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LA «COURBE CATOPTRIQUE» D'EULER

PAR

Gino Loria (Gênes, Italie).

I. — Introduction et historique.

1. — Dans les exposés modernes de la théorie des courbes
planes, les questions traitées ont généralement comme but la
détermination de lieux des points satisfaisant à des conditions
données et moins souvent (et cela dans les applications de la
théorie des équations différentielles) dans la recherche de toutes
les lignes du plan jouissant de la même propriété (généralement
de nature infinitésimale). Mais, au temps où la géométrie
analytique et le calcul infinitésimal étaient des matières dans l'état
d'enfance, les plus éminents géomètres avaient le courage de se

proposer des problèmes d'un caractère plus élevé (leur solution
générale comprend bien souvent des fonctions arbitraires) et ils
arrivaient à les résoudre par des artifices originaux 1. De cette
manière on donnait une éclatante confirmation de ce fait que les

théories jeunes manifestent une énergie (analogue à celle des gaz
à Y état naissant) qui va s'affaiblissant lorsqu'elles marchent
vers une forme définitive, considérée enfin comme classique.
Dans l'état dont nous venons de parler se trouve la question
suivante : Déterminer toutes les courbes planes qui, comme Vellipse,
jouissent de la propriété que les rayons issus d'un point donné,

i II n'est pas sans intérêt de reconnaître que ces essais heureux ont été possibles
car les mathématiciens d'autrefois ne se sentaient pas liés (comme il arrive aujourd'hui)

à l'emploi des coordonnées cartésiennes ou polaires et aux formules relatives
considérées aujourd'hui comme le nec plus ultra des moyens auxiliaires; en effet (et
nous allons en rencontrer plusieurs exemples) les artifices auxquels ils ont recours, en
général, consistaient dans l'emploi, comme coordonnées, de différentes variables s'impo-
sant, dans chaque cas, par les conditions mêmes des problèmes qu'on voulait résoudre.
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après une double réflexion sur une de ces courbes, supposée

réfléchissante, reviennent au point de départ1.
La correspondance d'Euler avec Goldbach nous donne les

preuves des longues études que le grand géomètre consacra à ce

beau problème 2; ses études méritent d'être examinées avec un
soin tout particulier, avant tout par la valeur de ce qu'elles
renferment, mais aussi parce qu'elles nous présentent le grand
analyste dans le rôle d'éminent représentant de la géométrie
infinitésimale synthétique qu'il joua au temps où il vivait à

Berlin.

2. — On trouve l'énoncé de ce problème dans les dernières

lignes de la lettre adressée par Euler à Goldbach le 16 février
1745, avec la déclaration qu'il l'a conçu lui-même (p. 314),
tandis que dans la suivante, qui remonte au 19 juin de la même

année, on en lit (p. 317-20) une rapide solution, accompagnée de

la déclaration qu'elle a été proposée anonyme dans les Acta
eruditorum. Sans nous arrêter sur quelques remarques des deux
géomètres exposées dans deux lettres suivantes (p. 320, 327,
332 et 335), nous devons attirer l'attention de nos lecteurs sur
le mémoire annexé à la lettre d'Euler du 30 novembre 1745 sous
le titre Solutio problematis in Actis Lipsiensis A. 1745 propositi
(p. 341-354), qui va être analysée tout au long dans notre
travail 3. Dès ce moment on en lit des mentions plus ou moins
étendues dans presque toutes les lettres échangées entre les deux
savants jusqu'à celle qui porte la date 27 août 1746 (op. cit.,
p. 321, 326, 329, 332, 335, 355, 358, 367, 374, 378, 386, 395);
elles sont très importantes car on y trouve une deuxième solution

de la question; celle-ci apparaît de nouveau dès la lettre

1 Cette question appartient évidemment à la classe des problèmes où l'on veut
trouver toutes les lignes planes partageant une des qualités qui caractérisent le cercle
ou les sections coniques, sur lesquelles Jean Bernoulli attira l'attention des savants
dans son mémoire Supplementum defectus Geometriae Cartesianae circa inventionem
locorum (Acta erud. 1696, p. 264, ou bien Opera omnia, t. I, p. 155).

2 Ces lettres ont été insérées dans le t. I du volume: Correspondance mathématique
et physique de quelques célèbres géomètres du XVIIIe siècle, publiée par P.-H. Puss
(Saint-Pétersbourg, 1843) auquel se rapportent toutes nos citations.

3 Cette solution a été publiée pour la première fois dans les Nova acta eruditorum
de l'année 1745 (p. 523) avec le titre Problema geometricum, propositum publice ab
anonymo geometra. Euler fit connaître l'énoncé du problème catoptrique à Daniel
Bernoulli dans sa lettre du 7 juillet 1745 (voyez Corresp. citée, t. II, p. 578); celui-ci
s'y intéressa; cela résulte de la réponse qu'il adressa à Euler le 7 septembre de la même
année (même volume, p. 585).



