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LA «COURBE CATOPTRIQUE» D’EULER

PAR

Gino Loria (Génes, Italie).

I[. — INTRODUCTION ET HISTORIQUE.

1. — Dans les exposés modernes de la théorie des courbes
planes, les questions traitées ont généralement comme but la
détermination de lieux des points satisfaisant & des conditions
données et moins souvent (et cela dans les applications de la
théorie des équations différentielles) dans la recherche de toutes
les lignes du plan jouissant de la méme propriété (généralement
de nature infinitésimale). Mais, au temps ou la géométrie ana-
lytique et le calcul infinitésimal étaient des matiéres dans I’état
d’enfance, les plus éminents géométres avaient le courage de se
proposer des problemes d’un caractére plus élevé (leur solution
générale comprend bien souvent des fonctions arbitraires) et ils
arrivaient a les résoudre par des artifices originaux . De cette
maniére on donnait une éclatante confirmation de ce fait que les
théories jeunes manifestent une énergie (analogue a celle des gaz
a Détat naissant) qui va s’affaiblissant lorsqu’elles marchent
vers une forme définitive, considérée enfin comme classique.
Dans I’état dont nous venons de parler se trouve la question
suivante: Déterminer toutes les courbes planes qut, comme Uellipse,
joutssent de la propriété que les rayons issus d’un point donné,

1 I1 n’est pas sans intérét de reconnaitre que ces essais heureux ont été possibles
car les mathématiciens d’autrefois ne se sentaient pas liés (comme il arrive aujour-
d’hui) & 'emploi des coordonnées cartésiennes ou polaires et aux formules relatives
considérées aujourd’hui comme le nec plus ultra des moyens auxiliaires; en effet (et
nous allons en rencontrer plusieurs exemples) les artifices auxquels ils ont recours, en
général, consistaient dans I’emploi, comme coordonnées, de différentes variables s’impo-
sant, dans chaque cas, par les conditions mémes des problémes qu’on voulait résoudre.
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aprés une double réflexion sur une de ces courbes, supposée réflé-
chissante, reviennent au point de départ?®.

La correspondance d’Euler avec Goldbach nous donne les
preuves des longues études que le grand géométre consacra a ce
beau probléme 2; ses études méritent d’étre examinées avec un
soin tout particulier, avant tout par la valeur de ce qu’elles
renferment, mais aussi parce qu’elles nous présentent le grand
analyste dans le role d’éminent représentant de la géomeétrie
infinitésimale synthétique qu’il joua au temps ou il vivait &
Berlin. ' |

2. — On trouve I’énoncé de ce probléme dans les dernieres
lignes de la lettre adressée par Euler a Goldbach le 16 février
1745, avec la déclaration qu’il I’a concu lui-méme (p. 314),
tandis que dans la suivante, qui remonte au 19 juin de la méme
année, on en lit (p. 317-20) une rapide solution, accompagnée de
la déclaration qu’elle a été proposée anonyme dans les Acta
eruditorum. Sans nous arréter sur quelques remarques des deux
géometres exposées dans deux lettres suivantes (p. 320, 327,
332 et 335), nous devons attirer ’attention de nos lecteurs sur
le mémoire annexé a la lettre d’Euler du 30 novembre 1745 sous
le titre Solutio problematis in Actis Lipsiensis A. 1745 propositt
(p- 341-354), qui va étre analysée tout au long dans notre
travail 3. Dés ce moment on en lit des mentions plus ou moins
étendues dans presque toutes les lettres échangées entre les deux
savants jusqu’a celle qui porte la date 27 aotit 1746 (op. cit.,
p. 321, 326, 329, 332, 335, 355, 358, 367, 374, 378, 386, 395);
elles sont trés importantes car on y trouve une deuxiéme solu-
tion de la question; celle-ci apparait de nouveau dés la lettre

1 Cette question appartient évidemment & la classe des problémes out ’on veut
trouver toutes les lignes planes partageant une des qualités qui caractérisent le cercle
ou les sections coniques, sur lesquelles Jean Bernoulli attira ’attention des savants
dans son mémoire Supplementum defectus Geometriae Cartesianae circa inventionem
locorum (Acta erud. 1696, p. 264, ou bien Opera omnia, t. I, p. 155).

2 Ces lettres ont été insérées dans le t. I du volume: Correspondance mathématique
et physique de quelques célébres géoméires du XVIIIe siécle, publiée par P.-H. Fuss
(Saint-Pétersbourg, 1843) auquel se rapportent toutes nos citations.

3 Cette solution a été publiée pour la premiére fois dans les Nova acta eruditorum
de I'année 1745 (p. 523) avec le titre Problema geometricum, propositum publice ab
anonymo geometra. Euler fit connaitre I’énoncé du probléme catoptrique & Daniel
Bernoulli dans sa lettre du 7 juillet 1745 (voyez Corresp. citée, t. II, p. 578); celui-ci
s’y intéressa; cela résulte de la réponse qu’il adressa a Euler le 7 septembre de 1a méme
année (méme volume, p. 585).
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écrite par Euler le 25 juin 1748 (id., p. 463 et suiv.), lorsque
Oechliz proposa un nouveau procédé de solution 1, car cela lui
donna loccasion de concevoir une troisiéme méthode pour
le résoudre, dont il s’empressa de faire part a son ami; celui-ci
s’y intéressa de nouveau, comme cela est prouvé par plusieurs
passages de la correspondance dont nous nous occupons (p. 470,
483, 485, 490, 498), le dernier est inséré dans la lettre qui porte
la date 25 juin 1749. Dans presque toutes les lettres citées on
trouve des propriétés de la courbe catoptrique (terme employé
par les deux géomeétres), avec des considérations spéciales sur les
cas ou elle est algébrique; leur étude offre un réel intérét histo-
rique, car elles appartiennent a I’époque qui précéde immeédia-
tement le moment ou le grand mathématicien bélois allait donner
aux mathématiques, appelées alors sublimes, la forme qu’elles
étaient destinées a conserver, jusqu’au jour ou le concept de
rigueur imposa une refonte ab imis fundamentis de toute
I’analyse infinitésimale.

