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LA GÉOMÉTRIE SENSIBLE

(2me article) 1.

PAR

Johannes Hjelmsley (Copenhague).

LA GÉOMÉTRIE DU PLAN QUADRILLÉ

I. — Propriétés fondamentales du réseau quadrillé.

1. — Dans un réseau quadrillé limité par le rectangle OABC
l'on détermine chaque nœud P par les deux nombres entiers r et s

(coordonnées) qui indiquent le nombre d'unités contenues dans

R
r""

p

M
h,y)

O P2 ' A
Fig. 1.

les segments OP2 et PjP. L'on écrit P — (r, s). En particulier
O - (0, 0), B (a, b).

La diagonale OB traverse sur la figure quelques-uns des

nœuds intérieurs. Soit M (x, y) l'un d'entre eux. Les deux

1 Pour le premier article, voir L'Ens. math., t. 38, p. 7-26.
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lignes formant le nœud M divisent tout le rectangle en quatre
rectangles, un de chaque côté de la diagonale, et deux autres
traversés par celle-ci. Les deux premiers contiennent toujours le

même nombre de mailles du réseau ; car les deux grands triangles
que la diagonale produit en divisant tout le rectangle contiennent
le même nombre de mailles entières, et les petits triangles au-
dessus de la diagonale contiennent autant de mailles entières

que les petits triangles sous la diagonale. En soustrayant l'on
voit que les deux rectangles CM et MA qui ne sont pas traversés

par la diagonale contiennent exactement le même nombre de

mailles. Ajoutons à chacun de ces rectangles le rectangle OM et

nous obtenons
b

ay bx ou y ~x

2. — Soit P un nœud qui se trouve sous la diagonale, c'est-
à-dire dans le triangle OAB. Ses coordonnées #, y, satisferont
à l'inégalité

Pourquoi Tout d'abord il y a autant de mailles entières,
disons Zr, au-dessus et au-dessous de la diagonale ; ensuite,
puisque P se trouve au-dessous de la diagonale, il se trouve au
moins k + 1 mailles entières au-dessus de la ligne brisée OPB,
alors qu'il y en a k au plus au-dessous de celle-ci. Mais le
rectangle OP contient le même nombre de mailles de chaque côté
de la diagonale OP, et de même le rectangle PB contient le
même nombre de mailles de chaque côté de la diagonale PB.
En soustrayant l'on voit que le rectangle CP contient plus de
mailles que le rectangle PA, et en ajoutant le rectangle OP l'on
voit qu'il y a plus de mailles à gauche de la ligne verticale par P
qu'au-dessous de la ligne horizontale par P, c'est-à-dire

xb > ya ou y<aX '

ce qu'il fallait démontrer.
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Quant aux points (x, y) au-dessus de la diagonale, l'on établit
de la même façon que

b

y>-x.

3. — Imaginons le réseau quadrillé divisé en carrés plus fins
ldont le côté est — de l'unité primitive ; l'on pourra alors exprimer

les nouveaux nœuds par des coordonnées fractionnaires. Mais
l'on voit que le critère pour qu'un point (x, y) se trouve sur,
au-dessus ou au-dessous de la diagonale OB, reste toujours
respectivement

b b b
y —x y > —x a y < —x

(Jj CO Co

L'on dit alors que l'équation de la diagonale OB est y ~x.

Exemples. — Prenons a 87, b 37, et l'unité du réseau
1 cm; si nous cherchons l'ordonnée y au point sur OB dont
l'abscisse est x 27, nous obtenons

Si l'on ne veut calculer qu'en centimètres entiers, l'on sait
donc que l'ordonnée se trouve entre 11 et 12 cm. Si l'on calcule

en millimètres, l'on obtient

y mg

c'est-à-dire que y se trouve entre 114 et 115 mm.
Si x 40, l'unité du réseau étant toujours 1 cm, l'on a

y cm •

Nous trouvons ici, il est vrai, un nombre qui est plus grand

que 17. Mais -cm est peu de chose, si peu que cela existe à

peine sur le dessin, et en tout cas sans importance en ce qui
concerne beaucoup de mesurages. En calculant avec les mêmes

lnombres pour un réseau millimétrique l'on obtient y 17 —mm,



LA GÉOMÉTRIE SENSIBLE 297

et cette petite fraction sera sans aucune importance dans le

mesurage réel.
Les nombres que l'on obtient par de tels calculs peuvent donc

être plus fins que les grandeurs à mesurer. Mais naturellement
ils rendent quand même le service désiré, puisqu'ils fournissent

toujours les nombres inférieurs et supérieurs dont on a besoin.

L'on peut employer les nombres obtenus quelle que soit l'unité
du réseau, mais ils peuvent dans quelques cas se révéler trop
fins, de sorte qu'il faudra se servir de nombres plus grossiers^
ces derniers se déduisent immédiatement des premiers.

4. — Considérons maintenant un réseau quadrillé qui remplit
tout le plan à dessiner dont nous nous servons. Pour abréger
l'on appellera horizontales et verticales les deux rangées de

lignes. Deux lignes perpendiculaires au milieu du plan sont les

axes des coordonnées, la ligne horizontale est l'axe des la

ligne verticale l'axe des y, leur point d'intersection est l'origine.
L'on désigne chaque nœud par deux coordonnées x et y, de sorte

que x (l'abscisse) désigne le nombre d'unités qu'il faut parcourir
le long de l'axe des x, en partant de l'origine, pour arriver à la
ligne verticale qui traverse le point considéré, tandis que y
(l'ordonnée) désigne le nombre d'unités qu'il faut ensuite
parcourir le long de cette ligne verticale pour atteindre le point
lui-même. Il faut cependant remarquer ici que l'on munit ces
deux nombres de signes; pour l'abscisse + ou — selon que l'on
parcourt l'axe des x à droite ou à gauche, pour l'ordonnée +
ou — selon que l'on monte ou descend de l'axe des x pour
atteindre le point; on désigne le point même par (x, y).