252 G. LORIA

écrite par Euler le 25 juin 1748 (id., p. 463 et suiv.), lorsque
Oechliz proposa un nouveau procédé de solution l, car cela lui
donna l'occasion de concevoir une troisième méthode pour
le résoudre, dont il s'empressa de faire part à son ami; celui-ci
s'y intéressa de nouveau, comme cela est prouvé par plusieurs
passages de la correspondance dont nous nous occupons (p. 470,
483, 485, 490, 498), le dernier est inséré dans la lettre qui porte
la date 25 juin 1749. Dans presque toutes les lettres citées on
trouve des propriétés de la courbe catoptrique (terme employé
par les deux géomètres), avec des considérations spéciales sur les

cas où elle est algébrique; leur étude offre un réel intérêt
historique, car elles appartiennent à l'époque qui précède immédiatement

le moment où le grand mathématicien bâlois allait donner
aux mathématiques, appelées alors sublimes, la forme qu'elles
étaient destinées à conserver, jusqu'au jour où le concept de

rigueur imposa une refonte ab imis jundamentis de toute
l'analyse infinitésimale.

II. — Formules fondamentales.

3. — La base de la première méthode de résolution imaginée
par Euler se trouve dans une remarquable formule exprimant la
distance entre un point quelconque M d'une courbe plane et le

point correspondant 0 de sa caustique par rapport à un point
quelconque C de son plan; 0 est donc l'intersection du rayon
réfléchi par rapport au rayon CM et de son consécutif. Euler
fait la recherche par un procédé aussi ingénieux que fatigant,
basé sur des considérations de géométrie, élémentaire,
développées magistralement, même dans les cas où les éléments
considérés (segments de droite et angles) sont infinitésimaux;
les coordonnées cartésiennes n'apparaissent en aucune façon,
car Euler suppose que la courbe considérée soit déterminée par
une relation entre le rayon vecteur p d'un quelconque M de ses

points, ayant comme origine le point lumineux C et l'angle (x

qu'il forme avec la tangente à la courbe au point M. Au lieu de

i II ne m'a pas été possible de trouver des renseignements ni sur ce mathématicien
ni sur ses recherches citées dans le texte.
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résumer le long raisonnement eulérien, nous allons déterminer
la longueur du segment MO en fonction de p et jx, en employant
tour à tour les coordonnées orthogonales x, y ayant G comme
origine et les coordonnées polaires 9, co par rapport à ce même

point: de cette manière seront apaisés les doutes des personnes
qui n'ont pas une foi complète dans les raisonnements ayant
recours à des grandeurs infinitésimales. Remarquons d'abord
que l'angle [x formé par le rayon CM avec les tangentes au
point M de la courbe considérée est déterminé en coordonnées

orthogonales par la formule

_ y dx — xdy
^ ^ xdx + y dy '

en introduisant les coordonnées polaires elle devient

on en tire

p • d(ù

d<0 (1)
P

Le rayon réfléchi du rayon CM aura une équation de la forme

A X

où X, Y sont les coordonnées courantes et X doit être déterminé
par la condition qu'il forme avec CM l'angle 180° — 2p.; on a
donc

Xx — y Xy+x
ce qui prouve que

tg (180° — X)

x y— xtg 2jx
® + y tg 2 p

Il s'en suit que l'équation du rayon réfléchi est:

(X — x) (x sin 2(x — ycos 2 p) + (Y —y)(xcos 2p + sin 2p) 0 (2)

La caustique étant l'enveloppe de cette droite, pour déterminer

le point 0 il faudra combiner cette équation avec sa

L'Enseignement mathém., 38me année, 1939 et 1940. 17
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dérivée, en considérant que x, y, p, co, p sont toutes des fonctions
de la variable en fonction de laquelle ;st déterminée la position
de tout point de la courbe. Or, en introduisant les coordonnées

polaires, l'équation (2) devient:

(X — x) sin (2p. — co) + (Y — y) cos (2p — co) 0 ; (2')

si on écrit au lieu de cette équation les deux suivantes

X — x — a cos (2 p, —• co) Y — y — a sin (2 p. — co) (2//)

a sera précisément la longueur cherchée, pourvu que p. et co

soient déterminés en tenant compte de l'équation dérivée de
la (2'). Cette dérivée étant

[(X - x) cos (2p. — co) — (Y — y) sin (2p. — co)] (2p/ — co')

x' sin (2p. — co) +?/' cos (2p. — co)

Pour déterminer g on a l'équation

a (2d p — d co) dx sin (2p — co) + dy cos (2p. — co) (3)

Or la relation (1) donne

2 p cos p du + sin p d p
2ap — aco —5 - L^ p cos p

et comme

dx — d p cos co — p sin co d co dy — d p sin co + p cos co d co

le second membre de l'équation (3) prend la forme suivante:

dp sin p
cos p

L'équation (3) devient donc

2 p cos p d[i + sin p d p _ dp sin p
p cos p cos p

*
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qui donne a, c'est-à-dire

MO 5
p dl "

-p ; (4)
2 p cos pi dp. + sin (jl a p

c'est précisément la formule découverte par Euler 1.

4. — Ce grand savant lui a donné une autre forme en
introduisant, au lieu de p et (jl, deux nouvelles variables que nous

i Une formule analogue existe pour le rayon de courbure R d'une ligne plane
quelconque; elle peut se démontrer par des calculs analogues à ceux employés dans le texte,
comme nous allons le prouver. Xous partirons à cet effet des formules

Y — y 1
__ y — xy'

X X~ \J' ' — x + yy'

dont la première représente la normale et la seconde a déjà été utilisée par nous. En
éliminant y' on trouve l'équation

Y— y _ x cos y + y sin y
X— x x sin p — y cos g.