I1I. — FORMULES FONDAMENTALES.

3. — La base de la premiére méthode de résolution imaginée
par Euler se trouve dans une remarquable formule exprimant la
distance entre un point quelconque M d’une courbe plane et le
point correspondant O de sa caustique par rapport & un point
quelconque C de son plan; O est donc l'intersection du rayon
réfléchi par rapport au rayon CM et de son consécutif. Euler
fait la recherche par un procédé aussi ingénieux que fatigant,
basé sur des considérations de géométrie. élémentaire, déve-
loppées magistralement, méme dans les cas ou les éléments
considérés (segments de droite et angles) sont infinitésimaux;
les coordonnées cartésiennes n’apparaissent en aucune facon,
car Euler suppose que la courbe considérée soit déterminée par
une relation entre le rayon vecteur o d’un quelconque M de ses
points, ayant comme origine le point lumineux C et 'angle w
qu’il forme avec la tangente & la courbe au point M. Au lieu de

1 Il ne m’a pas été possible de trouver des renseignements ni sur ce mathématicien
ni sur ses recherches citées dans le texte,
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résumer le long raisonnement eulérien, nous allons déterminer
la longueur du segment MO en fonction de p et w, en employant
tour & tour les coordonnées orthogonales z,y ayant C comme
origine et les coordonnées polaires ¢, w par rapport & ce méme
point: de cette maniére seront apaisés les doutes des personnes
qui n’ont pas une foi compléte dans les raisonnements ayant
recours & des grandeurs infinitésimales. Remarquons d’abord
que 'angle p formé par le rayon CM avec les tangentes au
point M de la courbe considérée est determme en coordonnées
orthogonales par la formule

ydxe —xdy
zdr + ydy '’

tgu =

en introduisant les coordonnées polaires elle devient

p.do
t - ’
g do
on en tire

‘Le rayon réfléchi du rayon CM aura une équation de la forme

Y—y
X —=z

= A,

ou X, Y sont les coordonnées courantes et A doit étre déterminé

par la condition qu’il forme avec CM I'angle 180° — 2u; on a
done

Ae —y N
T = B(180°—1)
ce qul prouve que
- _y—=ztgu
oz + ytg2u

Il s’en suit que 1’équation du rayon réfléchi est:
(X — &) (x sin 2p — y cos 2p) + (Y — y) (% cos 2p + y sin 2p) =0 (2)

La caustique étant I’enveloppe de cette droite, pour déter-
miner le point O il faudra combiner cette équation avec sa

L’Enseignement mathém., 38=e année, 1939 et 1940. 17
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dérivée, en considérant que z, y, p, @, u sont toutes des fonctions
de la variable en fonction de laquelle :st déterminée la position
de tout point de la courbe. Or, en introduisant les coordonnées
polaires, I’équation (2) devient:

(X — z) sin 2 — o) + (Y — y) cos 2u — o) = 0 ; (29)
s1 on écrit au lieu de cette équation les deux suivantes

X —z =o0cco0s (2p — o), Y —y=—osin (2p—o), (27)

o sera précisément la longueur cherchée, pourvu que p et o
soient déterminés en tenant compte de 1’équation dérivée de
la (27). Cette dérivée étant

[(X - cos 2p — ) — (Y —y) sin 2p — o)} 2 — ') =

= 2’ sin (2p — o) + ¥y’ cos 2pu — o) .
Pour déterminer ¢ on a I’équation
6 (2dyp —do) =dz.sin (2u — o) + dy . cos 2p — o). (3)

Or la relation (1) donne

2pcosp .dy + sinp.dp

2dp —do = YT :

et comme

dr=dp.cosw—psinw .do, dy =dp,sinw -+ pcoso . dw

le second membre de I’équation (3) prend la forme suivante:

de - sinp
Cos

L’équation (3) devient donc

20 cosw.du + sinp . dp __dp .sinu
° P COS W T cosp

”
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qui donne o, c¢’est-a-dire

pdp .sinp . : (4)

MO :29005@.dp+ sinpg . dp’

c’est précisément la formule découverte par Euler 1.

4. — Ce grand savant lui a donné une autre forme en intro-
duisant, au lieu de p et wu, deux nouvelles variables que nous

1 Une formule analogue existe pour le rayon de courbure R d’une ligne plane quel-
conque; elle peut se démontrer par des calculs analogues a ceux employés dans le texte,
comme nous allons le prouver. Nous partirons & cet effet des formules

Y—y 1 t _y—xy
X—x  y° SV = oy

dont la premiére représente 1a normale et 1a seconde a déji été utilisée par nous. En
eliminant y’ on trouve P’équation

Y—y xcosu -+ ysinu

X—x X Sin o — Y Cos W

En introduisant partiellement les coordonnées polaires elle devient

Y —vy __ cos (L — ®) |
X —x sin (p—o)’

si on lui substitue les deux
X—x=Rsin(p—w), Y—y=Rcos(p—ow),

R sera la longueur que nous cherchons, pourvu que cette longueur soit déterminée
a I’aide de I’équation dérivée de I’équation de la normale; qui est

