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252 G. LORIA

écrite par Euler le 25 juin 1748 (id., p. 463 et suiv.), lorsque
Oechliz proposa un nouveau procédé de solution l, car cela lui
donna l'occasion de concevoir une troisième méthode pour
le résoudre, dont il s'empressa de faire part à son ami; celui-ci
s'y intéressa de nouveau, comme cela est prouvé par plusieurs
passages de la correspondance dont nous nous occupons (p. 470,
483, 485, 490, 498), le dernier est inséré dans la lettre qui porte
la date 25 juin 1749. Dans presque toutes les lettres citées on
trouve des propriétés de la courbe catoptrique (terme employé
par les deux géomètres), avec des considérations spéciales sur les

cas où elle est algébrique; leur étude offre un réel intérêt
historique, car elles appartiennent à l'époque qui précède immédiatement

le moment où le grand mathématicien bâlois allait donner
aux mathématiques, appelées alors sublimes, la forme qu'elles
étaient destinées à conserver, jusqu'au jour où le concept de

rigueur imposa une refonte ab imis jundamentis de toute
l'analyse infinitésimale.

II. — Formules fondamentales.

3. — La base de la première méthode de résolution imaginée
par Euler se trouve dans une remarquable formule exprimant la
distance entre un point quelconque M d'une courbe plane et le

point correspondant 0 de sa caustique par rapport à un point
quelconque C de son plan; 0 est donc l'intersection du rayon
réfléchi par rapport au rayon CM et de son consécutif. Euler
fait la recherche par un procédé aussi ingénieux que fatigant,
basé sur des considérations de géométrie, élémentaire,
développées magistralement, même dans les cas où les éléments
considérés (segments de droite et angles) sont infinitésimaux;
les coordonnées cartésiennes n'apparaissent en aucune façon,
car Euler suppose que la courbe considérée soit déterminée par
une relation entre le rayon vecteur p d'un quelconque M de ses

points, ayant comme origine le point lumineux C et l'angle (x

qu'il forme avec la tangente à la courbe au point M. Au lieu de

i II ne m'a pas été possible de trouver des renseignements ni sur ce mathématicien
ni sur ses recherches citées dans le texte.
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résumer le long raisonnement eulérien, nous allons déterminer
la longueur du segment MO en fonction de p et jx, en employant
tour à tour les coordonnées orthogonales x, y ayant G comme
origine et les coordonnées polaires 9, co par rapport à ce même

point: de cette manière seront apaisés les doutes des personnes
qui n'ont pas une foi complète dans les raisonnements ayant
recours à des grandeurs infinitésimales. Remarquons d'abord
que l'angle [x formé par le rayon CM avec les tangentes au
point M de la courbe considérée est déterminé en coordonnées

orthogonales par la formule

_ y dx — xdy
^ ^ xdx + y dy '

en introduisant les coordonnées polaires elle devient

on en tire

p • d(ù

d<0 (1)
P

Le rayon réfléchi du rayon CM aura une équation de la forme

A X

où X, Y sont les coordonnées courantes et X doit être déterminé
par la condition qu'il forme avec CM l'angle 180° — 2p.; on a
donc

Xx — y Xy+x
ce qui prouve que

tg (180° — X)

x y— xtg 2jx
® + y tg 2 p

Il s'en suit que l'équation du rayon réfléchi est:

(X — x) (x sin 2(x — ycos 2 p) + (Y —y)(xcos 2p + sin 2p) 0 (2)

La caustique étant l'enveloppe de cette droite, pour déterminer

le point 0 il faudra combiner cette équation avec sa
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254 G. LORIA

dérivée, en considérant que x, y, p, co, p sont toutes des fonctions
de la variable en fonction de laquelle ;st déterminée la position
de tout point de la courbe. Or, en introduisant les coordonnées

polaires, l'équation (2) devient:

(X — x) sin (2p. — co) + (Y — y) cos (2p — co) 0 ; (2')

si on écrit au lieu de cette équation les deux suivantes

X — x — a cos (2 p, —• co) Y — y — a sin (2 p. — co) (2//)

a sera précisément la longueur cherchée, pourvu que p. et co

soient déterminés en tenant compte de l'équation dérivée de
la (2'). Cette dérivée étant

[(X - x) cos (2p. — co) — (Y — y) sin (2p. — co)] (2p/ — co')

x' sin (2p. — co) +?/' cos (2p. — co)

Pour déterminer g on a l'équation

a (2d p — d co) dx sin (2p — co) + dy cos (2p. — co) (3)

Or la relation (1) donne

2 p cos p du + sin p d p
2ap — aco —5 - L^ p cos p

et comme

dx — d p cos co — p sin co d co dy — d p sin co + p cos co d co

le second membre de l'équation (3) prend la forme suivante:

dp sin p
cos p

L'équation (3) devient donc

2 p cos p d[i + sin p d p _ dp sin p
p cos p cos p

*



LA «COURBE CATOPTRIQ»D'EULER 255

qui donne a, c'est-à-dire

MO 5
p dl "

-p ; (4)
2 p cos pi dp. + sin (jl a p

c'est précisément la formule découverte par Euler 1.