En introduisant partiellement les coordonnées polaires elle devient

Y — y _ cos (p — co)

X — x ~ sin (y — co) '

si on lui substitue les deux

X— x R sin (y — co), Y — y R cos (g. — co)

R sera la longueur que nous cherchons, pourvu que cette longueur soit déterminée
à l'aide de l'équation dérivée de l'équation de la normale; qui est

(X — x) cos (ji. •— co) — (Y — y) sin ({jl — co) 0.

Cette dérivée étant

[(X —x) sin (fx— co) + (Y — y) cos (m- — ")] (ti' — <o') y' sin (tx —• co) — x' cos (p. —co)

on trouve
t/'sin(p-—co) — x'cos (p — co)ïi — — —— •

[X *— co

Substituant à x', y' leurs valeurs on obtient

r —
P s^n • dco — cos co dp

dp —• deo

et comme dco a la valeur donnée par la formule (1) du texte, on peut faire disparaître
la variable co; on arrive alors à l'expression suivante de R:

r _ — p dp
dp sin p + cos p dp

qui est celle annoncée; elle est remarquable car elle contient seulement des différentielles
du premier ordre.
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allons définir. A cet effet menons (fig. 1) du point C la droite CT
perpendiculaire à la tangente au point M de la courbe et de son
pied T la perpendiculaire TS au rayon vecteur CM ; les nouvelles

variables sont les longueurs CS r et TS s. L'inspection
de la figure prouve qu'elles sont exprimées de la manière
suivante en fonction de p et p.

r p sin2 [x s p sin (x cos ; (5)

inversement on a
«2 i o2 v>

—~— » tgH 7- (50

Or, par un raisonnement géométrique tout à fait original (et
qui prend la place du changement de variables déterminé par les

formules (5) ou (b')) Euler donne à la formule (4) l'aspect suivant:

/-7o J»2 c2
MO 2 sÇ-+ -,(4')dr r
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d'une étonnante simplicité 1. L'étude de la même figure mène

aux relations suivantes:

sin MCT
S

cos MCT r
; (6)

+ S2 yV + s2

comme l'angle CMO est le double de GMT, on a encore

sin CMO -Ar—,
> cos CMO ~• (6')

r2 + s2 v + s2

Si enfin on appelle U l'intersection du rayon réfléchi avec la
droite CT (qui est la perpendiculaire menée du point C à la

tangente au point M), on voit que l'angle TMU étant lui aussi

égal à [X, les deux triangles CMT et MTU sont égaux, le triangle
GMU est isocèle et la tangente n'est que la perpendiculaire menée
à sa base par son milieu.

Remarque. — Les formules (6), (6') et les dernières observations

nous donnent l'occasion de relever, comme un caractère
des procédés eulériens, l'habitude du grand géomètre de déterminer

toutes les propriétés et de calculer tous les éléments de la
figure considérée, même si les unes et les autres n'ont pas une
liaison évidente avec la question étudiée; nous rencontrerons
plus bas (voyez par exemple les dernières lignes du n° 7) des

exemples de l'utilité de ce système.

III. — Préliminaires de la première solution
d'Euler.

5. — Comme les coniques à centre nous assurent que le
problème catoptrique est résoluble, on est en droit de considérer
sur la courbe cherchée EF (fig. 2) deux points MM*, tels que le

rayon, MM* premier réfléchi de CM, donne par une nouvelle

1 Nous invitons le lecteur qui a des doutes sur la justesse de notre appréciation de
ce résultat à comparer la formule (4') à sa correspondante dans le système cartésien.
En écrivant l'équation du rayon réfléchi (voyez la Remarque à la fin du n° 9) sous la
forme P(X:—x) -f Q (Y — y) 0, oû P et Q sont des polynômes quadratiques en
oc, y, y on a

nm-I P' Q' I
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réflexion le rayon M* C. Il est alors évident que le rayon réfléchi
de CM* ramènerait au point G après une nouvelle réflexion; donc
les points M et M* sont entre eux dans une relation permutable.

Fig. 2.

Sur le point M* répétons les constructions et les considérations
que nous avons exposées sur M, en employant les mêmes lettres
avec un astérisque; seulement, par rapport aux signes des
grandeurs, on doit tenir compte du sens des figures. Suivant Euler,
on a alors cette double liste de formules:

CT r TS 8

CT — yVa 4- CM —
r2 + *2

r

MT — -î-yV2 + s2

2 rs _ <?2

sinCMO ^, cosCMO ^t±
MO Hi* +dr r

G*S* r* T*S* 5*

».*2 _l_
G*T* yr*Ä | CM* — —

r*

M*T*

sin CM*0

M*0

o*
— Y r*2 +

2 r* s*
| ^#2

2s* ds* r*2 — s*2

cos CM*0
r*2 +

dr*
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En menant la droite CY perpendiculaire au rayon MM* on

aura les relations suivantes 1 :

,;V 2s MV

2 s ds
OV

tg COM

dr

dr
ds

GO
2 *\/dr2 + ds2

dr

CY • 2s* M*V

OY lîlÉîl CO
ds*

2 s* \/dr*2 + ds*2

dr*

tg COM*

On en tire s* — s,
2 s ds 2 s* ds*

_
dr*
ds*

; d'où dr* 0.
dr dr*

En intégrant on peut écrire r* + r 2a. Si donc on pose

/• a -j- on aura r* a — e, c étant une jonction impaire

de s; en choisissant ad libitum une fonction de cette espèce, la

relation CS a + v déterminera une des courbes cherchées.