(X — %) 08 (11— ©) — (Y — ) sin (& — &) = 0.
Cette dérivée étant
(X —x)sin (4 — o) + (Y —1y) cos (1 — )] (' — ') = y’sin (p — ) — x’ €08 (1 —)
on trouve

Yy’ sin (u— o) — x’ o8 (L — )
U-,'_’(’)'

R

Substituant & x’, y’ leurs valeurs on obtient

_pSinu.do—cos w.dp

B dy — do

et comme do a la valeur donnée par la formule (1) du texte, on peut faire disparaitre
la variable w; on arrive alors 4 I’expression suivante de R:

—p.dp

dep.sinu—l—cosu.du

qui est celle annoncée; elle est remarquable car elle contient seulement des différen-
tielles du premier ordre.
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allons définir. A cet effet menons (fig. 1) du point C la droite CT
perpendiculaire & la tangente au point M de la courbe et de son
pied T la perpendiculaire TS au rayon vecteur CM; les nouvelles

F

Fig. 1.

variables sont les longueurs CS = r et TS = s. L’inspection
de la figure prouve qu’elles sont exprimées de la maniere sui-
vante en fonction de p et p

r = psin? u, s = psinpg.cosy; (5)

inversement on a

r2 4 s2 r ,

Or, par un raisonnement géométrique tout a fait original (et
qui prend la place du changement de variables déterminé par les
formules (5) ou (5')) Euler donne & la formule (4) ’aspect suivant:

ds réd — g2

MO = 255 + —— , (&)
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d’une étonnante simplicité 1. L’étude de la méme figure mene
aux relations suivantes:

S r

sin MCT = ——— cos MCT =

SO — 9 SR ———— (6)
\/,,2 T+ s \/rz I s
comme ’angle CMO est le double de CMT, on a encore
. 2s r2 — s? ,
sin CMO = m 3 cos CMO = m » (6)

Si enfin on appelle U l'intersection du rayon réfléchi avec la
droite CT (qui est la perpendiculaire menée du point C a la
tangente au point M), on voit que I’angle TMU étant lui aussi
égal & u, les deux triangles CMT et MTU sont égaux, le triangle
CMU est isocele et la tangente n’est que la perpendiculaire menée
a sa base par son milieu.

REMARQUE. — Les formules (6), (6') et les derniéres observa-
tions nous donnent l'occasion de relever, comme un caracteére
des procédés eulériens, I’habitude du grand géomeétre de déter-
miner toutes les propriétés et de calculer tous les éléments de la
figure considérée, méme si les unes et les autres n’ont pas une
liaison évidente avec la question étudiée; nous rencontrerons
plus bas (voyez par exemple les derniéres lignes du n° 7) des
exemples de 'utilité de ce systéme.

III. — PRELIMINAIRES DE LA PREMIERE SOLUTION

D'EULER.
5. — Comme les coniques a centre nous assurent que le

probléme catoptrique est résoluble, on est en droit de considérer
sur la courbe cherchée EF (fig. 2) deux points MM*, tels que le
rayon, MM* premier réfléechi de CM, donne par une nouvelle

1 Nous invitons le lecteur qui a des doutes sur 1a justesse de notre appréciation de
ce résultat & comparer la formule (4’) & sa correspondante dans le systéme cartésien,
En écrivant I’équation du rayon réfléchi (voyez la Remarque a la fin du n° 9) sous la
forme P(X —x) + Q(Y—y) = 0, ot P et Q sont des polynomes quadratiques en

x,Y,y’,0na
N P+ Qy’
MO = }PQ .
PI ]
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réflexion le rayon M* C. Il est alors évident que le rayon réfléchi
de CM* ramenerait au point C aprés une nouvelle réflexion; donc
les points M et M* sont entre eux dans une relation permutable.

T M m
E
S
/O
p*
A (- p Q Z R B
l“\*
Fig. 2.

Sur le point M* répétons les constructions et les considérations
que nous avons exposées sur M, en employant les mémes lettres
avec un astérisque; seulement, par rapport aux signes des gran-
deurs, on doit tenir compte du sens des figures. Suivant Euler,
on a alors cette double liste de formules:

CT =r, TS = §
S 2
CT — A/7 [ &2 | CM__rZ;I:s
MT = f};\/r2+s2
‘. 2rs r2 — g2
BROMQ = o l0 = ooy
9 2 g2
MO:,.sds_I_r s
dr r

C*S* = p*x  T*8* = g*
CxT* — A/ | % CM* — P2 ;: g*2
M*T* = —*j—: AR seE

sin QM0 = R cosCMe0 = DT
M*O — 25% ds*  px2  g¥2
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En menant la droite CV perpendiculaire au rayon MM* on
aura les relations suivantes ':

W2, MV=_—"F% OV — — a9 MOV = T
r r
w=—2% co= 25/ LRl P 2t oo __25,1\@;”?5@
ig COM = gg tg COM* = — 3:—:
On en tire s* = — s, _ 2sds _ 25TAST goon drt +rdr = {

dr dr*

En intégrant on peut écrire r* + 1 = 2a. Si donc on pose

r =a -+ ¢, on aura r* = a — ¢, ¢ étant une fonction impaire

“de s; en choisissant ad libitum une fonction de cette espece, la
relation CS = a + ¢ déterminera une des courbes cherchées.