4. — Ce grand savant lui a donné une autre forme en
introduisant, au lieu de p et (jl, deux nouvelles variables que nous

i Une formule analogue existe pour le rayon de courbure R d'une ligne plane
quelconque; elle peut se démontrer par des calculs analogues à ceux employés dans le texte,
comme nous allons le prouver. Xous partirons à cet effet des formules

Y — y 1
__ y — xy'

X X~ \J' ' — x + yy'

dont la première représente la normale et la seconde a déjà été utilisée par nous. En
éliminant y' on trouve l'équation

Y— y _ x cos y + y sin y
X— x x sin p — y cos g.

En introduisant partiellement les coordonnées polaires elle devient

Y — y _ cos (p — co)

X — x ~ sin (y — co) '

si on lui substitue les deux

X— x R sin (y — co), Y — y R cos (g. — co)

R sera la longueur que nous cherchons, pourvu que cette longueur soit déterminée
à l'aide de l'équation dérivée de l'équation de la normale; qui est

(X — x) cos (ji. •— co) — (Y — y) sin ({jl — co) 0.

Cette dérivée étant

[(X —x) sin (fx— co) + (Y — y) cos (m- — ")] (ti' — <o') y' sin (tx —• co) — x' cos (p. —co)

on trouve
t/'sin(p-—co) — x'cos (p — co)ïi — — —— •

[X *— co

Substituant à x', y' leurs valeurs on obtient

r —
P s^n • dco — cos co dp

dp —• deo

et comme dco a la valeur donnée par la formule (1) du texte, on peut faire disparaître
la variable co; on arrive alors à l'expression suivante de R:

r _ — p dp
dp sin p + cos p dp

qui est celle annoncée; elle est remarquable car elle contient seulement des différentielles
du premier ordre.
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allons définir. A cet effet menons (fig. 1) du point C la droite CT
perpendiculaire à la tangente au point M de la courbe et de son
pied T la perpendiculaire TS au rayon vecteur CM ; les nouvelles

variables sont les longueurs CS r et TS s. L'inspection
de la figure prouve qu'elles sont exprimées de la manière
suivante en fonction de p et p.

r p sin2 [x s p sin (x cos ; (5)

inversement on a
«2 i o2 v>

—~— » tgH 7- (50

Or, par un raisonnement géométrique tout à fait original (et
qui prend la place du changement de variables déterminé par les

formules (5) ou (b')) Euler donne à la formule (4) l'aspect suivant:

/-7o J»2 c2
MO 2 sÇ-+ -,(4')dr r
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d'une étonnante simplicité 1. L'étude de la même figure mène

aux relations suivantes:

sin MCT
S

cos MCT r
; (6)

+ S2 yV + s2

comme l'angle CMO est le double de GMT, on a encore

sin CMO -Ar—,
> cos CMO ~• (6')

r2 + s2 v + s2

Si enfin on appelle U l'intersection du rayon réfléchi avec la
droite CT (qui est la perpendiculaire menée du point C à la

tangente au point M), on voit que l'angle TMU étant lui aussi

égal à [X, les deux triangles CMT et MTU sont égaux, le triangle
GMU est isocèle et la tangente n'est que la perpendiculaire menée
à sa base par son milieu.

Remarque. — Les formules (6), (6') et les dernières observations

nous donnent l'occasion de relever, comme un caractère
des procédés eulériens, l'habitude du grand géomètre de déterminer

toutes les propriétés et de calculer tous les éléments de la
figure considérée, même si les unes et les autres n'ont pas une
liaison évidente avec la question étudiée; nous rencontrerons
plus bas (voyez par exemple les dernières lignes du n° 7) des

exemples de l'utilité de ce système.

III. — Préliminaires de la première solution
d'Euler.

5. — Comme les coniques à centre nous assurent que le
problème catoptrique est résoluble, on est en droit de considérer
sur la courbe cherchée EF (fig. 2) deux points MM*, tels que le

rayon, MM* premier réfléchi de CM, donne par une nouvelle

1 Nous invitons le lecteur qui a des doutes sur la justesse de notre appréciation de
ce résultat à comparer la formule (4') à sa correspondante dans le système cartésien.
En écrivant l'équation du rayon réfléchi (voyez la Remarque à la fin du n° 9) sous la
forme P(X:—x) -f Q (Y — y) 0, oû P et Q sont des polynômes quadratiques en
oc, y, y on a

nm-I P' Q' I
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