Remarque. — Rappelons qu'on a:

CS r P sin2 jx. tg jx. — s p sin (x cos {x. ;

il s'ensuit

p d(ù dç>

Sm[L ~~ VJp^T^w^ ' ^ V^P2 + p2dw2

p2 d p dco
s — d-J + pîd<ùi

et la relation trouvée par Euler devient

P2«*"2 I JJLlÉÎ- d-\ o •

dp2 + p2d<o2 \dp2 + P2 dw2/

c'est l'équation différentielle générale des courbes catoptriques;

nous allons voir comment Euler arrive à l'intégrer complètement,

quelle que soit la fonction v.

i Les relations précédentes, comme les suivantes, ont été déjà prouvées, ou bien

peuvent se déduire des autres; par exemple on a

r2 -j- S2 2rs _ _
CV CM sin 2p. —-— r% + g2 - ^ •
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IV. — La première solution d'Euler.

6. — Les formules à appliquer maintenant sont les suivantes
(voyez la fig. 2):

TS — s CS a + v (ç fonction impaire de s)

' nn/rr\ 2 (a + v)s (a + v)2 — s2
sin GMO 7—7——- cos GMO —(a + ç)2 + s2 ' "

(a + ç)2 + s2

CM a+ p + MO + a + v-
S*

a + v ' dv a -f v

CO =2iVÇT^. tg CMO — •

dv ds

Nous choisissons à présent comme axe une droite quelconque
AB passant par le point C. Soit R son intersection avec le rayon
réfléchi MM* et où l'angle que celui-ci forme avec l'axe; si l'on

pose cos co ^ (c étant une constante différente de 0), on aura
a/c2 u2 dusin où — d cù et u sera aussi une

c Vc2 — U2

fonction impaire de s. Soit mOr le rayon réfléchi consécutif au

/\ _ /\
rayon MOR; on aura Crm co + dtù et ensuite MOm rioù.

dr dv
Mais on a déjà trouvé MOm ^ (car r a +

7 dV du 7d(ù — ; donc on conclut:
5 Vc2 — u2

dv Vc
du

u sera une fonction impaire de s, donc inversement s et c seront
des fonctions impaires de u.

On observe à présent que dans le triangle CRM on connaît les

angles et le côté CM; en conséquence le théorème des sinus nous
donne

CR _", RV —
du du

et ensuite ,lu dv (c2 — u2) dv2
MR a + V -r h f-ry •

du (a -f V) du2
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Menons la droite MP perpendiculaire à l'axe ACB ; comme on a

MP MR sin co, à cause des formules qu'on a trouvées, on

peut écrire

/ u dv dv2 c2 — ^2\ a/c2 —
MP [a + v - du du2 a + v

où le signe ambigu du radical correspond à la symétrie de la
courbe catoptrique par rapport à l'axe AB. On a encore

u(a + v) 2u2 dv u(c2 — u2) dv2
RP MR COS CO

y '
3 —V r1 -v-2c c du c(a + v) du2

et, à cause de la valeur de CR,

dv2 u (c2 — u2) 0 dv c2 — u2 u(a + v)
Lr -,—à • ; ; r— 2 - "

du2 c (c + v) du c c

Si donc nous prenons comme premier axe d'un système
cartésien la droite AB et comme origine le point C, on aura
CP x et MP y.

Euler trouve convenable de changer dans les formules
précédentes le signe de c; par conséquent il écrit comme il suit les
formules qui donnent la solution du problème:

u(a — v)

y

c

c2 — u2

c(a — v)

^
du c2 — u2 + c \/c2 — u2 1 I du c2 — u2 — c\/c
dv u(a — v) J I dv u(a — v)

la-v + {c + u>t}\a-ç-(c-u)t} ;
1

(7)

en supposant que ces formules déterminent le point M de la
première réflexion, celles qui se rapportent au point M* de la
seconde s'en déduisent en échangeant les signes de c et du
radical.

Remarque. — A toute équation / (u, ç) 0 entre u et v

correspond une courbe catoptrique particulière; si / est une fonction

algébrique, on peut la supposer rationnelle et entière; la

même chose arrivera alors par rapport aux dérivées-^-, ;1 ri öu7 àv '

cela prouve qu'en substituant à — le rapport —^ ^ les for-

i Comme u et v sont liées par une relation, les équations (7) nous offrent peut-être
le premier exemple de la représentation des coordonnées d'une courbe à l'aide de deux
paramètres, entre lesquels il existe une relation connue.
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mules (7) deviendront algébriques en u, v\ entre elles et l'équation

f(u,v) — 0 on pourra éliminer ces quantités et on arrivera
à une équation également algébrique en x, y: cela prouve
Vexistence (Tun nombre indéfini de courbes catoptriques, toutes

algébriques.