REMARQUE. — Rappelons qu’on a:
. pdo .
CS = r = psin?y , tgg:——«gp—, s = psinpcosp ;
il s’ensuit
sin pde cos dp
Vet + ptdo? YT Ve ¥ o de?
s — p2do . dw
dp2 + 92 dO)Z

ot la relation trouvée par Euler devient

_ ¢tde? e.dp-do) _ .
dpz+pzdw2+a+v<d92+p2dw2 =05

c’est Péquation différentielle générale des courbes catoptriques;
nous allons voir comment Euler arrive 4 'intégrer complétement,
quelle que soit la fonction ¢.

1 Les relations précédentes, comme les suivantes, ont été déja prouvées, ou bien
peuvent se déduire des autres; par exemple on a

r2 4+ 82  2rs

CV = CM sin 2u == - r2+s2=

2s.
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IV. — LA PREMIERE soLUTION D’EULER.
6. — Les formules & appliquer maintenant sont les suivantes

(voyez la fig. 2):

S = —s, CS = a + ¢ (¢ fonction impaire de s)

M0 — 1IN a0 = BT

CM:a+"+}zio’ MO:g—fg§+a+o_aiv
Cozzsvd;iwr, tgCMO = % .

Nous choisissons & présent comme axe une droite quelconque
AB passant par le point C. Soit R son intersection avec le rayon
réfléecht MM* et o ’'angle que celui-ci forme avec 1’axe; si 'on

u 4 . ’
pose cos w = — (¢ étant une constante différente de O), on aura

2 — 2 ,
sin :L/i—u, do — — ™ __ ot u sera aussi une
c \/02 Y
fonction impaire de s. Soit mOr le rayon réfléchi consécutif au
N AN
rayon MOR; on aura Crm = o + do et ensuite MOm = do.
. 2 A dr dy

Mais on a déja trouvé MOm = % = (car r = a + V)E ,

d d
do =% = _— 2. donc on conclut:

s \/02 2

do . \/02 — u?
§ = — ;
du

u sera une fonction impaire de s, donc inversement s et ¢ seront
des fonctions impaires de u.

On observe a présent que dans le triangle CRM on connait les
angles et le c6té CM; en conséquence le théoréme des sinus nous
donne

2¢ . dy 2u . dy
LR e ——p—» BY =——5
et ensuite
. 2u . do (@ — u?) . do?
Hh=ga+s——p (@ £ 0] . d2

T
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Menons la droite MP perpendiculaire & 'axe ACB; comme on a
MP = MR .sin o, a cause des formules qu’on a trouvées, on
peut écrire

u . dy do‘zcz-—u2>\/02—u2

MP=<a+v—2 du  du® a+ ¢ ¢

ol le signe ambigu du radical correspond & la symétrie de la
courbe catoptrique par rapport a I’axe AB. On a encore

. _ule + 9) 2u2.do_u(02: u?) do?
RP = MR cos o = c T e.du cla + o) du?

et, & cause de la valeur de CR,

do? u(c? — u? do ¢ — u? u(ar +9)

CP:dUﬁ'C(C—I—())_EL—L'C ¢

Si donc nous prenons comme premier axe d’un systéme
cartésien la droite AB et comme origine le point C, on aura
CP =2 et MP = y.

Euler trouve convenable de changer dans les formules pré-
cédentes le signe de ¢; par conséquent 1l écrit comme il suit les
formules qui donnent la solution du probleme:

1 —

_u(a——o)li_du 02—u2+c\/02~u2J

¢ dv u(a—v)

du cg—uz—c\/c2——u,2
dy ula—y9)
62___u2

m [a—o—}— (¢ + u) Z—Z] [a—o»—(c—u)@_] .1

en supposant que ces formules déterminent le point M de la
premiére réflexion, celles qui se rapportent au point M* de la
seconde s’en déduisent en échangeant les signes de u, ¢ et du
radical.

REMARQUE. — A toute équation f(u, ¢v) = 0 entre u et ¢
correspond une courbe catoptrique particuliére; si f est une fone-
tion algébrique, on peut la supposer rationnelle et entiére; la

g : r_ o ’ 6 6
méme chose arrivera alors par rapport aux dérivées S—f-, g-f ;
u 1%

cela prouve qu’en substituant a - le rapport ~—£ o Yes for-

1 Comme u et v sont liées par une relation, les équations (7) nous offrent peut-étre
le premier exemple de la représentation des coordonnées d’une courbe & Uaide de deux
parametres, enire lesquels il existe une relation connue.

(7)
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mules (7) deviendront algébriques en u, ¢; entre elles et ’équa-
tion f(u, ¢) = 0 on pourra éliminer ces quantités et on arrivera
a une équation également algébrique en x, y: cela prouve
Pexistence d’un nombre indéfini de courbes catoptriques, toutes
algébriques.

V. — (QUELQUES CONSEQUENCES DES FORMULES TROUVEES.
ExEMPLES.
7. — Les formules (7) ménent & toutes les propriétés de la

courbe catoptrique; bornons-nous & citer celles dont parle Euler.
La courbe catoptrique coupe orthogonalement ’axe en deux
points dont la distance est 2a. L’ordonnée EC du point C est
fournie en posant x = 0 dans la premiére des formules (7); sa
valeur est donc

—QC(a———o)(\/Mi c)

u2

tandis que les points d’ordonnées maxima sont donnés par les
formules
dy c \/02 — u? do

x:CEL—L’ y = u du ’

etc.1
Euler remarque encore que des formules exposées on peut
tirer aisément la représentation analytique de la caustique de la

1 Les mémes formules permettraient 1’étude des relations géométriques ayant lieu
entre la courbe catoptrique et le point lumineux C. Par exemple, elles portent a la
conclusion que ce point n’appartient jamais a cette courbe. En effet, des équations

u{a — v) c2 — u2 dv u(c2 -—u2) (dv\2
T ¢ TR W c(a —v) (Ezﬂ) =0
dv 2 —u2 /dv\2
a—v+2uo—h;—~ a__;‘(aa) ——0,

. . s . u
on tire, en ajoutant i 1a premiére la seconde multipli¢e par o

dv
QCE'L_L = 0 5

comme ¢ # 0, 0N a 3—3 nul et les équations précédentes donnent a—v = 0; en consé-

quence les (7) deviennent en général x = 0, y = 0 et la courbe catoptrique se
réduirait au point lumineux.