Il y a ainsi une correspondance entre l'ensemble de nœuds
et tous les systèmes possibles de deux nombres entiers, positifs,
négatifs, ou zéro, situés dans les limites que trace le plan à

dessiner.

5. — Le réseau de nœuds peut se déplacer « sur lui-même »

le long de l'axe des x ou de l'axe des ?/, de sorte qu'un nœud se

déplace sur un autre. Une telle translation le long de l'axe des x
augmentera toutes les abscisses d'un même nombre (positif ou
négatif) tandis que les ordonnées resteront invariables. Le
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contraire se produit si la translation a lieu le long de l'axe des y.
Si l'on effectue une translation le long de l'axe des x et une translation

le long de l'axe des y l'une après l'autre, le déplacement
total correspondra à une simple translation qui déplace le point
(0, 0) sur un autre nœud quelconque (a, b). Cette translation
déplace un nœud quelconque (#, y) sur le nœud (x -f a, y + b),
de sorte que l'on peut exprimer la transformation comme suit:

[x, y) —* {x + a, y + b)

6. — Un réseau peut se déplacer sur lui-même d'autres façons.
On peut lui faire subir une rotation de 90° autour de l'origine,
de sorte que l'axe positif des x recouvre l'axe positif des y.
L'on voit alors que le point (x, y) se trouve en (—?/, x). L'on
peut aussi envisager une rotation du côté opposé, par laquelle
(x,y) — (y, — x).

Si l'on effectue, deux fois de suite, du côté positif une rotation
de 90° autour de l'origine, le point (xy y) se trouvera en (— x,
— y). L'on appelle ce déplacement une demi-rotation autour de

l'origine.
Enfin le réseau coïncide avec lui-même, grâce à une symétrie

par rapport à l'axe des £ ou à l'axe des y; l'une des coordonnées

change alors de signe, tandis que l'autre reste invariable.

7. — L'on constate maintenant que la ligne droite qui unit
(0, 0) à (a, 6), a et b étant positifs, et qui se prolonge de façon à

contenir aussi (— a, — è), a pour équation

Ceci veut dire que tous les nœuds (x, y) qui se trouvent sur cette

ligne satisfont à l'équation, tandis que les nœuds (x, y) au-dessus

et au-dessous de la ligne satisfont aux inégalités

b

y^~x

Ce que l'on voit directement à l'aide de 1 et 2. Au moyen d'une
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symétrie (un mirage) par rapport à l'axe des x l'on obtient une

ligne droite dont l'équation est
b

ce qui permet de constater que toutes les lignes obliques qui
unissent l'origine à d'autres nœuds peuvent être représentées

par l'équation
y oex ou a ^ 0

8. — L'on constate ensuite par une translation de (0, 0) sur
(/?, q) qu'une ligne droite qui traverse (p, q) et qui est parallèle
à la ligne y — a#, peut être représentée par l'équation

y — q a (x — p)

où a s'appelle la pente de la ligne.
Puisque le point (a, b) se déplace sur (— à, a) par une rotation

de 90° du côté positif, autour de l'origine, l'on constate que les

pentes de deux droites perpendiculaires peuvent s'exprimer par

-et —y, c'est-à-dire que le produit des pentes est égal à — 1.

9. — L'on joint à ces éléments préliminaires de la géométrie
analytique du réseau quadrillé des exemples variés, tels que
détermination de lignes droites par deux points, de lignes
perpendiculaires l'une sur l'autre, de lignes parallèles, du point
d'intersection de deux lignes, etc...

Mais tout notre domaine de travail n'est toujours que le
réseau quadrillé empirique dans le plan à dessiner, où les
coordonnées sont des nombres entiers, en introduisant cependant —
par une réduction de l'unité du réseau — les nombres fractionnaires

au fur et à mesure que les applications le nécessitent.

II. — Introduction des vecteurs.

10. — Nous travaillons toujours à l'aide du système de
coordonnées introduit dans le chapitre précédent. Pour abréger,
introduisons les notions suivantes:
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Le point « a » a pour coordonnées (cq, a2). La translation que

l'on obtient en déplaçant l'origine sur le point a se désigne aussi

par a. Elle a cet effet: les abscisses et ordonnées de tous les

points s'accroissent respectivement de a1 et a2.

Un vecteur a signifie un segment qui commence à l'origine
et finit au point a. On désigne ainsi le vecteur par la même lettre a

que son extrémité.
La lettre a sert donc de notation pour le point, la translation

ou le vecteur, suivant les circonstances. a1 et a2 désignent
de même les coordonnées du point, de la translation, ou du
vecteur.