V. — Quelques conséquences des formules trouvées.
Exemples.

7. — Les formules (7) mènent à toutes les propriétés de la
courbe catoptrique; bornons-nous à citer celles dont parle Euler.
La courbe catoptrique coupe orthogonalement l'axe en deux
points dont la distance est 2a. L'ordonnée EC du point C est
fournie en posant x 0 dans la première des formules (7); sa

valeur est donc

— 2 c (a — ç) (V'c2 — w2 i c)

i? ;

tandis que les points d'ordonnées maxima sont donnés par les

formules
dv c \/c2 — u2 dv

x c — y —
du u du

etc.1
Euler remarque encore que des formules exposées on peut

tirer aisément la représentation analytique de la caustique de la

i Les mêmes formules permettraient l'étude des relations géométriques ayant lieu
entre la courbe catoptrique et le point lumineux C. Par exemple, elles portent à la
conclusion que ce point n'appartient jamais à cette courbe. En effet, des équations

u (a — v) c2 —• u2 dv
+ 2

dv u(c2 — u2) /dv_\2 ~ o
du c(a—-v) \du)

n dv c2 — u*/dv\*a —-v + 2u- — 0
-7- "* — x \du/

c

du

on tire, en ajoutant à la première la seconde multipliée par

2c£ 0 ;
du

comme c ^ o, on a nul et les équations précédentes donnent a—-v 0; en consé-
du

quence les (7) deviennent en général x 0, y 0 et la courbe catoptrique se

réduirait au point lumineux.
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courbe considérée; en effet, si on mène OQ perpendiculaire à

l'axe et qu'on appelle p, q les coordonnées CQ et OQ du point 0,
on trouve

2 (c2 — u2) dv — 2 u ds "\/c2 — u2

\ P
e du

(8)

j 2 (c2 — u2) ds + 2 u \/c2 — u2 dv
* 77du '

8. — Euler applique ses formules à trois exemples déterminés
chacun par une relation entre u et c ; le choix est fait de manière
à obtenir des courbes algébriques; nous allons les exposer.

I. Soit c u; on en tire CR — 2c, par conséquent le point R

est fixe; tous les rayons de première réflexion passent par le

même point; on est porté alors à supposer que la courbe catop-
trique soit une section conique centrale. Pour le prouver il
suffît de remarquer que, dans notre cas, les formules (7)
deviennent

2 ac2 — (a2 + c2) u (a2 — c2) Vc2 — u2
* —ë(c_u) ' y —— (9)

en éliminant u on trouve comme résultat

a2 (x2 -j- y2) (a2 — c2 — ex)

équation donnée sans démonstration par Euler dans sa lettre à

Goldbach du 7 août 1745 (vol. cit. p. 327): on peut remarquer
que cette équation équivaut à l'équation polaire

a2 — c2
^

a (a — c cos cd) '

d'où il s'ensuit qu'il s'agit d'une ellipse ou d'une hyperbole
suivant que a < c. On arrive à la même conclusion 1 en opérant la
transformation de coordonnées déterminée par les formules
suivantes :

x X + # y y ;

i Ce qui suit ne se trouve pas chez Euler.
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on trouve alors

v a (c2 — au) v (a2 — c2) Vc2 — u2
A —7 Y —c(a — u) ' c(a — u)

d'où l'on tire
X2 Y2

1 _ \
a2 a2 — c2

II. Le second des exemples choisis par Euler correspond à

l'hypothèse qu'entre u et e il existe la relation ç — ~ c étant

une constante1; comme on a alors ~ les équations (7)

deviennent :

u (ac2 — uz)( c2 — u2 + c \/c2 — u2\ 0
c2 — u2 — c \/c2 — w

1 — Su - r._ M _ Su ——c3

c3 (ac2 — u3)

(10)

(ac2 — 3 cuz + 1uz) (ac2 + 3 eu2 + 2 uz)

Pour les interpréter géométriquement Euler se sert de la
caustique de la courbe obtenue; on a dans ce cas

s __ -y7c2 — u2
c2

et les formules (8) fournissent la représentation paramétrique
qui suit:

3

bu2(2u2 — c2) 12 u(c2—u2)2
P "3

'
' — * f11)

Pour donner à ces expressions une forme plus convenable on
peut avoir recours à l'angle co déjà considéré: comme on a

u Vc2 — u2
0

2 u — c2
cos w sin co — cos 2 to

c c c2

au lieu des équations (11), on a:

p — 6c cos2 co cos 2to q 6c sin to sin 2co (11')

i Euler a été, probablement, amené à s'occuper de ce cas par un passage de la lettre
de Ooldbach du 9 novembre 1745 (vol. cit. p. 336) où, sans égard à l'homogénéité,
on suppose v u^.
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et sous cette forme il est aisé de reconnaître qu'il s'agit d'une

hypocycloïde à trois rebroussements 1
; Euler en donne la figure

exacte et en trouve l'équation cartésienne sous la forme suivante:

p4 -h 2 p2 q2 + + 30 cpq2 — 18 cpz — 9 c2 q2 108 c2 p2 — 216 c3 p 0 ;

il peut alors conclure qu'il s'agit d'une courbe algébrique du
4me ordre. Ce qui précède nous autorise à conclure que dans le cas

considéré la courbe catoptrique est Vanticaustique d'une

hypocycloïde à trois rebroussements. On voit en même temps que,
tandis qu'on croyait que cette courbe s'était présentée pour la

première fois à Steiner vers le moitié du xixe siècle comme
enveloppe de droites de Simson d'un triangle quelconque 2, son

origine remonte à un siècle auparavant et est liée au nom dhm

autre célèbre mathématicien suisse.

III. Euler s'est occupé d'un troisième cas dans sa lettre du
7 août 1745 (vol. cit., p. 327); c'est celui qui correspond à l'hypothèse

uv c2 avec c a; il dit que la courbe à laquelle on
arrive est du 12me degré, qu'elle a la représentation paramétrique
suivante

3 a3 — a2 p — 3 au2 — u3 az — a2 u — 3 au2 — uz /— 5
^ o y o y a2 —u-

u2 u3

et qu'en conséquence il est facile de la dessiner.