S|
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courbe considérée; en effet, si on méne OQ perpendiculaire a
Paxe et qu’on appelle p, ¢ les coordonnées CQ et OQ du point O,
on trouve

‘ 2(c2 — ud)do — 2u . ds . V& — u?

P= e.du
(8)
o 2 (@ — u?)ds + 2u\/c2—— u? do ‘
7= c.du
8. — Euler applique ses formules & trois exemples déterminés

chacun par une relation entre u et ¢; le choix est fait de maniére
a obtenir des courbes algébriques; nous allons les exposer.

I. Soit ¢ = u; on en tire CR = 2¢, par conséquent le point R
est fixe; tous les rayons de premiére réflexion passent par le
méme point; on est porté alors & supposer que la courbe catop-
trique soit une section conique centrale. Pour le prouver il
suffit de remarquer que, dans notre cas, les formules (7) de-
viennent
2ac® — (a2 + A)u (a® — ¢?) Ve — u?

clc — u) ’ y = cla — u)

& =

(9)

en éliminant uz on trouve comme résultat
a®(x® + y?) = (a® — ¢* — cx)

équation donnée sans démonstration par Euler dans sa lettre &
Goldbach du 7 aott 1745 (vol. cit. p. 327): on peut remarquer
que cette équation équivaut a I’équation polaire

a(a — ¢ cos )

p:

’

d’ou 1l s’ensuit qu’il s’agit d’une ellipse ou d’une hyperbole sui-
vant que a Z ¢. On arrive 4 la méme conclusion ! en opérant la
transformation de coordonnées déterminée par les formules
sutvantes:

x= X+ a, y=17Y ;

1 Ce qui suit ne se trouve pas chez Euler.
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on trouve alors

N I T RV b,
cla —u) ’ cla — u)
d’ou P’on tire
X2 Y2
a? + 2 — ¢ !

II. Le second des exemples choisis par Euler correspond a

3
Phypothése qu’entre u et ¢ il existe la relation ¢ = —?—2—, ¢ étant

dy 3u? , .
une constante!; comme on a alors . = —3 les équations (7)
deviennent:

2 __ 3 2 2 : 2 __ .2\ [ 2 __ 2 2 __ 42
u(ac u)(l——?)uc u2 + c\/¢ u)(1_3uc u —cv e u>’

ac — ud ac? — ud
B e P

m—:ﬁ (a62 —_— 30[,(,3 + 2u3) (acz + 3cu2 + 2u3)

Pour les interpréter géométriquement Euler se sert de la
caustique de la courbe obtenue; on a dans ce cas

et les formules (8) fournissent la représentation paramétrique
qui suit:
. 6u2-(2 u? — c?) 12 u (¢ — u?)

p —_— ,v._cgffwa , q — L P — . (11)

Pour donner a ces expressions une forme plus convenable on
peut avoir recours a ’angle « déja considéré: comme on a

u - Ve — 2u — c?
COS®w =— — , smeoy = —— coOsS2¢w — — -
¢ ¢ 2

au lieu des équations (11), on a:

p = 6¢ cos? » . cos 2w g = 6¢ sin o . sin 2w (117

1 Euler a été, probablement, amené & s’occuper de ce cas par un passage de la lettre
de Goldbach du 9 novembre 1745 (vol. cit. p. 336) ou, sans égard a4 I’homogénéité,
on suppose v = u3,
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et sous cette forme il est aisé de reconnaitre qu’il s’agit d’une
hypocycloide & trois rebroussements '; Euler en donne la figure
exacte et en trouve I’équation cartésienne sous la forme suivante:

PP+ 2p2g® + ¢t + 30 cpg® — 18 cp® — 9 ¢ g% + 108 ¢2 p? — 216 p = 0 ;

il peut alors conclure qu’il s’agit d’une courbe algébrique du
4me ordre. Ce qui précéde nous autorise & conclure que dans le cas
considéré la courbe catoptrique est Uanticaustiqgue d’une hypo-
cycloide a trois rebroussements. On voit en méme temps que,
tandis qu’on croyait que cette courbe s’était présentée pour la
premiére fois & Steiner vers le moitié du x1x® siécle comme enve-
loppe de droites de Simson d’un triangle quelconque 2, son
origine remonte a un siécle auparavant et est lice au nom d’un
autre célébre mathématicien suisse.

ITI. Euler s’est occupé d’un troisieme cas dans sa lettre du
7 aotit 1745 (vol. cit., p. 327); c’est celui qui correspond & 'hypo-
thése uv = ¢® avec ¢ = a; il dit que la courbe a laquelle on
arrive est du 12me degré, qu’elle a la représentation paramétrique
suivante

3a® — a?¢o — 3au® — ud a® — a?u — 3au?® — ud
— — 2__ 12
x = " , Yy = 3 vVa—u,
et qu’en conséquence il est facile de la dessiner.
VI. — LA SECONDE SOLUTION EULERIENNE.
9. — Quoique le grand géometre plit se considérer comme

satisfait pour avoir atteint le but proposé, sa correspondance
scientifique prouve qu’il ne cessa de s’occuper de la courbe
catoptrique et, utilisant ’extraordinaire faculté qu’il avait
d’imaginer des procédés originaux, il arriva & une seconde solu-
tion tout a fait nouvelle qu’il communiqua & Goldbach le 25 jan-
vier 1746 (vol. cit., p. 359) et dont nous allons donner un résumé.
Elle est une application de la solution de cet autre probléme:

1 Voyez par exemple G. LORIA, Spezielle algebraische und transscendente ebene Kurven,
II. Aufl. (Leipzig, 1910), t. I, p. 162; édit. italienne t. I (Milan, 1930), p. 192.

