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d’une étonnante simplicité 1. L’étude de la méme figure mene
aux relations suivantes:

S r

sin MCT = ——— cos MCT =

SO — 9 SR ———— (6)
\/,,2 T+ s \/rz I s
comme ’angle CMO est le double de CMT, on a encore
. 2s r2 — s? ,
sin CMO = m 3 cos CMO = m » (6)

Si enfin on appelle U l'intersection du rayon réfléchi avec la
droite CT (qui est la perpendiculaire menée du point C a la
tangente au point M), on voit que I’angle TMU étant lui aussi
égal & u, les deux triangles CMT et MTU sont égaux, le triangle
CMU est isocele et la tangente n’est que la perpendiculaire menée
a sa base par son milieu.

REMARQUE. — Les formules (6), (6') et les derniéres observa-
tions nous donnent l'occasion de relever, comme un caracteére
des procédés eulériens, I’habitude du grand géomeétre de déter-
miner toutes les propriétés et de calculer tous les éléments de la
figure considérée, méme si les unes et les autres n’ont pas une
liaison évidente avec la question étudiée; nous rencontrerons
plus bas (voyez par exemple les derniéres lignes du n° 7) des
exemples de 'utilité de ce systéme.

III. — PRELIMINAIRES DE LA PREMIERE SOLUTION

D'EULER.
5. — Comme les coniques a centre nous assurent que le

probléme catoptrique est résoluble, on est en droit de considérer
sur la courbe cherchée EF (fig. 2) deux points MM*, tels que le
rayon, MM* premier réfléechi de CM, donne par une nouvelle

1 Nous invitons le lecteur qui a des doutes sur 1a justesse de notre appréciation de
ce résultat & comparer la formule (4’) & sa correspondante dans le systéme cartésien,
En écrivant I’équation du rayon réfléchi (voyez la Remarque a la fin du n° 9) sous la
forme P(X —x) + Q(Y—y) = 0, ot P et Q sont des polynomes quadratiques en

x,Y,y’,0na
N P+ Qy’
MO = }PQ .
PI ]
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réflexion le rayon M* C. Il est alors évident que le rayon réfléchi
de CM* ramenerait au point C aprés une nouvelle réflexion; donc
les points M et M* sont entre eux dans une relation permutable.

T M m
E
S
/O
p*
A (- p Q Z R B
l“\*
Fig. 2.

Sur le point M* répétons les constructions et les considérations
que nous avons exposées sur M, en employant les mémes lettres
avec un astérisque; seulement, par rapport aux signes des gran-
deurs, on doit tenir compte du sens des figures. Suivant Euler,
on a alors cette double liste de formules:

CT =r, TS = §
S 2
CT — A/7 [ &2 | CM__rZ;I:s
MT = f};\/r2+s2
‘. 2rs r2 — g2
BROMQ = o l0 = ooy
9 2 g2
MO:,.sds_I_r s
dr r

C*S* = p*x  T*8* = g*
CxT* — A/ | % CM* — P2 ;: g*2
M*T* = —*j—: AR seE

sin QM0 = R cosCMe0 = DT
M*O — 25% ds*  px2  g¥2
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En menant la droite CV perpendiculaire au rayon MM* on
aura les relations suivantes ':

W2, MV=_—"F% OV — — a9 MOV = T
r r
w=—2% co= 25/ LRl P 2t oo __25,1\@;”?5@
ig COM = gg tg COM* = — 3:—:
On en tire s* = — s, _ 2sds _ 25TAST goon drt +rdr = {

dr dr*

En intégrant on peut écrire r* + 1 = 2a. Si donc on pose

r =a -+ ¢, on aura r* = a — ¢, ¢ étant une fonction impaire

“de s; en choisissant ad libitum une fonction de cette espece, la
relation CS = a + ¢ déterminera une des courbes cherchées.

REMARQUE. — Rappelons qu’on a:
. pdo .
CS = r = psin?y , tgg:——«gp—, s = psinpcosp ;
il s’ensuit
sin pde cos dp
Vet + ptdo? YT Ve ¥ o de?
s — p2do . dw
dp2 + 92 dO)Z

ot la relation trouvée par Euler devient

_ ¢tde? e.dp-do) _ .
dpz+pzdw2+a+v<d92+p2dw2 =05

c’est Péquation différentielle générale des courbes catoptriques;
nous allons voir comment Euler arrive 4 'intégrer complétement,
quelle que soit la fonction ¢.

1 Les relations précédentes, comme les suivantes, ont été déja prouvées, ou bien
peuvent se déduire des autres; par exemple on a

r2 4+ 82  2rs

CV = CM sin 2u == - r2+s2=

2s.
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