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260 G. LORIA
IV. — LA PREMIERE soLUTION D’EULER.
6. — Les formules & appliquer maintenant sont les suivantes

(voyez la fig. 2):

S = —s, CS = a + ¢ (¢ fonction impaire de s)

M0 — 1IN a0 = BT

CM:a+"+}zio’ MO:g—fg§+a+o_aiv
Cozzsvd;iwr, tgCMO = % .

Nous choisissons & présent comme axe une droite quelconque
AB passant par le point C. Soit R son intersection avec le rayon
réfléecht MM* et o ’'angle que celui-ci forme avec 1’axe; si 'on

u 4 . ’
pose cos w = — (¢ étant une constante différente de O), on aura

2 — 2 ,
sin :L/i—u, do — — ™ __ ot u sera aussi une
c \/02 Y
fonction impaire de s. Soit mOr le rayon réfléchi consécutif au
N AN
rayon MOR; on aura Crm = o + do et ensuite MOm = do.
. 2 A dr dy

Mais on a déja trouvé MOm = % = (car r = a + V)E ,

d d
do =% = _— 2. donc on conclut:

s \/02 2

do . \/02 — u?
§ = — ;
du

u sera une fonction impaire de s, donc inversement s et ¢ seront
des fonctions impaires de u.

On observe a présent que dans le triangle CRM on connait les
angles et le c6té CM; en conséquence le théoréme des sinus nous
donne

2¢ . dy 2u . dy
LR e ——p—» BY =——5
et ensuite
. 2u . do (@ — u?) . do?
Hh=ga+s——p (@ £ 0] . d2

T




Y=

A
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Menons la droite MP perpendiculaire & 'axe ACB; comme on a
MP = MR .sin o, a cause des formules qu’on a trouvées, on
peut écrire

u . dy do‘zcz-—u2>\/02—u2

MP=<a+v—2 du  du® a+ ¢ ¢

ol le signe ambigu du radical correspond & la symétrie de la
courbe catoptrique par rapport a I’axe AB. On a encore

. _ule + 9) 2u2.do_u(02: u?) do?
RP = MR cos o = c T e.du cla + o) du?

et, & cause de la valeur de CR,

do? u(c? — u? do ¢ — u? u(ar +9)

CP:dUﬁ'C(C—I—())_EL—L'C ¢

Si donc nous prenons comme premier axe d’un systéme
cartésien la droite AB et comme origine le point C, on aura
CP =2 et MP = y.

Euler trouve convenable de changer dans les formules pré-
cédentes le signe de ¢; par conséquent 1l écrit comme il suit les
formules qui donnent la solution du probleme:

1 —

_u(a——o)li_du 02—u2+c\/02~u2J

¢ dv u(a—v)

du cg—uz—c\/c2——u,2
dy ula—y9)
62___u2

m [a—o—}— (¢ + u) Z—Z] [a—o»—(c—u)@_] .1

en supposant que ces formules déterminent le point M de la
premiére réflexion, celles qui se rapportent au point M* de la
seconde s’en déduisent en échangeant les signes de u, ¢ et du
radical.

REMARQUE. — A toute équation f(u, ¢v) = 0 entre u et ¢
correspond une courbe catoptrique particuliére; si f est une fone-
tion algébrique, on peut la supposer rationnelle et entiére; la

g : r_ o ’ 6 6
méme chose arrivera alors par rapport aux dérivées S—f-, g-f ;
u 1%

cela prouve qu’en substituant a - le rapport ~—£ o Yes for-

1 Comme u et v sont liées par une relation, les équations (7) nous offrent peut-étre
le premier exemple de la représentation des coordonnées d’une courbe & Uaide de deux
parametres, enire lesquels il existe une relation connue.

(7)
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mules (7) deviendront algébriques en u, ¢; entre elles et ’équa-
tion f(u, ¢) = 0 on pourra éliminer ces quantités et on arrivera
a une équation également algébrique en x, y: cela prouve
Pexistence d’un nombre indéfini de courbes catoptriques, toutes
algébriques.

V. — (QUELQUES CONSEQUENCES DES FORMULES TROUVEES.
ExEMPLES.
7. — Les formules (7) ménent & toutes les propriétés de la

courbe catoptrique; bornons-nous & citer celles dont parle Euler.
La courbe catoptrique coupe orthogonalement ’axe en deux
points dont la distance est 2a. L’ordonnée EC du point C est
fournie en posant x = 0 dans la premiére des formules (7); sa
valeur est donc

—QC(a———o)(\/Mi c)

u2

tandis que les points d’ordonnées maxima sont donnés par les
formules
dy c \/02 — u? do

x:CEL—L’ y = u du ’

etc.1
Euler remarque encore que des formules exposées on peut
tirer aisément la représentation analytique de la caustique de la

1 Les mémes formules permettraient 1’étude des relations géométriques ayant lieu
entre la courbe catoptrique et le point lumineux C. Par exemple, elles portent a la
conclusion que ce point n’appartient jamais a cette courbe. En effet, des équations

u{a — v) c2 — u2 dv u(c2 -—u2) (dv\2
T ¢ TR W c(a —v) (Ezﬂ) =0
dv 2 —u2 /dv\2
a—v+2uo—h;—~ a__;‘(aa) ——0,

. . s . u
on tire, en ajoutant i 1a premiére la seconde multipli¢e par o

dv
QCE'L_L = 0 5

comme ¢ # 0, 0N a 3—3 nul et les équations précédentes donnent a—v = 0; en consé-

quence les (7) deviennent en général x = 0, y = 0 et la courbe catoptrique se
réduirait au point lumineux.
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