2 J. STEINER, Ueber eine besondere Curve dritter Classe (und vierter Ordnung) (J. de
Crelle, t. LIII, 18586). ' '
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En supposant la figure rapportée & un axe passant par le point
lumineux C (fig. 3), déterminer la courbe EMB en supposant
connue la relation f (r, @) = 0 qui a lieu entre le segment CR = r
déterminé sur Uaxe par le rayon réfléchi et angle ¢ qu’il forme
avec le méme axe.

L’artifice employé par Euler se base sur la considération du
point U (voyez ne 4) ot le rayon réfléchi relatif au point M de la

Fig. 3.

courbe coupe la paralléle menée par le point C & la normale au
point M. En appelant%et% le sinus et le cosinus de ’angle o, il

considere encore le rayon réfléchi MyR, consécutif & MR, et leur
intersection, qui est le point O de la caustique. Il tire la droite
CS perpendiculaire au rayon MR et il appelle ¢ le segment US;

par de tres ingénieuses considérations infinitésimales, il arrive
r.du
4

r.du
t:::a—-f 5
c

a la relation dt = — , qu’ll intégre en posant
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ol l'intégrale a un sens car, d’aprés 'hypothese, r et u sont liés
entre eux par la relation donnée f(r, ) =0. Si US =tet sion

ajoute le segment RS = gf, on conclut

RU:a+%—~r“m,

e c

¢’est-a-dire
uw.dr ’
C

RU = o+ [ (12)
Or si on prend arbitrairement le point R sur I’axe, on con-
naitra la valeur de r et par conséquent on aural’angle ¢ et on
pourra mener la droite RU et déterminer sur elle le point U. On
tire alors la droite CU, on la coupe en deux parties égales au
point T et on trace par ce point la perpendiculaire & la droite CU:
ce sera la tangente a la courbe cherchée au point M ou elle coupe
la droite RU; cela prouve que, en déplagant le point R sur 'axe
choisi, cette courbe sera construite par ses points et ses tangentes.

REMARQUE. — Afin de se rendre compte de la valeur et de
Poriginalité de la voie suivie par Euler pour arriver aux courbes
cherchées, 1l est bon d’avoir sous les yeux le procédé qu’on
devrait suivre s1 on voulait résoudre le probleme par les pro-
cédés modernes. En employant les coordonnées orthogonales,
observons & cet effet que le rayon lumineux CM et la normale au
point M (z, y) ont comme équations respectives

Y _ y Y—y 1
X z’ X—z ¥y

et qu’elles forment entre elles I'angle « déterminé par la formule

_ r+uyy

tg a -
s y—zy

Le rayon réfléchi aura lui aussi une équation de la forme

et le coefficient 2 devra étre déterminé par la condition que

Iangle que le rayon réfléchi forme avec la normale est égal a
— a; on a donc

1+ry 2+ oy

A—y y— zy’

b
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d’ou I'équation suivante du rayon réfléchi:

Y—y y(l—y?) —2zy
X—z z(l —y? + 2yy

Cela prouve qu’on a:

2y (22 + y?) y(1 —y?%) — 2xy’
= 7 ol = —arct ; - .
2xy" —y(1 — y'? ¥ g33(1*—.1/2)+2yy

(13)

Substituant ces valeurs dans I’équation donnée f (r, ¢) = O,
on aura l’équation différentielle du probléme. Il s’en suit que,
par la formule (12), Euler a réduit le probléme aux quadratures,
quelle que soit la fonction f(r, ¢) = 0. Ajoutons que méme la
simple vérification de la formule (12) au moyen des relations (13)
exige des calculs longs et assez compliqués.

10. — Pour appliquer le résultat obtenu a la recherche de la
courbe catoptrique, Euler suppose que le rayon réfléchi passe
par le point appartenant comme M a cette courbe; 1l remarque
alors que si, au lieu de ’angle CRM, on considére connu ’angle

CRO, on doit parvenir a la méme valeur de r. Or, comme
i as
CRO = 180° — CRM, son sinus et son cosinus sont égaux et de

signes contraires a ceux de 'angle CRM; cela prouve que r doit
R . . u s .. -
étre une fonction paire de —et —. Ayant choisir de cette maniere,

la courbe catoptrique s’engendre de la maniére suivante:
Posons MR = z et considérons le triangle CMR; nous en
tirons:

CM=\/7‘2—|—Z2——2rz%:RU~——z=a+ /’u.dz_*z ,

¢
2
(a+fu.cdz> e
Q(a—i— /’ucdr_¥>

d’ou

Zz ==

z étant connue, on aura

PM=y=>, PR==, C(P=z=r—2=
w.dr

c

CM=UM=RU-_z—_——a+[

R T e o
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de cette maniére le probléme est résolu en général. Si 'on veut
arriver 4 des courbes algébriques, on posera avec Euler

r.du . w.dr ur
f = ¢ ou bien f D= e — ]
¢ ¢ ¢

¢ sera une fonction impaire, qu’on peut choisir arbitrairement.