11. — De deux vecteurs a (%, a2) et b — (bt1 è2), l'on dérive
un nouveau vecteur c que l'on appelle la somme de a et b. Ceci

signifie que l'on obtient la translation c en combinant les
translations a et b. Nous savons d'après ce qui précède que l'on
obtient les coordonnées de c, cx et c2, en additionnant les
coordonnées de a et b. L'on écrit

C CL b
y

ce qui signifie en coordonnées,

C1 ~ ai + C2 — a2 + ^2 '

Si les vecteurs a et b se trouvent sur deux lignes différentes, c

est diagonale de leur parallélogramme. S'ils se trouvent sur la
même ligne, l'on obtient la somme en plaçant l'un des vecteurs
en prolongation de l'autre (en avant ou en arrière suivant son
orientation).

Lorsqu'on additionne les vecteurs, les abscisses s'additionnent
entre elles et les ordonnées de même. L'ordre des vecteurs à

additionner est indifférent; de même lorsqu'il y en a plusieurs.
Un vecteur spécial est le vecteur zéro qui commence et finit

à l'origine. On le désigne par 0, ou (0, 0), ou simplement par 0;
la translation correspondante est nulle (immobilité).

On dit que deux vecteurs sont opposés lorsque leur somme est 0.

Les translations correspondantes se neutralisent alors
réciproquement. Au vecteur a (al7 a2) correspond le vecteur opposé
(— aii — $2)• On Ie désigne par (—• a).
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12. — A propos de l'addition des vecteurs l'on peut aussi parler
de soustraction, en établissant que

a— b c

doit signifier que
c b CL

On s'aperçoit tout de suite que la soustraction d'un vecteur
s'effectue par la soustraction de ses coordonnées, ou encore

que l'on soustrait un vecteur en additionnant le vecteur opposé.
Il s'ensuit aussi qu'en soustrayant un vecteur d'un autre
vecteur on obtient un vecteur dont la grandeur et l'orientation
s'expriment par le segment qui commence à l'extrémité du
premier vecteur et finit à l'extrémité du second. Cette façon
intelligible d'exprimer la soustraction a une grande importance.
Et pour pouvoir l'utiliser entièrement nous étendrons la
dénomination des vecteurs de telle sorte que nous parlerons du

vecteur AB d'un point quelconque A à un point quelconque B dans
le réseau, en désignant par cela le vecteur dont la grandeur et
l'orientation sont représentées par ce segment.

L'on écrit alors
ÂB B — A ;

l'on peut dire naturellement que cette dénomination conduit à

ce que l'on devrait écrire OA ou OB pour A et B, mais pour les
vecteurs dont l'origine est 0 nous maintiendrons la désignation
courte, c'est-à-dire par l'extrémité seule.

L'on a AB + BC + CA 0 ce qui exprime seulement que
les trois translations se neutralisent.

13. — D'après l'emploi habituel du nombre naturel m, m fois
le vecteur a doit désigner a + cl + + a (m fois).

Nous écrivons

ma a + a + + a [m fois) d'où ma {ma1, ma2)

D'après l'emploi habituel de la fraction, i a doit signifier le

L'Enseignement mathém., 38me année, 1939 et 1940. 20
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vecteur qui multiplié par q produit a, c'est-à-dire

1
— a

d'où

— a
0

De plus, d'après l'emploi habituel du nombre négatif (— m)y
(— m) a doit avoir la même signification que m (— a), c'est-à-
dire

L'on peut résumer ces règles en une seule: lorsque X est un
scalaire (nombre entier ou fractionnaire, positif ou négatif)
Xa doit signifier (Xal7 Xa2) : on multiplie un vecteur par un
scalaire X en multipliant ses coordonnées par X. On dit aussi

que l'on multiplie le point a par X. Si l'on multiplie tout un
système de nœuds par X, tous les vecteurs du système seront
multipliés par X. On dit que le nouveau système de nœuds est
homothétique du système initial dans le rapport X.

14. — Si l'on a deux vecteurs a et b qui satisfont à l'équation

l'on écrit aussi

ceci pour s'exprimer ainsi: le rapport entre b et a est égal à X,

mais on peut seulement employer cette façon de parler pour
exprimer une relation entre deux vecteurs quand ceux-ci se

trouvent sur la même droite ou sur des droites parallèles.
0 a signifie naturellement 0.

15. — A l'aide des coordonnées des vecteurs a et à, l'on
démontre tout de suite que

(— m) a — (— mal, — ma2)

b la

X[cl -f- b) — "Xd -f- Xb

et aussi
X(a — b) Xa — Xb
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L'on remarque de plus que

(X -J- pi) a =r: X<z -f- \xd et X(pi£t) =: pi(X<z) — (Xpt)

X et [x étant deux scalaires quelconques.

Applications. — 1° Trouver le milieu d'un segment dont les

extrémités sont a et b:

m a + ^-(b — a) ^ (a + b)

2° Partager en trois parties égales un segment a b. Les points
intermédiaires étant m et n l'on trouve

1 1
m a + - (b — a)-(2a +

n a+ (b— a)+ 2

On en déduit que le point j(a + b + c) se trouve sur les

trois médianes du triangle a b c et divise chacune d'elles dans
le rapport 1:2.

3° Partager le segment a b dans le rapport p : q.

P II \ pb + qa
X a H \— (b — a) —— •

p + i P + q

4° Tracer un vecteur qui commence en c et est égal à \ ab.

x — c + X(6 — a)

5° Des relations AÇ X. aè, BC X. èc, on déduit par addition

AC X ac. Il en résulte l'existence de triangles où les côtés

correspondants sont parallèles et les vecteurs correspondants sont
proportionnels.

16. — Vecteur ciré. — Vecteur orthogonal.

