On peut écrire l'équation ordinaire du cercle ainsi

x2 + ax -f- a 0

où a est un vecteur, oc un scalaire ; le centre est — et le rayon

y i -- — a. Les points d'intersection avec la ligne x — Xe, où

e est un vecteur unité se déterminent par l'équation

X2 + \{ea) + oc 0 ;

Le produit des racines de cette équation est égal à oc qui
représente ainsi la puissance de l'origine par rapport au cercle.

On étudie très facilement toute autre question concernant la
géométrie du cercle au moyen de ces auxiliaires.

30. — Il existe deux sortes de déplacements qui laissent 0 fixe :

les rotations autour de 0 et les déplacements inverses autour
de 0.

\x
(0,1)

X

O do)

Fig. 5.

Une rotation autour de 0 (fig. 5) transporte le vecteur unité
(1,0) sur un autre vecteur unité e, et par là chaque vecteur
(X, 0) sur le vecteur Xe; en même temps le vecteur (0, 1) se

/\transporte sur e et chaque vecteur (0, (x) sur p, e. Elle transpor-
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tera donc un point quelconque x en un point correspondant x\
déterminé par la relation

/\x' x1 e + x2 e (1)

L'on peut écrire ceci facilement en coordonnées; si

/\
e ~ [ei > e%) 5

e e%, Cj)

il en résulte

X^ 6j X^ 62 X2

X„ — e2 Xi + ^2 •

Un déplacement inverse autour de 0 qui déplace (1, 0) sur e,
/\

déplace en même temps (0, 1) sur — e; il s'exprime donc par la
formule

/\x' xxe — x2 e (2)

Tout déplacement dans le plan se ramène à l'un des déplacements

(1) ou (2) combiné avec une translation. De l'équation (1)
découle la relation

/\ /\(x' — y')2 (x — y)2 x'y' xy x' y' xy

si x et y signifient deux points qui se transportent en x' et y' par
une rotation autour de l'origine. Les grandeurs {x — 2/)2, xy et
/\
xy sont donc invariables quelle que soit la rotation autour de 0.

De l'équation (2) découle de même que (x — y)2, et xy sont
/\

invariables, tandis que xy change de signe.
La longueur \/{x — y)2, est invariable quel que soit le déplacement.

31. — On peut représenter une similitude directe, formée par
une rotation autour de 0 et une multiplication, par la formule

/\x' xx a 4- x2 a

où a est le vecteur qui dans la similitude correspond au vecteur
/\

unité (1, 0) sur l'axe des x, tandis que a correspond au vecteur
unité (0, 1) sur l'axe des y.
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Une similitude inverse, où (1, 0) correspond à a et (0, 1) corres-
/\

pond à — a est représentée par la formule

/\x' — xx a — x2 a

Les longueurs des vecteurs correspondants ont dans les deux cas
le rapport constant V#2-

/\32. — Signification de ab.
/\ab ne change pas de valeur, lorsqu'on déplace l'extrémité de

l'un des vecteurs parallèlement à l'autre; l'on a

/\ /\a (b A- ~^a) a b

et
/\ /\ /\(a + X b) b — ab

Si l'on mène par ô, parallèle au vecteur a (fig. 6), une ligne

Fi5. 6.

qui coupe l'axe des y en gr, et par a, parallèle au vecteur g, une
ligne qui coupe l'axe des x en p, l'on obtient

/\ /\ /\ab — aq — pq
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Ce produit est l'aire du rectangle formé par p et q, et puisque

des réflexions élémentaires connues montrent que celui-ci est
égal au parallélogramme aq qui est lui-même égal au parallélogramme

ab, nous voyons que l'aire du parallélogramme formé
/\

par les deux vecteurs a et b s'exprime par ab; nous devons

cependant remarquer que ce nombre est muni du signe + ou —
suivant que le sens rotatif de a vers b est orienté du côté positif
ou du côté négatif.

/\
Nous fixons donc le nombre a b comme nombre-mesure du

parallélogramme formé par les deux vecteurs a et b, nommés dans
cet ordre. Au triangle qui a a et b pour côtés nous attribuons le

1 ^nombre-mesure a b.

33. — Afin de fixer des nombres-mesure pour les aires d'autres
figures nous considérons d'abord un triangle quelconque abc

(fig. 7); nous effectuons une
translation qui déplace a

sur l'origine de sorte que

Le nouveau triangle a

l'aire

/ <*>\z „/ _ -*6-a i /\ /\
2-{b — a){c- a)

1 /\ /\ /\
— (bc-^-ca-^-ab)

Fig. 7.

et nous fixons donc ceci

comme nombre-mesure pour l'aire du A abc. L'expression
s'interprète immédiatement comme la somme des trois triangles
0be, Oca, 0ab. La façon dont elle a été formée établit a priori
qu'elle est indépendante de la position de l'origine par rapport
au triangle et de toute translation du triangle.

34. — Pour Faire d'un polygone quelconque abcde il semble donc

naturel de fixer le nombre-mesure

1 /\ /\ /\ /\
— [cl b b c -f- c d -f- d 6 -f- 6 a)
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et l'on voit facilement que toute translation de la figure laisse

invariable cette expression.
Pour faire voir que tout déplacement direct laisse invariable ce

nombre-mesure — d'où il découle que les figures congruentes
auront les mêmes aires — il faut seulement démontrer encore

que toute rotation autour de 0 le laisse invariable. Mais ceci
résulte de ce qui précède car cette rotation laisse invariable tous

/\ /\
les termes ab, be. Les déplacements inverses font changer de

signe aux aires.
Nous vérifions

ultérieurement que le
nombre-mesure susdit
satisfait à la condition
suivante: si une figure
est divisée en deux
parties, la somme des

aires de celles-ci sera
égale à l'aire de la
figure entière. Ceci se

vérifie immédiatement,

car dans
l'expression (fig. 8):

Fig. S.

1 /\ /\ /\ l/\ /\ /\ /\ /\— (ab 6c+cr + rs + sf-j-u) Jr-^(rdJrdeJretJrts~lr s r)

l'on a

/\ /\ /\
c r -\- r d cd

/\ /\ /\
e t -f t a e a

car ceci exprime seulement que les « triangles » crd et eta ont
l'aire zéro; comme de plus

/\ /\ /\ /\rs + st + is + sr 0

la somme des deux parties devient justement égale à l'aire
entière

1 /\ /\ /> /\(a b+bc+cd + de + e a)

L'Enseignement mathém., 38me année, 1939 et 1940. 21
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