dy
Comme r = ¢~ , on aura

et par suite (voyez plus haut)

RM——=<

do\?  ,[(dp\?
a—-v+uﬁ)—c(a&)wa_p+ do 52 (@)2
2(a — ) 2 “TuT 2a—v) \du)

En se rappelant que s® 4 u? = ¢ on arrive a la solution sui-
vante du probléme:

_ {a—y9)s +Sui(i__ s3 do\?
¥y = 2¢ ¢ du  2¢c(a—v) (du) ’ "
Zx_fdv__u(a-—v)+ ust  (do\? A5
T ¢ du 2¢ 2(a — o) (@) ’

on peut ajouter qu'on a

a— ¢ 52 dv\2
M =5+ s (@)

On tire de ces formules qui représentent la courbe cherchée,

CM+MR=a-—-—-o+u-‘£g -
B du
d’ou, en changeant les signes de u, ¢,
CM* + M*R =a+v——~u‘£‘i ;
du

en conséquence
CM + MR + CM* 4+ M*R = 2a ;

donc le chemin parcouru par un point lumineux, partant de la
source C et y revenant aprés une double réflexion, est cons-

L’Enseignement mathém., 38=e année, 1939 et 1940. 18
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tant. Euler ajoute qu’on peut tirer de cette remarque qu’on a
encore
CM 4+ MO = CM* + M* O,

propriété que Goldbach a remarquée le premier.

VII. — LA TROISIEME SOLUTION DU PROBLEME.

11. — Nous avons déja dit qu’Euler a été amené a s’occuper
de nouveau du probléme catoptrique par la solution qu’en donna
Oechliz, géometre qui avait été appelé, en 1748, de Leipzig,
comme professeur & Saint-Pétersbourg. La lettre qu’il écrivit a
Goldbach sur ce sujet (vol. cit., p. 463) le 25 juin de cet an ne
nous apprend pas ce qu’il tira du travail de son colléegue et ce
qu’ill y ajouta; cela résulte de ce que nous allons rapporter de
son importante communication.

Soit (fig. 4) MN une courbe telle que, aprés une double ré-
flexion, elle reconduit un point lumineux & la source C d’ou 1l est
parti. Prolongeons la
droite MN en E, F
de maniére qu’on ait
ME = MC, NF = NC;
la droite EF sera d’une

longueur constante

(voyez plus haut) et
Fig. 4. elle sera normale dans

ses extrémités a la

courbe lieu des points M, N (voyez plus bas). Cela prouve que
la question proposée est ramenée & la recherche d’une courbe
pourvue de oo ! cordes binormales de la méme longueur: la pos-
sibilité de telles lignes est prouvée par I'’exemple du cercle; on
verra qu’il y en a un nombre infini. Lorsqu’on en a trouvée une,
la courbe catoptrique s’ensuit, aprés avoir choisi ad ltbitum le
point lumineux C1! & 'aide de la construction suivante: Si EF
est une des cordes dont on a parlé, on tire les droites CE, CF

1 Rémarquons qu’auparavant on n’avait rien dit relativement & la position du
foyer lumineux (cf. note, V) par rapport & la courbe cherchée.
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et on en détermine les milieux G, H; les perpendiculaires menées
par ces points respectivement aux droites CE, CF coupent les
droites EF en deux points M, N de la courbe catoptrique; en
variant la corde EF, cette courbe sera décrite complétement.
Si, par exemple, on part d’un cercle, on arrive, a ce qu’affirme
Euler, & une ellipse dont les foyers sont le point lumineux et le
centre du cercle 1.

1 Nous jugeons utile de donner une démonstration directe de cet énoncé (sur lequel
Euler revient ailleurs dans sa correspondance) pour montrer qu’il a besoin d’un compié-
ment. A cet effet rapportons la figure (Figures 5 et 6) & un systéme orthogonal ayant
pour origine le centre du cercle donné et comme axe des abscisses la droite OC. Soient r
le rayon du cercle, £ I’abscisse du point C et y = x . tg a I’équation d’un diamétre quel-
conque. Les coordonnées d’une E de ses extrémités seront r cos o, 7 Sin o et I’équation
de la perpendiculaire & CE en son milieu sera

(x —1rCos 0)2 + (y—rsin «)2 = (x — £)2 -+ y2,
c’est-4-dire 2 (6 —rcosa) x — 2 rsin ay + r2—£2 = 0. Les coordonnées du point M

Fig. 5. Fig. 6.

ou elle coupe le diametre considéré seront de la forme o . cos «, o . sin « et on trouve,

a l’aide de I’équation précédente
E2 — p2

T Y Ecosa—n
L’¢équation du lieu du point M s’obtiendra en ¢liminant « entre les équations

_ (E2—r2) cos a

* 2 cos e — 1)’ y=xtga;
elle est done
g2.____r2 - 2
( 5 ——§x> = 72(x2 4 y2?) ;

cela prouve que le lieu est une section conique. En transportant 1’origine des coordon-
nees au milieu du segment CO cette équation devient

X2 Y2
——Ji-————a :1 N
w e T
4 4

les points C, O sont donc en effet les foyers de la courbe et la courbe est une ellipse



272 G. LORIA

12. — Pour épuiser le probléme catoptrique, il faut montrer
comment est représentée analytiquement une courbe ayant oo!
cordes égales entre elles et binor-

E males & cette courbe (cela en prou-
—— vera a posteriori I'existence). Choi- i
sissons & cet effet (fig. 7) un axe

d’origine A et appelons z, y les
coordonnées AP, EP d’un point
quelconque E de la courbe; par le
A point E il passe une corde binor-
male dont l’autre extrémité F a
pour  coordonnées AQ = X,
PQ = — Y. Comme la corde EF
F est normale & la courbe aux points
Fig. 7. E, F, si R est le point ou elle
coupe 'axe, PR et QR seront les

sous-normales correspondantes ; donc

_ . _ ay |
PR—-—-yd—x, QR———"Y.ZiT(,
et, comme
EP _ FQ
PR QR
on aura encore
dz _ dX
dy  dY

Si p est la valeur de ces deux fractions, on aura:

de = p .dy , dX = p.dY

PR———%’ QR=——-, PQ=X—z="1 :

seulement lorsque le point C est intérieur au cercle donné; lorsqu’il est extérieur elle
est une hyperbole. La droite GM, étant la bissectrice de I’angle CME, est la tangente
en M 4 la courbe.