Nous définissons le vecteur ciré d'un vecteur a — (al7 a2) par
la relation

/\a (—a2, Oj) ;

/\
a est donc le vecteur que l'on obtient en faisant subir au

vecteur a, du côté positif, une rotation de 90° autour de l'origine.
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Un vecteur quelconque orthogonal à a (la) s'exprime alors

par
/\X a — (— Xa2 Xaj)

/\/\ /\ /\
-a — b.L'on remarque que a — a, et a —

Si l'on fait tourner le point a d'un angle droit autour du
point è, du côté positif, le nouveau point obtenu sera

b + a — b

Si l'on mène du point c le vecteur viré de aè, son extrémité
peut s'exprimer ainsi

/\c + Xè — a /\ /\ou c + \(b — a)

Si l'on construit un triangle rectangle isocèle abc (fig. 2)

du côté positif de aè, ab étant la base, l'on obtient

1 i /\ /\
c — — (a + b) + — (b — a)

17. — Nous employons ceci pour examiner la figure PQRS,

que l'on obtient en construisant sur les côtés du quadrilatère
ABCD comme hypoténuses des triangles rectangles isocèles

ABP, BGQ, CDR, [DAS orientés positivement (fig. 3). Nous
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trouvons alors:
1 1 /\ /^

P -(A + B) + - (B- A)

i i /\ /\
Q i (B 4- C) + - (G — ß)

A 4 /\ /\
R i(C + D) + — (D C)

1 I /\ /\
S |(D+ A) + "2 (A D) •

1 I /\ /\ /\ /\PR A (G + D — A - B) + A(D + A — B-C)
1 i /\ /\ /\ /\QS A p + A — B - G) + A (A + B — G — D)

Il en résulte
/\
QS PR

c'est-à-dire, les deux segments PR et QS sont égaux et orthogonaux
l'un sur Vautre. En même temps l'on obtient leur orientation;
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en effectuant une rotation de 90° du côté positif, QS aura la
même orientation que PR.

Pour que le quadrilatère PQRS devienne un carré, il faut que
les deux segments PR et QS aient le même milieu, c'est-à-dire

Q + S P + R

d'où l'on déduit grâce aux relations ci-dessus

/\ /\ /\ /\ /\/\/\/\C — B + A — D B — A + D — C ou D — G A — B

c'est-à-dire: le quadrilatère ABCD doit être un parallélogramme.

III. — Multiplication des vecteurs.

18. — On appelle produit de deux vecteurs le scalaire que Von
obtient en additionnant le produit des abscisses entre elles et le

produit des ordonnées entre elles.

Ecrivons :

a b ou ab aL b1 + a2 è2

Il en résulte que
ab ba

a(b -f c) — ab + ac

a. 0 0 a 0

/\ /\aa — 0 a X a 0

19. — De l'équation
/\a(b + \a) ab

il s'ensuit que le produit ab reste invariable lorsque l'extrémité
de l'un des vecteurs parcourt une droite perpendiculaire à

l'autre. Il en résulte en particulier que le produit ab est égal au

produit de Vun des vecteurs et la projection de Vautre vecteur sur
le premier.

a b 0 signifie donc que les deux vecteurs a et b sont

orthogonaux ou que l'un d'eux (ou les deux) est égal à zéro.
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/\ab — 0 signifie que a et b se trouvent sur la même ligne ou

sur des lignes parallèles.
Remarquons que

/\a b flj 62 —" ^2 ^1
bx b2

Au lieu du produit aa l'on écrit aussi a2 (carré de a), donc

2 2,2a a + a
1 2

De l'identité

A (B —-G) + B (G — A) + G (A — B) =0

l'on déduit que lorsque OA est orthogonal à BC et OB orthogonal

à CA, l'on a aussi OC orthogonal à AB, c'est-à-dire le
théorème que les trois hauteurs d'un triangle sont concourantes.

20. — L'on peut représenter une ligne droite menée par un
point donné a et parallèle au vecteur b à l'aide d'un point
variable x, exprimé par le paramètre X

x a + \b
ou par l'équation

/\(x — a) b 0

En particulier l'on a pour la ligne droite qui unit deux points
donnés a et à la représentation paramétrique

x a + \(b — a)

ou l'équation

/\(x — a) (b — a) 0

qui s'écrit aussi

/\ /\x(a— b) ab

21. — Deux vecteurs a et b sur la même droite ont un
rapport X. En les multipliant par le même vecteur c (qui ne leur est
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pas orthogonal) 1'on obtient deux scalaires qui ont aussi le

rapport X. Car
a "kb

entraîne
ac — k.bc

Lorsqu'il s'agit de deux vecteurs a et b sur la même droite
l'on peut donc écrire

ac
bc

ou: dans le rapport y l'on peut multiplier le numérateur et le

dénominateur par le même vecteur c.

22. — En voici une
application.

L'on entend par bi-
rapport (ABCD) de 4

A points sur une droite
(fig. 4) le nombre

(ABCD)
ÄC

:
BC

AD BD

G — A C —B
D — A ' D —B

Si l'on multiplie le
numérateur et dénominateur

du premier rap-/\
port par A, et le numérateur

et dénominateur
du deuxième rapport par
/\
B, l'on obtient :

Fig. 4.
(ABCD)

/\AG
/\AD

/\BG
/\BD

Cette expression ne change pas de valeur lorsqu'on multiplie A
par un scalaire quelconque X; non plus lorsqu'on multiplie B, C
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ou D par un scalaire quelconque. Mais cela signifie qu'elle reste

invariable lorsque les points A, B, C, D se déplacent d'une façon
absolument quelconque sur les 4 droites qui les réunissent à 0.
Il en résulte entre autre que toute ligne droite coupera les

4 lignes en 4 points de même bi-rapport.

