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260 G. LORIA

IV. — La première solution d'Euler.

6. — Les formules à appliquer maintenant sont les suivantes
(voyez la fig. 2):

TS — s CS a + v (ç fonction impaire de s)

' nn/rr\ 2 (a + v)s (a + v)2 — s2
sin GMO 7—7——- cos GMO —(a + ç)2 + s2 ' "

(a + ç)2 + s2

CM a+ p + MO + a + v-
S*

a + v ' dv a -f v

CO =2iVÇT^. tg CMO — •

dv ds

Nous choisissons à présent comme axe une droite quelconque
AB passant par le point C. Soit R son intersection avec le rayon
réfléchi MM* et où l'angle que celui-ci forme avec l'axe; si l'on

pose cos co ^ (c étant une constante différente de 0), on aura
a/c2 u2 dusin où — d cù et u sera aussi une

c Vc2 — U2

fonction impaire de s. Soit mOr le rayon réfléchi consécutif au

/\ _ /\
rayon MOR; on aura Crm co + dtù et ensuite MOm rioù.

dr dv
Mais on a déjà trouvé MOm ^ (car r a +

7 dV du 7d(ù — ; donc on conclut:
5 Vc2 — u2

dv Vc
du

u sera une fonction impaire de s, donc inversement s et c seront
des fonctions impaires de u.

On observe à présent que dans le triangle CRM on connaît les

angles et le côté CM; en conséquence le théorème des sinus nous
donne

CR _", RV —
du du

et ensuite ,lu dv (c2 — u2) dv2
MR a + V -r h f-ry •

du (a -f V) du2



LA «COURBE CATOPTRIQUE » D'EULER 261

Menons la droite MP perpendiculaire à l'axe ACB ; comme on a

MP MR sin co, à cause des formules qu'on a trouvées, on

peut écrire

/ u dv dv2 c2 — ^2\ a/c2 —
MP [a + v - du du2 a + v

où le signe ambigu du radical correspond à la symétrie de la
courbe catoptrique par rapport à l'axe AB. On a encore

u(a + v) 2u2 dv u(c2 — u2) dv2
RP MR COS CO

y '
3 —V r1 -v-2c c du c(a + v) du2

et, à cause de la valeur de CR,

dv2 u (c2 — u2) 0 dv c2 — u2 u(a + v)
Lr -,—à • ; ; r— 2 - "

du2 c (c + v) du c c

Si donc nous prenons comme premier axe d'un système
cartésien la droite AB et comme origine le point C, on aura
CP x et MP y.

Euler trouve convenable de changer dans les formules
précédentes le signe de c; par conséquent il écrit comme il suit les
formules qui donnent la solution du problème:

u(a — v)

y

c

c2 — u2

c(a — v)

^
du c2 — u2 + c \/c2 — u2 1 I du c2 — u2 — c\/c
dv u(a — v) J I dv u(a — v)

la-v + {c + u>t}\a-ç-(c-u)t} ;
1

(7)

en supposant que ces formules déterminent le point M de la
première réflexion, celles qui se rapportent au point M* de la
seconde s'en déduisent en échangeant les signes de c et du
radical.

Remarque. — A toute équation / (u, ç) 0 entre u et v

correspond une courbe catoptrique particulière; si / est une fonction

algébrique, on peut la supposer rationnelle et entière; la

même chose arrivera alors par rapport aux dérivées-^-, ;1 ri öu7 àv '

cela prouve qu'en substituant à — le rapport —^ ^ les for-

i Comme u et v sont liées par une relation, les équations (7) nous offrent peut-être
le premier exemple de la représentation des coordonnées d'une courbe à l'aide de deux
paramètres, entre lesquels il existe une relation connue.
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mules (7) deviendront algébriques en u, v\ entre elles et l'équation

f(u,v) — 0 on pourra éliminer ces quantités et on arrivera
à une équation également algébrique en x, y: cela prouve
Vexistence (Tun nombre indéfini de courbes catoptriques, toutes

algébriques.

V. — Quelques conséquences des formules trouvées.
Exemples.

7. — Les formules (7) mènent à toutes les propriétés de la
courbe catoptrique; bornons-nous à citer celles dont parle Euler.
La courbe catoptrique coupe orthogonalement l'axe en deux
points dont la distance est 2a. L'ordonnée EC du point C est
fournie en posant x 0 dans la première des formules (7); sa

valeur est donc

— 2 c (a — ç) (V'c2 — w2 i c)

i? ;

tandis que les points d'ordonnées maxima sont donnés par les

formules
dv c \/c2 — u2 dv

x c — y —
du u du

etc.1
Euler remarque encore que des formules exposées on peut

tirer aisément la représentation analytique de la caustique de la

i Les mêmes formules permettraient l'étude des relations géométriques ayant lieu
entre la courbe catoptrique et le point lumineux C. Par exemple, elles portent à la
conclusion que ce point n'appartient jamais à cette courbe. En effet, des équations

u (a — v) c2 —• u2 dv
+ 2

dv u(c2 — u2) /dv_\2 ~ o
du c(a—-v) \du)

n dv c2 — u*/dv\*a —-v + 2u- — 0
-7- "* — x \du/

c

du

on tire, en ajoutant à la première la seconde multipliée par

2c£ 0 ;
du

comme c ^ o, on a nul et les équations précédentes donnent a—-v 0; en consé-
du

quence les (7) deviennent en général x 0, y 0 et la courbe catoptrique se

réduirait au point lumineux.
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