Ajoutons que lorsqu’on connait d’une section conique les axes en grandeur et posi-
tion, pour la décrire a I’aide du procédé découvert par Euler, on prendra comme point
fixe un de ses foyers et I’autre comme centre du cercle auxiliaire et comme diamétre
de ce dernier le demi-axe focal de la conique.




LA « COURBE CATOPTRIQUE» D’EULER 273

Différentiant, on trouve

dy — dY —(y———Y}@; = dX — dz = p(dY — dy)
P P
et ensuite
(y—7Y).dp _ (dy—aY)(1 + p?
p? o
dy —dY dp __dp pdp'

y—Y  p(t+p) p P
Intégrant, on a:

log(y —Y) = log‘2a+10gp——]0g\/1 + p?,

ou bien
2ap
y—Y - —
V1 + p?
d’ou successivement :
X — 2a
V1 ¥+ p?
PE 4+ QF = y — Y = — 22 __
V1 + p2

EF’ = PQ® + (PE + QF)2 = &4a? .

La corde EF est donc d’une longueur constante 2a.
Si P est une fonction de p, on peut poser

ap ap
V1t p? Vi+ p
par conséquent-
a.dp ap . dp
dy = dP + = 3 dx = p .dy = Pdp + -
(1+ p?)° (1 + p?)°®
On a donc enfin
a ap
¢=(Pdp————, y=P+ (15)
J V1 + p? V1 + p

Chaque choix de la fonction P de p donne une solution du
probléme qui, en conséquence, en admet un nombre indéfini.
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Afin que la courbe a laquelle on arrive soit continue, il faut que
la fonction P ait la méme qualité; et pour obtenir ce résultat
Euler croit nécessaire (attention, lecteurs!) que P soit une
fonction rationnelle de p; comme exemple il suppose P = 2bp
et 1l arrive & la courbe

ap

V1+pt’

x = bp? — + a, y = 2bp +

5
V1 + p?

algébrique du 6me degré; enfin il dit que, non seulement il est
aisé de la construire, mais que la méme chose arrive pour toutes
les courbes qu’il a obtenues.

13. — La communication de ces importants résultats produisit
chez Goldbach, comme il est bien naturel, le plus vif intérét;
mais, dés ce moment, la correspondance des deux savants se
détacha de la courbe catoptrique pour se tourner vers les courbes
a un nombre infini de binormales égales, découvertes par Euler.
Sans nous arréter & quelques simples conséquences tirées par
Goldbach des formules de son éminent correspondant et qui se
rapportent aux valeurs extrémes des coordonnées (vol. cit.,
p. 470 et 483), nous remarquons les éclaircissements qu’il a
demandés sur I’existence de diameétres et en général sur la forme
des nouvelles lignes; cela amena Euler & entrer en plus de détails,
a lui fournir (id., p. 485, 490 et 498) des beaux dessins des nou-
velles courbes et — ce qui est bien plus important — a introduire
la considération méthodique de leurs développées et & exposer
quelques remarques tres originales sur leurs propriétés: qu’il
nous suffise de dire que ces développées sont d’une forme sem-
blable a I’hypocycloide & trois rebroussements déja rencontrée
par notre géometre (voir n° 8).

VIII. — CoNCLUSIONS.

14. — Les considérations que nous venons de citer ont une
importance secondaire par rapport au probleme qui fait 'objet
de notre mémoire; mais elles en possédent une tres grande pour
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ceux qui désirent suivre I’évolution de la pensée eulérienne, car
on y apercoit la source de ses recherches sur les courbes orbi-
formes et triangulaires *; on y trouve méme des remarques sur
leur construction qui acquérirent avec le temps et par des
nouvelles recherches du grand géomeétre une portée plus générale.
Ajoutons que 'apparition récente dans la littérature mathéma-
tique des courbes orbiformes, sous le nom de courbes d’une
largeur constante, assurent a Kuler, méme dans ce champ, la
place d’un vrai précurseur.

Mais les études sur lesquelles nous avons fixé par ce travail
I’attention des mathématiciens ont encore une grande valeur
au point de vue de la doctrine; car elles prouvent une fois de
plus que I'examen direct et profond d’une question géométrique
peut permettre de vaincre des difficultés (intégrations) contre
lesquelles échouent les procédés classiques de I’analyse infini-
tésimale: et c’est presque par une ironie de la destinée qu’a cette
conclusion nous ameéne 'examen de travaux de celui qui est

avec raison considéré comme le type le plus parfait de I’analyste
pur.

Pratovecchio (Arezzo), juillet-aotit 1940.

1 Voyez le mémoire De curvis triangularibus (Acta Acad. Petrogr. 1778). Comp.
Spezielle alg. und transsc. ebene Kurven, I Bd. (IL.Aufl., 1910), p. 374 et suiv.
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