23. — Comme exemple de calcul de vecteurs nous allons
résoudre le problème suivant:

Décomposer un vecteur c en deux autres aux orientations
connues a et è, naturellement non parallèles.

De l'équation
aa + ßb — c

/\ /\
nous obtenons, en multipliant respectivement par b et a,

/\ /\b c n a c
a — ' P Œ •

b a ab

ce qui est identique à la résolution connue des deux équations

a± a -f cx

a2 a + b2 ß c2

Si l'on introduit les solutions obtenues dans l'équation initiale,
l'on obtient l'identité

/\ /\ /\(a b) c — (a c)b — (b c)a ;

si l'on remplace c par c l'on a, en multipliant ensuite par un
vecteur quelconque d,

(a b) (c d) (ac) (bd) — (bc) (ad)

c'est-à-dire la formule bien connue pour le produit de deux
déterminants

I #2 1 Cl C2 ac ad
1 ^1 ^2

' k d2 bc bd

Il en résulte spécialement

(ab)* a* b2 — (ab)2

OU

(^fc)2 + (ab)2
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IV. — Longueur et aire.

24. — Si deux vecteurs a et b ont le même carré, c'est-à-dire
si a a b à, ou comme on peut aussi l'écrire a2 «= à2, ils
satisfont aussi à la relation

a2 — b2 0 ou ^ (a + b) (a — b) 0

Il s'ensuit que les deux vecteurs a et b ont un axe de symétrie
\

qui passe par l'origine et le milieu -^(a + b) du segment entre

les extrémités des vecteurs. Les deux vecteurs sont donc égaux
(congruents).

S'il existe un nombre rationnel a(> 0), qui est égal à

vV + les deux vecteurs a et (oc, 0) seront congruents ; l'on
peut donc dire que le vecteur « a » a la longueur a. S'il n'existe

au contraire aucun nombre rationnel qui soit égal à VV + a*,
l'on fixe ce dernier nombre irrationnel comme longueur fictive
du vecteur a. Ceci est une façon de parler que nous avons déjà
introduite pour maintenir un algorithme destiné à fournir des

nombres-mesure corrects du vecteur a. Mais nous lui donnerons
maintenant une importance plus grande.

En effet, attribuons dans tous les cas au vecteur a la longueur
fictive Va* + aou Va2, ce qui revient à attribuer plus généralement

la longueur fictive V(a — à)2 au vecteur du point a au

point b du réseau quadrillé; par là nous n'obtenons pas seulement

un algorithme pratique pour déterminer des nombres-mesure;
cet algorithme attribue en outre à tous les segments entre les

nœuds du réseau des longueurs qui se prêtent aux mêmes calculs

que les simples longueurs d'une échelle, car
1° les segments congruents ont les mêmes longueurs;
2° lorsqu'un segment est divisé en deux parties, sa longueur

est égale à la somme des longueurs des parties.
Ceci se vérifie ainsi: le vecteur a se divise au point b Xa

(0 < X < 1) en deux vecteurs dont la longueur est Vx2 a2 \Va2
et V(1 — X)2a2 (1 — X) Va2, et la somme de ceux-ci est

justement Va2.
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25. — Le rapport ou le produit de deux vecteurs a et b qui se

trouvent sur la même droite est égal respectivement au rapport ou

au produit de leurs longueurs, précédé du signe Ar ou — suivant

que les vecteurs ont la même orientation ou Vorientation opposée ;
on le vérifie immédiatement lorsqu'on pose b X a.

26. — Si l'on désigne par ba le vecteur obtenu par projection
de b sur a, l'on a

a b a ba

En appliquant la relation précédente (25) au produit ci-dessus,
l'on voit que la longueur de ba, muni de signe en concordance avec

Vorientation de a, est égale à ^. Si a est un vecteur d'unité,

c'est-à-dire un vecteur dont le carré est égal à 1, la longueur
trouvée ci-dessus devient simplement ab.

27. — Si l'on multiplie un vecteur par un nombre positif X,

sa longueur sera aussi multipliée par X.

Si l'on multiplie tous les points d'une figure par X(> 0), l'on
obtient une nouvelle figure dont les distances seront X fois les
distances correspondantes de la figure primitive (figures homo-
thétiques de rapport X).

Dans deux triangles à côtés parallèles deux à deux, les

longueurs des côtés correspondants sont proportionnelles (cf. § 15,
application 5°).

28. — A un vecteur a dont la longueur est rationnelle

correspond un vecteur unité e -^= aux coordonnées frac-
Va2

tionnaires 7
0/1 - et —7

0,2 et de la même orientation1/2 2 1/2 2

y CL A Q> y Ci A Cir 1 2 r 1 2

que a. Mais lorsque la longueur est irrationnelle nous
calculerons aussi, pour plus de commodité, avec un vecteur unité
formel e ~= correspondant à a, et ayant les coordonnées

irrationnelles
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Tout vecteur qui se trouve sur la même ligne que a (ou parallèle

à a) peut dans tous les cas être représenté par Ae, où A exprime
la longueur du vecteur, muni de signe en concordance avec le

vecteur a.
Une ligne droite par le point p et parallèle au vecteur a peut

dans tous les cas s'exprimer au moyen du point variable

x p -j- \e

où le paramètre A donne la longueur de la distance de a à x,
muni de signe conformément à l'orientation du vecteur a\ en
d'autres termes A détermine les chiffres d'une échelle sur la ligne
avec p comme origine et e comme unité; e s'appelle le vecteur
d'orientation de la ligne ou le vecteur d'unité.

