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244 E. TURRIERE

ces courbes comprennent les cercles et les spirales logarith-
miques

r
— == const.
a

Courbes analogues aux géodésiques.

2. — Considérons maintenant I’équation différentielle
x” yll z’/
a y' z | =0, (2)
X y — 2z

définissant les courbes (C) caractérisées par la propriété suivante:
le plan osculateur au point courant M est constamment paralléle
a la droite OM, symétrique de OM par rapport au plan Ozy de
coordonnées.

L’équation ci-dessus ou les dérivées sont prises par rapport a
une variable ¢ quelconque est susceptible de prendre diverses
formes par choix convenable de variable.

La variable étant I’azimut polaire 0

x = rcos0 , y = rsin0 ,
I’équation prend la forme

A2z -_.r’' dz rr” — 2r’2 — p2
e trae T 20 ¥

Si la fonction r(0) de dérivées r’ et r” est donnée, la question
est de déterminer celles des courbes (C) situées sur un cylindre
donné paralléle a I’axe Oz; elle dépend d’une équation linéaire,
homogeéne du second ordre en z.

En introduisant la fonction

I’équation se met sous une forme plus simple:

d2z u’ dz u + u”

W—FQ—J—d—e—— ” z =0, (4)
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En prenant r pour variable, mais r’ et r” désignant toujours
les dérivées de r relativement a 6, I'équation est la suivante:

d?z 72\ dz rr” — 2p'% — r?
P fld v __ 9l 22 e 3 = G, 5
? 2dr2 4 <r v ],) 77 -+ 2 (5)
3 dz . .
u’z% + uzu”a; + wdlu + u)z =0 . (6)

Ces équations s’appliqueront & la détermination des courbes
considérées situées sur les surfaces

En posant

I’équation linéaire

n+ 1 de 0
r P 2 _9pn—1)p =1
5 7 dr+(n n ) o

aura l'intégrale:

21~§—2.n—n’2
. 1 n+l .
P_w‘n—f:—2n+1+Ar ’
d’ot 0 (z) par quadrature.
3. — La courbe (C) peut aussi étre représentée au moyen de

son plan osculateur

xcost + ysint + pz = H ;

v et H sont deux fonctions arbitraires de ¢. Le point d’oscu-
lation M de ce plan a pour cote

__ H+ H
P‘—{_V-”

H” et u" désignant les dérivées secondes de H et p en fonction
de t. La condition de parallélisme du plan osculateur avec la
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droite de direction (x, y, — 2) est

xcost 4+ ysint—z = 0 .
2uz = H |
2u(H + H”) = H(p + @) .

O
”_1+2H (7)

c’est une équation
Y = f(X)-Y

lorsque I'une ou l’autre des fonctions w ou H est imposée,
Pautre restant I'inconnue.

On peut encore se donner une fonction T arbitraire de ¢ et

déterminer les intégrales des deux équations indépendantes
Pune de l'autre

H” =T -H:; u =@2T+1)p.

4. — Si la courbe projetée sur Oxy est représentée en coor-
données polaires tangentielles

xcos @ + ysing = @

—xsing + ycose = &’

o)

2’ cose + y’'sin ¢ =
— x'sing + y'cose = R

2"cose + y’sing = — R
— x”sing + y”"coso = R’

ou R désigne I'expression algébrique
R — B + a”

du rayon de courbure et R’ sa dérivée en ¢, I’équation différen-
tielle est

—R R’ z”
0 R 5" = j
Q) » —z
c’est-a-dire

d*z dLog (®WR) dz R
do? deo 3c§*5)_Z =0 (8)
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5. — Ainsi I’équation générale des courbes (C) a été ramenee
a diverses formes d’équations linéaires et homogénes du second
ordre. Mais le choix de la variable aréolaire lui donnera la forme
la plus expressive.

Les coordonnées = et y d’'une courbe quelconque du plan Ozy
satisfaisant aux identités (1)

Fr | o
do? R @3 ’
R =0
I’équation des courbes (C) sera donec
= oo (9

c’est-a-dire I’équation dérivant de (1) par le changement de
variable ¢ en io.

La détermination des courbes (C) connaissant leurs projec-
tions sur Ozy s’effectue done en exprimant x et y en fonction
de la variable aréolaire 6. La solution générale est

z = Az (io) + By(io) .

(A et B constantes arbitraires).

6. — Par exemple, au cercle

x = cos 0, y = sin 0 , 0

Il

20

sera associée:
3 = Ach6 4 Bsh9.

A P’hyperbole x = chu, y = shu, u = 20, sera associée:

z2 = Acosu 4+ Bsinu .
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A la spirale hyperbolique r6 = 1,

20 =ry—r,
on associera:
__ach6 4 bsho
o 6
7. — Dans le cas de 'hyperboloide de révolution
22 = r? — q?

?

a méridienne équilatere, I’équation (3) est identique a celle des
géodésiques de la surface. L’intégration se fait par les fonctions
elliptiques.

8. — Détermination des surfaces (%) dont les lignes asympto-
tiques sont des courbes (C).

La propriété des courbes (C) d’étre les courbes dont le plan
osculateur au point (z, y, z) courant est paralléle a la direction de
droite (z, y, — z) donne immédiatement 1’équation

pr +qy +2z=0

aux dérivées partielles, linéaire, du premier ordre des surfaces
(X).
z est donc une fonction homogene, de degré — 1 de x et v.
L’équation générale des surfaces (%) peut donc étre prise sous

la forme

1 @
B == —@
r

@ est une fonction arbitraire de 6.

Les lignes (C) tracées sur cette surface ont pour équation

2_2 9 ’
o =" alor—an

r

?d /—‘—‘1”7?—:—_‘*7
Log (f) - i‘/ \/liq% P
0 &

Elles sont identiques aux deux familles d’asymptotiques.
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Ces surfaces (X) rentrent dans le type plus général des surfaces

de JAMET
xf <%> = F(z)

avec ici

d’ott une nouvelle méthode de réduction & une quadrature de
leurs lignes asymptotiques.
En particulier, la surface de révolution

sVE S+ =1,

engendrée par la rotation de ’hyperbole équilatére autour d’une
asymptote, admet pour asymptotiques et courbes (C) les courbes

L —
273 = 22 ,
2 g2
2r2 = r? |

6
7':7’06‘/2.

Ce sont des spirales logarithmiques, en projection sur Ozy. Le
meéme résultat s’obtient comme cas particulier n = — 1 des
surfaces

du paragraphe 2.
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