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306 J. HJELMSLEV

en effectuant une rotation de 90° du côté positif, QS aura la
même orientation que PR.

Pour que le quadrilatère PQRS devienne un carré, il faut que
les deux segments PR et QS aient le même milieu, c'est-à-dire

Q + S P + R

d'où l'on déduit grâce aux relations ci-dessus

/\ /\ /\ /\ /\/\/\/\C — B + A — D B — A + D — C ou D — G A — B

c'est-à-dire: le quadrilatère ABCD doit être un parallélogramme.

III. — Multiplication des vecteurs.

18. — On appelle produit de deux vecteurs le scalaire que Von
obtient en additionnant le produit des abscisses entre elles et le

produit des ordonnées entre elles.

Ecrivons :

a b ou ab aL b1 + a2 è2

Il en résulte que
ab ba

a(b -f c) — ab + ac

a. 0 0 a 0

/\ /\aa — 0 a X a 0

19. — De l'équation
/\a(b + \a) ab

il s'ensuit que le produit ab reste invariable lorsque l'extrémité
de l'un des vecteurs parcourt une droite perpendiculaire à

l'autre. Il en résulte en particulier que le produit ab est égal au

produit de Vun des vecteurs et la projection de Vautre vecteur sur
le premier.

a b 0 signifie donc que les deux vecteurs a et b sont

orthogonaux ou que l'un d'eux (ou les deux) est égal à zéro.
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/\ab — 0 signifie que a et b se trouvent sur la même ligne ou

sur des lignes parallèles.
Remarquons que

/\a b flj 62 —" ^2 ^1
bx b2

Au lieu du produit aa l'on écrit aussi a2 (carré de a), donc

2 2,2a a + a
1 2

De l'identité

A (B —-G) + B (G — A) + G (A — B) =0

l'on déduit que lorsque OA est orthogonal à BC et OB orthogonal

à CA, l'on a aussi OC orthogonal à AB, c'est-à-dire le
théorème que les trois hauteurs d'un triangle sont concourantes.

20. — L'on peut représenter une ligne droite menée par un
point donné a et parallèle au vecteur b à l'aide d'un point
variable x, exprimé par le paramètre X

x a + \b
ou par l'équation

/\(x — a) b 0

En particulier l'on a pour la ligne droite qui unit deux points
donnés a et à la représentation paramétrique

x a + \(b — a)

ou l'équation

/\(x — a) (b — a) 0

qui s'écrit aussi

/\ /\x(a— b) ab

21. — Deux vecteurs a et b sur la même droite ont un
rapport X. En les multipliant par le même vecteur c (qui ne leur est
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pas orthogonal) 1'on obtient deux scalaires qui ont aussi le

rapport X. Car
a "kb

entraîne
ac — k.bc

Lorsqu'il s'agit de deux vecteurs a et b sur la même droite
l'on peut donc écrire

ac
bc

ou: dans le rapport y l'on peut multiplier le numérateur et le

dénominateur par le même vecteur c.

22. — En voici une
application.

L'on entend par bi-
rapport (ABCD) de 4

A points sur une droite
(fig. 4) le nombre

(ABCD)
ÄC

:
BC

AD BD

G — A C —B
D — A ' D —B

Si l'on multiplie le
numérateur et dénominateur

du premier rap-/\
port par A, et le numérateur

et dénominateur
du deuxième rapport par
/\
B, l'on obtient :

Fig. 4.
(ABCD)

/\AG
/\AD

/\BG
/\BD

Cette expression ne change pas de valeur lorsqu'on multiplie A
par un scalaire quelconque X; non plus lorsqu'on multiplie B, C
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ou D par un scalaire quelconque. Mais cela signifie qu'elle reste

invariable lorsque les points A, B, C, D se déplacent d'une façon
absolument quelconque sur les 4 droites qui les réunissent à 0.
Il en résulte entre autre que toute ligne droite coupera les

4 lignes en 4 points de même bi-rapport.

23. — Comme exemple de calcul de vecteurs nous allons
résoudre le problème suivant:

Décomposer un vecteur c en deux autres aux orientations
connues a et è, naturellement non parallèles.

De l'équation
aa + ßb — c

/\ /\
nous obtenons, en multipliant respectivement par b et a,

/\ /\b c n a c
a — ' P Œ •

b a ab

ce qui est identique à la résolution connue des deux équations

a± a -f cx

a2 a + b2 ß c2

Si l'on introduit les solutions obtenues dans l'équation initiale,
l'on obtient l'identité

/\ /\ /\(a b) c — (a c)b — (b c)a ;

si l'on remplace c par c l'on a, en multipliant ensuite par un
vecteur quelconque d,

(a b) (c d) (ac) (bd) — (bc) (ad)

c'est-à-dire la formule bien connue pour le produit de deux
déterminants

I #2 1 Cl C2 ac ad
1 ^1 ^2

' k d2 bc bd

Il en résulte spécialement

(ab)* a* b2 — (ab)2

OU

(^fc)2 + (ab)2
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