L'équation de la ligne est

/\
e (x — p) 0 ; (1)

/\
e s'appelle le vecteur normal de la ligne tandis que l'équation (1)
s'appelle la forme normale de l'équation de la ligne.

On obtient la distance de la ligne droite à un point y par
projection du vecteur y — p sur la normale de la ligne, et sa lon-

/\ /\
gueur calculée conformément à l'orientation de e (ou a) est donc
/\
e(y — p). C'est-à-dire, l'on obtient la distance en remplaçant x

par y dans le premier membre de (1).

Lorsqu'une ligne droite sans orientation est donnée par une
équation de la forme

b (x — p) — 0

on peut la mettre sous la forme normale en la divisant par

± Vb2, en choisissant ± comme vecteur normal.
Vb2

29. — Un cercle de centre a et de rayon p a pour équation

(x — a)2 p2

En un point quelconque p du cercle la tangente a la
représentation paramétrique

/\ /\
X p + l(p — a)

et l'équation
(x — p)(a — p) 0
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On peut écrire l'équation ordinaire du cercle ainsi

x2 + ax -f- a 0

où a est un vecteur, oc un scalaire ; le centre est — et le rayon

y i -- — a. Les points d'intersection avec la ligne x — Xe, où

e est un vecteur unité se déterminent par l'équation

X2 + \{ea) + oc 0 ;

Le produit des racines de cette équation est égal à oc qui
représente ainsi la puissance de l'origine par rapport au cercle.

On étudie très facilement toute autre question concernant la
géométrie du cercle au moyen de ces auxiliaires.

30. — Il existe deux sortes de déplacements qui laissent 0 fixe :

les rotations autour de 0 et les déplacements inverses autour
de 0.

\x
(0,1)

X

O do)

Fig. 5.

Une rotation autour de 0 (fig. 5) transporte le vecteur unité
(1,0) sur un autre vecteur unité e, et par là chaque vecteur
(X, 0) sur le vecteur Xe; en même temps le vecteur (0, 1) se

/\transporte sur e et chaque vecteur (0, (x) sur p, e. Elle transpor-
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tera donc un point quelconque x en un point correspondant x\
déterminé par la relation

/\x' x1 e + x2 e (1)

L'on peut écrire ceci facilement en coordonnées; si

/\
e ~ [ei > e%) 5

e e%, Cj)

il en résulte

X^ 6j X^ 62 X2

X„ — e2 Xi + ^2 •

Un déplacement inverse autour de 0 qui déplace (1, 0) sur e,
/\

déplace en même temps (0, 1) sur — e; il s'exprime donc par la
formule

/\x' xxe — x2 e (2)

Tout déplacement dans le plan se ramène à l'un des déplacements

(1) ou (2) combiné avec une translation. De l'équation (1)
découle la relation

/\ /\(x' — y')2 (x — y)2 x'y' xy x' y' xy

si x et y signifient deux points qui se transportent en x' et y' par
une rotation autour de l'origine. Les grandeurs {x — 2/)2, xy et
/\
xy sont donc invariables quelle que soit la rotation autour de 0.

De l'équation (2) découle de même que (x — y)2, et xy sont
/\

invariables, tandis que xy change de signe.
La longueur \/{x — y)2, est invariable quel que soit le déplacement.

31. — On peut représenter une similitude directe, formée par
une rotation autour de 0 et une multiplication, par la formule

/\x' xx a 4- x2 a

où a est le vecteur qui dans la similitude correspond au vecteur
/\

unité (1, 0) sur l'axe des x, tandis que a correspond au vecteur
unité (0, 1) sur l'axe des y.
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Une similitude inverse, où (1, 0) correspond à a et (0, 1) corres-
/\

pond à — a est représentée par la formule

/\x' — xx a — x2 a

Les longueurs des vecteurs correspondants ont dans les deux cas
le rapport constant V#2-

/\32. — Signification de ab.
/\ab ne change pas de valeur, lorsqu'on déplace l'extrémité de

l'un des vecteurs parallèlement à l'autre; l'on a

/\ /\a (b A- ~^a) a b

et
/\ /\ /\(a + X b) b — ab

Si l'on mène par ô, parallèle au vecteur a (fig. 6), une ligne

Fi5. 6.

qui coupe l'axe des y en gr, et par a, parallèle au vecteur g, une
ligne qui coupe l'axe des x en p, l'on obtient

/\ /\ /\ab — aq — pq
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Ce produit est l'aire du rectangle formé par p et q, et puisque

des réflexions élémentaires connues montrent que celui-ci est
égal au parallélogramme aq qui est lui-même égal au parallélogramme

ab, nous voyons que l'aire du parallélogramme formé
/\

par les deux vecteurs a et b s'exprime par ab; nous devons

cependant remarquer que ce nombre est muni du signe + ou —
suivant que le sens rotatif de a vers b est orienté du côté positif
ou du côté négatif.

/\
Nous fixons donc le nombre a b comme nombre-mesure du

parallélogramme formé par les deux vecteurs a et b, nommés dans
cet ordre. Au triangle qui a a et b pour côtés nous attribuons le

1 ^nombre-mesure a b.