VI. — La seconde solution eulérienne.

9. — Quoique le grand géomètre pût se considérer comme
satisfait pour avoir atteint le but proposé, sa correspondance
scientifique prouve qu'il ne cessa de s'occuper de la courbe
catoptrique et, utilisant l'extraordinaire faculté qu'il avait
d'imaginer des procédés originaux, il arriva à une seconde solution

tout à fait nouvelle qu'il communiqua à Goldbach le 25 janvier

1746 (vol. cit., p. 359) et dont nous allons donner un résumé.
Elle est une application de la solution de cet autre problème:

1 Voyez par exemple G-. Loria, Spezielle algebraische und transscendente ebene Kurven,
II. Aufl. (Leipzig, 1910), t. I, p. 162; édit. italienne t. I (Milan, 1930), p. 192.

2 J. Steiner, Ueber eine besondere Curve dritter Classe (und vierter Ordnung) (J. de
Crelle, t. LIII, 1856).
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En supposant la figure rapportée à un axe passant par le point
lumineux C (fig. 3), déterminer la courbe EMB en supposant
connue la relation f (r, 9) 0 qui a lieu entre le segment CR r
déterminé sur Vaxe par le rayon réfléchi et Vangle 9 qu'il forme
açec le même axe.

L'artifice employé par Euler se base sur la considération du
point U (voyez n° 4) où le rayon réfléchi relatif au point M de la

courbe coupe la parallèle menée par le point C à la normale au

point M. En appelant ^ et ~ le sinus et le cosinus de l'angle 9, il
considère encore le rayon réfléchi M0R0 consécutif à MR, et leur
intersection, qui est le point 0 de la caustique. Il tire la droite
CS perpendiculaire au rayon MR et il appelle t le segment US;
par de très ingénieuses considérations infinitésimales, il arrive

à la relation dt — r ' u, qu'il intègre en posant

/r du— '
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où l'intégrale a un sens car, d'après l'hypothèse, r et u sont liés

entre eux par la relation donnée / (r, <p) — 0. Si US t et si on

ajoute le segment RS on conclut

ru nr.duRU u -j- I
c J c

c'est-à-dire

RU a + (12)

Or si on prend arbitrairement le point R sur l'axe, on
connaîtra la valeur de r et par conséquent on aura l'angle 9 et on

pourra mener la droite RU et déterminer sur elle le point U. On

tire alors la droite CU, on la coupe en deux parties égales au
point T et on trace par ce point la perpendiculaire à la droite CU:
ce sera la tangente à la courbe cherchée au point M où elle coupe
la droite RU ; cela prouve que, en déplaçant le point R sur l'axe
choisi, cette courbe sera construite par ses points et ses tangentes.

Remarque. — Afin de se rendre compte de la valeur et de

l'originalité de la voie suivie par Euler pour arriver aux courbes
cherchées, il est bon d'avoir sous les yeux le procédé qu'on
devrait suivre si on voulait résoudre le problème par les
procédés modernes. En employant les coordonnées orthogonales,
observons à cet effet que le rayon lumineux CM et la normale au
point M (x, y) ont comme équations respectives

I^y Y~y ___!
X x ' X — x y'

et qu'elles forment entre elles l'angle a déterminé par la formule

Le rayon réfléchi aura lui aussi une équation de la forme

Y — y *= X(X — x)

et le coefficient X devra être déterminé par la condition que
l'angle que le rayon réfléchi forme avec la normale est égal à
— a; on a donc

t + _ _ x + yy'
x — yf y — xy'
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d'où l'équation suivante du rayon réfléchi:

Y — y y( 1 — y'2) — 2 xy'
X — x x(i — y'2) + 2 yy'

Cela prouve qu'on a:

_
2 y' (x2+ y2) __ ,arctg2/(l-^) -^y;, (J3)

2xy' — y (1 — y'2) ' Y & x (1 — y'2) + 2yy'

Substituant ces valeurs dans l'équation donnée / (r, <p) 0,

on aura l'équation différentielle du problème. Il s'en suit que,
par la formule (12), Euler a réduit le problème aux quadratures,
quelle que soit la fonction /(r, <p) — 0. Ajoutons que même la
simple vérification de la formule (12) au moyen des relations (13)

exige des calculs longs et assez compliqués.

10. — Pour appliquer le résultat obtenu à la recherche de la
courbe catoptrique, Euler suppose que le rayon réfléchi passe

par le point appartenant comme M à cette courbe; il remarque
alors que si, au lieu de l'angle CRM, on considère connu l'angle
CRO, on doit parvenir à la même valeur de r. Or, comme
/\ /\CRO 180° — CRM, son sinus et son cosinus sont égaux et de

signes contraires à ceux de l'angle CRM; cela prouve que r doit

être une fonction paire de ~ et Ayant choisi r de cette manière,

la courbe catoptrique s'engendre de la manière suivante :

Posons MR z et considérons le triangle CMR; nous en
tirons :

CM i r2 + z2 — 2 rz " RU — z a + f U ' ^ —y c J e

d'où

:(« + /- dr ur\
; c

z étant connue, on aura

/r sr rvo uz no uzPM y — — PR — CP x r^ c c c

CM UM RU — 2 a + f u dr
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de cette manière le problème est résolu en général. Si l'on veut
arriver à des courbes algébriques, on posera avec Euler

rr du p\
J —-— — v ou bien j •

*r du pu dr ur
c

ç sera une fonction impaire, qu'on peut choisir arbitrairement.
dv
dû1 riJe du

Comme r — on aura

' u dr dv
- — U- V

et par suite (voyez plus haut)

dv\2 Jdv\2
a — v u-p,,r"'T -Äi) ~ C*ih

_ a-Ps* (dvV
2 (a — p) ~ 2 ^ 2(a-p)W

En se rappelant que s2 + u2 c2, on arrive à la solution
suivante du problème:

(a — v)s su dv
y — — f- ^ (dv\2

— v) \du) '2 c c du 2 c (a

_
s2 dv u(a — v) us2 /dv
c du 2 c 2 [a — v) \du

(14)

on peut ajouter qu'on a

a — ç s2 fdv\2CM ~ 2 + 2 (a — [du)

On tire de ces formules qui représentent la courbe cherchée,

CM + MR a — v+ ;
du

d'où, en changeant les signes de #, <?,

CM* + M*R a+ p — u^- ;du

en conséquence
CM + MR + CM* + M* R 2a ;

donc le chemin parcouru par un point lumineux, partant de la
source C et y revenant après une double réflexion, est cons-

L'Enseignement mathém., 38me année, 1939 et 1940. 18
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tant. Euler ajoute qu'on peut tirer de cette remarque qu'on a

encore
CM + MO CM* + M* O

propriété que Goldbach a remarquée le premier.

VII. — La troisième solution du problème.

11. — Nous avons déjà dit qu'Euler a été amené à s'occuper
de nouveau du problème catoptrique par la solution qu'en donna
Oechliz, géomètre qui avait été appelé, en 1748, de Leipzig,
comme professeur à Saint-Pétersbourg. La lettre qu'il écrivit à

Goldbach sur ce sujet (vol. cit., p. 463) le 25 juin de cet an ne

nous apprend pas ce qu'il tira du travail de son collègue et ce

qu'il y ajouta; cela résulte de ce que nous allons rapporter de

son importante communication.
Soit (fig. 4) MN une courbe telle que, après une double

réflexion, elle reconduit un point lumineux à la source G d'où il est

parti. Prolongeons la
droite MN en E, F
de manière qu'on ait
MÉ MC, NF NC;
la droite EF sera d'une

E
longueur constante

(voyez plus haut) et
Fig. 4. elle sera normale dans

ses extrémités à la
courbe lieu des points M, N (voyez plus bas). Gela prouve que
la question proposée est ramenée à la recherche d'une courbe

pourvue de oo 1 cordes binormales de la même longueur: la
possibilité de telles lignes est prouvée par l'exemple du cercle; on

verra qu'il y en a un nombre infini. Lorsqu'on en a trouvée une,
la courbe catoptrique s'ensuit, après avoir choisi ad libitum le

point lumineux C 1 à l'aide de la construction suivante: Si EF
est une des cordes dont on a parlé, on tiré les droites CE, CF

i Remarquons qu'auparavant on n'avait rien dit relativement à la position du
foyer lumineux (cf. note, V) par rapport à la courbe cherchée.
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et on en détermine les milieux G, H ; les perpendiculaires menées

par ces points respectivement aux droites CE, CF coupent les

droites EF en deux points M, N de la courbe catoptrique; en
variant la corde EF, cette courbe sera décrite complètement.
Si, par exemple, on part d'un cercle, on arrive, à ce qu'affirme
Euler, à une ellipse dont les foyers sont le point lumineux et le

centre du cercle 1.

i Nous jugeons utile de donner une démonstration directe de cet énoncé (sur lequel
Euler revient ailleurs dans sa correspondance) pour montrer qu'il a besoin d'un complément.

A cet effet rapportons la figure (Figures 5 et 6) à un système orthogonal ayant
pour origine le centre du cercle donné et comme axe des abscisses la droite OC. Soient r
le rayon du cercle, £ l'abscisse du point C et y x tg a l'équation d'un diamètre
quelconque. Les coordonnées d'une E de ses extrémités seront r cos a, r sin a et l'équation
de la perpendiculaire à CE en son milieu sera

(x — r cos a)2 + (y — r sin a)2 (x — £)2 -f y2,

c'est-à-dire 2 (£ — r cos a) x — 2 r sin ay + r2 — £2 0. Les coordonnées du point M

Fig. 5. Fig. 6.

où elle coupe le diamètre considéré seront de la forme a cos a, a sin a et on trouve,
à l'aide de l'équation précédente

a
Ç2 —r2

2(£ cos a — r)

L'équation du lieu du point M s'obtiendra en éliminant a entre les équations
(£2 r2) cog ax _ 2(£ COS a — r) ' y ~ xtgcc ;

elle est donc
/E2 — r2 \2
y—2— — ?x) r2(x2 + y2) ;

cela prouve que le lieu est une section conique. En transportant l'origine des coordonnées
au milieu du segment CO cette équation devient

X2 Y2
r2 + r2 £2

' * '

T 4

les points C, 0 sont donc en effet les foyers de la courbe et la courbe est une ellipse
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12. — Pour épuiser le problème catoptrique, il faut montrer

comment est représentée analytiquement une courbe ayant oo1

cordes égales entre elles et binor-

P
maies à cette courbe (cela en prouvera

a posteriori l'existence).
Choisissons à cet effet (fig. 7) un axe

d'origine A et appelons x, y les

coordonnées AP, EP d'un point
quelconque E de la courbe; par le

point E il passe une corde binormale

dont l'autre extrémité F a

pour coordonnées AQ X,
PQ — Y. Comme la corde EF
est normale à la courbe aux points
E, F, si R est le point où elle

coupe l'axe, PR et QR seront les

/ û /
/R

Fig. 7.

sous-normales correspondantes ; donc

et, comme

on aura encore

PR „.|, QR_

EP _ FQ
PR QR '

dx dX
lÄj dY

Y dY
dX '

Si p est la valeur de ces deux fractions, on aura:

dx p dy dX — p dY

PR — QR — - PQ X —
P P P

seulement lorsque le point C est intérieur au cercle donné; lorsqu'il est extérieur elle
est une hyperbole. La droite OM, étant la bissectrice de l'angle CME, est la tangente
en M à la courbe.