33. — Afin de fixer des nombres-mesure pour les aires d'autres
figures nous considérons d'abord un triangle quelconque abc

(fig. 7); nous effectuons une
translation qui déplace a

sur l'origine de sorte que

Le nouveau triangle a

l'aire

/ <*>\z „/ _ -*6-a i /\ /\
2-{b — a){c- a)

1 /\ /\ /\
— (bc-^-ca-^-ab)

Fig. 7.

et nous fixons donc ceci

comme nombre-mesure pour l'aire du A abc. L'expression
s'interprète immédiatement comme la somme des trois triangles
0be, Oca, 0ab. La façon dont elle a été formée établit a priori
qu'elle est indépendante de la position de l'origine par rapport
au triangle et de toute translation du triangle.

34. — Pour Faire d'un polygone quelconque abcde il semble donc

naturel de fixer le nombre-mesure

1 /\ /\ /\ /\
— [cl b b c -f- c d -f- d 6 -f- 6 a)
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et l'on voit facilement que toute translation de la figure laisse

invariable cette expression.
Pour faire voir que tout déplacement direct laisse invariable ce

nombre-mesure — d'où il découle que les figures congruentes
auront les mêmes aires — il faut seulement démontrer encore

que toute rotation autour de 0 le laisse invariable. Mais ceci
résulte de ce qui précède car cette rotation laisse invariable tous

/\ /\
les termes ab, be. Les déplacements inverses font changer de

signe aux aires.
Nous vérifions

ultérieurement que le
nombre-mesure susdit
satisfait à la condition
suivante: si une figure
est divisée en deux
parties, la somme des

aires de celles-ci sera
égale à l'aire de la
figure entière. Ceci se

vérifie immédiatement,

car dans
l'expression (fig. 8):

Fig. S.

1 /\ /\ /\ l/\ /\ /\ /\ /\— (ab 6c+cr + rs + sf-j-u) Jr-^(rdJrdeJretJrts~lr s r)

l'on a

/\ /\ /\
c r -\- r d cd

/\ /\ /\
e t -f t a e a

car ceci exprime seulement que les « triangles » crd et eta ont
l'aire zéro; comme de plus

/\ /\ /\ /\rs + st + is + sr 0

la somme des deux parties devient justement égale à l'aire
entière

1 /\ /\ /> /\(a b+bc+cd + de + e a)

L'Enseignement mathém., 38me année, 1939 et 1940. 21
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V. — Trigonométrie.

35. — Nous appelons angle orienté un système de deux droites
orientées, nommées dans un ordre déterminé. Si les vecteurs
unité correspondants sont a et ô, l'angle est désigné par (a, b).
Par extension naturelle des définitions élémentaires nous
définissons cosinus et sinus ainsi

cos (a b) ab (1)

sin (a b) — ab (2)

Comme tout déplacement direct (rotation et translation) laisse
/\

ab ei ab invariables, l'on voit que les angles directement con-
gruents ont le même cosinus et sinus.

La somme de deux angles (a, b) et (6, c) se définit par l'angle
(a, c). L'angle (a, a), (ou l'angle formé par deux droites parallèles
de même orientation) est désigné aussi par 0 de sorte que
cos 0=1, sin 0 0. On pose l'angle (6, a) — (a, b)

puisque (è, a) -f (a, b) 0, et il en résulte que cos (— u)
/\

— cos k, sin (— u) — sin u. L'on pose encore l'angle (a, a)

égal à R (ou traditionnellement 90°) ce qui entraîne cos R 0,
sin R 1. L'angle (a, — a) est, par conséquent, égal à 2R
(ou 180°) et cos 2 R —-1, sin 2 R 0.

D'ailleurs, par ceci, on n'a nullement introduit une méthode
générale pour mesurer les angles.

36. — Si l'on introduit les coordonnées dans les relations (1)

et (2) l'on a
cos (a b) ax bx + a2b2

sin (a b) ax b2 — a2 bx

d'où résultent directement les relations

cos (u — c) cos u cos c + sin u sin c

sin (u — c) sin u cos c — cos u sin ç

qui fournissent toutes les formules habituelles goniométriques.
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37. — Pour un triangle quelconque ABC l'on a

BC + CÂ + AB 0 (3)

et cette formule contient toute la trigonométrie.
Nous supposons que ABC détermine le sens rotatif positif

dans le plan, et désignons par a, b et c les côtés du triangle

c'est-à-dire les longueurs des vecteurs BC, CA, AB et par a,

ß, y les angles du triangle, a étant l'angle du vecteur AB au

vecteur AC, ß de BC à BA, y de CA à CB. Ceci posé l'on peut
déduire toutes les relations trigonométriques habituelles de (3).

x\
En multipliant par BC l'on obtient, en effet,

ab sin y ac sin ß

OU
b

_ c

sin ß sin y

en élevant (3) au carré après avoir isolé BC l'on obtient

a2 b2 c2 — 2 be cos a

VI. — Le plan arithmétique.

38. — Les recherches précédentes ne visent immédiatement

que la géométrie du réseau quadrillé telle qu'elle se présente
dans un plan à dessiner au réseau millimétrique, limité par un
carré dont le côté est égal à mettons 50 cm. Chaque point est
déterminé par deux nombres, d'abord des nombres entiers,
ensuite — quand l'exigent les problèmes à résoudre — des

nombres fractionnaires; ceux-ci sont ou bien appliqués directement

à un réseau quadrillé plus fin ou bien remplacés par des

nombres approximatifs appropriés; en dernier lieu aussi quelques

nombres irrationnels interprétés de façon correspondante.
Mais tous ces nombres sont limités, et — dans l'exemple présent
— situés entre + 250 et — 250.