Ajoutons que lorsqu'on connaît d'une section conique les axes en grandeur et position,

pour la décrire à l'aide du procédé découvert par Euler, on prendra comme point
fixe un de ses foyers et l'autre comme centre du cercle auxiliaire et comme diamètre
de ce dernier le demi-axe focal de la conique.



LA « COURBE CATOPTRIQ»D'EULER 273

Difïérentiant, on trouve

- (y - Y) %rfX - «te P(d
p V

et ensuite
(y— Y) rfp fêy — dY) (1 + p2)

pa P

dy — dY dp _ p dp

y— Y ~ p (1 + p2) p p3

Intégrant, on a:

log (y— Y) log 2 a +log p — log Vi + P2

ou bien

y— Y -S= -
•\A + p2

d'où successivement:

v 2a
£ — x —

PE + QF y — Y

y/\ + p2

2ap

\/l + p2

ÉF2 PQ2 + (PE + QF)2 4a2

La corde EF est donc d'une longueur constante 2a.

Si P est une fonction de p, on peut poser

P=P + qr_-, Y P — fl*
-%/1 + P2, V'i + p2

par conséquent

dy dP H —'' ^ cte p dy — P dp H
ap • dp

(1 + p2) 2 (1 + p2) 2

On a donc enfin

x — f P dp — y P H • (15)J F Vi + P2 Vi + P2

Chaque choix de la fonction P de p donne une solution du
problème qui, en conséquence, en admet un nombre indéfini.
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Afin que la courbe à laquelle on arrive soit continue, il faut que
la fonction P ait la même qualité; et pour obtenir ce résultat
Euler croit nécessaire (attention, lecteurs que P soit une
fonction rationnelle de p; comme exemple il suppose P 2bp
et il arrive à la courbe

bp2 + a y 2 bp -f• | \aj j y ** is ks j »

V 1 + P2 V1 + ~2

algébrique du 6me degré; enfin il dit que, non seulement il est
aisé de la construire, mais que la même chose arrive pour toutes
les courbes qu'il a obtenues.

13. —La communication de ces importants résultats produisit
chez Goldbach, comme il est bien naturel, le plus vif intérêt;
mais, dès ce moment, la correspondance des deux savants se

détacha de la courbe catoptrique pour se tourner vers les courbes
à un nombre infini de binormales égales, découvertes par Euler.
Sans nous arrêter à quelques simples conséquences tirées par
Goldbach des formules de son éminent correspondant et qui se

rapportent aux valeurs extrêmes des coordonnées (vol. cit.,
p. 470 et 483), nous remarquons les éclaircissements qu'il a
demandés sur l'existence de diamètres et en général sur la forme
des nouvelles lignes; cela amena Euler à entrer en plus de détails,
à lui fournir (id., p. 485, 490 et 498) des beaux dessins des
nouvelles courbes et — ce qui est bien plus important— à introduire
la considération méthodique de leurs développées et à exposer
quelques remarques très originales sur leurs propriétés: qu'il
nous suffise de dire que ces développées sont d'une forme
semblable à l'hypocycloïde à trois rebroussements déjà rencontrée

par notre géomètre (voir n° 8).

VIII. — Conclusions.

14. — Les considérations que nous venons de citer ont une
importance secondaire par rapport au problème qui fait l'objet
de notre mémoire; mais elles en possèdent une très grande pour
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ceux qui désirent suivre l'évolution de la pensée eulérienne, car
on y aperçoit la source de ses recherches sur les courbes orbi-
formes et triangulaires1; on y trouve même des remarques sur
leur construction qui acquérirent avec le temps et par des

nouvelles recherches du grand géomètre une portée plus générale.
Ajoutons que l'apparition récente dans la littérature mathématique

des courbes orbiformes, sous le nom de courbes d'une
largeur constante, assurent à Euler, même dans ce champ, la
place d'un vrai précurseur.

Mais les études sur lesquelles nous avons fixé par ce travail
l'attention des mathématiciens ont encore une grande valeur
au point de vue de la doctrine; car elles prouvent une fois de

plus que l'examen direct et profond d'une question géométrique
peut permettre de vaincre des difficultés (intégrations) contre
lesquelles échouent les procédés classiques de l'analyse
infinitésimale: et c'est presque par une ironie de la destinée qu'à cette
conclusion nous amène l'examen de travaux de celui qui est
avec raison considéré comme le type le plus parfait de l'analyste
pur.

Pratovecchio (Arezzo), juillet-août 1940.

1 Voyez le mémoire De curvis triangularibus (Acta Acad. Petrogr. 1778). Comp.
Spezielle alg. und transsc. ebene Kurven, I Bd. (II.Aufl., 1910), p. 374 et suiv.
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