Les lignes droites sont représentées par des équations de
premier degré. On trouve le point d'intersection de deux droites
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en résolvant leurs équations. Si la résolution fournit un système
de deux nombres qui ne sont pas tous les deux situés dans l'intervalle

donné (entre + 250 et — 250), les lignes en question ne

se coupent pas. Si, par contre, ils s'y trouvent tous les deux on

peut interpréter ce système de deux nombres de la façon exposée
et ainsi déterminer un point qui appartient aux deux lignes;
il arrive, cependant, que les deux droites ont plusieurs points
communs (se coupent de façon indéterminée). Choisissons comme
exemple les deux lignes

0

(#!, x2) étant le point variable. L'origine est, bien entendu, un
point commun (0, 0) ; mais en posant x1 8 (l'unité est égale à

1 mm) nous obtenons pour les deux lignes respectivement les

ordonnées ^ et 0, et cette différence est négligeable dans le

plan pratique.
Les deux lignes se confondent donc le long d'un segment de

16 mm, car elles ont de chaque côté de l'origine un segment
commun de 8 mm.

Soit un cercle à rayon 200 mm; menons par un point
quelconque A du cercle une tangente et plaçons sur celle-ci un
segment AB 4 mm. Si nous menons la sécante par B et le centre
du cercle, nous pourrons — d'après le théorème de la puissance
d'un point par rapport à un cercle — déterminer le plus petit
segment s, découpé sur cette sécante entre B et le cercle, par la
relation

s (e + 400) 16 donc £ < ~

quantité négligeable dans le plan pratique.
Il en résulte que la périphérie du cercle se confond complètement

avec le segment AB de la tangente, et avec un segment
pareil de l'autre côté de A. La tangente et le cercle ont donc un
segment commun d'au moins 8 mm.

39. — Nous allons maintenant étendre tout le calcul analytique

introduit pour le réseau quadrillé de telle façon que nous
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considérons tous les nombres réels sans les soumettre à aucune

condition, c'est-à-dire qu'ils soient grands ou petits, rationnels

ou irrationnels. Nous définissons un point (vecteur) arithmétique
a comme un système de deux nombres (%, a2), où ax et a2 sont
des nombres quelconques réels (coordonnées). Nous appelons
le point 0 (0, 0) l'origine. Tout système de deux points a et ô,

pris dans cet ordre, s'appelle un vecteur ab\ on appelle pourtant

a le vecteur 0a. Tout vecteur a détermine une
translation, c'est-à-dire une transformation qui déplace le point
(xx, x2) sur le point correspondant (xx + a1? x2 + a?)- La somme
et la différence de deux vecteurs se définissent comme précédemment,

de sorte qu'on a toujours ab b — a. On multiplie un
vecteur a par un nombre quelconque X en multipliant les
coordonnées par X. Une ligne droite se définit par le point variable
x aJr\boiiaetb sont des vecteurs fixes. Le vecteur viré
/\ _

/x
a se définit toujours par a — (—a2, ax), le produit par
ab ax bx + a2 b2 et la distance entre deux points a et b par
Y/(a — 5)2. De même, les définitions des aires et des fonctions
trigonométriques restent inchangées.

40. — Il en résulte immédiatement que toutes les recherches
antérieures restent valables dans le domaine élargi, car on calcule
de la même façon avec les symboles, qu'ils signifient des nombres
rationnels ou irrationnels, grands ou petits. Dans ce domaine
abstrait, purement arithmétique, que nous appelons le plan
arithmétique, il y aura toujours un et seulement un point d'intersection

pour deux lignes droites non parallèles, et de même,
deux points différents ne déterminent jamais plus d'une ligne
droite. Un cercle et une tangente ont seulement un point commun

(point de contact), et un cercle et une ligne droite n'ont
jamais plus de deux points communs.

Comme toute cette analyse arithmétique comprend celle du
réseau quadrillé on peut, bien entendu, l'appliquer au plan
pratique en tenant compte de l'interprétation appropriée des
résultats numériques dans chaque cas.

On conçoit facilement la façon dont cette analyse élargie
peut servir à introduire des points d'intersection hors du plan
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à dessiner, et cette notion peut servir de manière tout à fait
rationnelle dans des recherches concernant le plan à dessiner
limité.

41. — Nous remarquons encore que l'extension ultérieure de

la géométrie élémentaire, l'extension à la géométrie complexe
ne cause aucune difficulté quand le domaine s'étend aux nombres
complexes.

Il faut seulement remarquer qu'elle entraîne l'existence de

vecteurs qui ont la longueur 0 bien qu'ils ne soient pas identiques
au vecteur zéro; ce sont tous les vecteurs de la forme X (1, i)
ou X(l, — i) où X est un nombre quelconque complexe. Sur la
droite x a + X (1, i) ou x a + X (1, — i) toutes les distances
seront égales à zéro. Ces lignes s'appellent les lignes isotropes;
elles n'ont ni vecteur d'orientation, ni vecteur normal de sorte

que les recherches basées sur ces notions ne sauraient être

appliquées aux lignes isotropes. Ceci a surtout de l'importance
dans la trigonométrie où les lignes sont justement représentées

par des vecteurs-unité, et il y faut donc supposer qu'aucune des

lignes en question n'est isotrope. Ceci à part, toutes les recherches
considérées s'appliquent au domaine complexe.
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