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244 E. TURRIÈRE

ces courbes comprennent les cercles et les spirales logarithmiques

r
m

const.

2. —

Courbes analogues aux géodésiques.

Considérons maintenant l'équation différentielle

x" y" z"

x' y' z'

X y — z

o (2)

définissant les courbes (C) caractérisées par la propriété suivante:
le plan osculateur au point courant M est constamment parallèle
à la droite OM, symétrique de OM par rapport au plan Oxy de

coordonnées.

L'équation ci-dessus où les dérivées sont prises par rapport à

une variable t quelconque est susceptible de prendre diverses
formes par choix convenable de variable.

La variable étant l'azimut polaire 0

x r cos 0

l'équation prend la forme

d2 z - r' dz rr"
de*~ 7

y r sin 0

— 2r's
-z — 0 (3)

Si la fonction r(6) de dérivées r' et r" est donnée, la question
est de déterminer celles des courbes (C) situées sur un cylindre
donné parallèle à l'axe Oz; elle dépend d'une équation linéaire,
homogène du second ordre en 2.

En introduisant la fonction
1

l'équation se met sous une forme plus simple:
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En prenant r pour variable, mais r' et r" désignant toujours
les dérivées de r relativement à 0, l'équation est la suivante.

(5)

u
,d2z o'

dr2 + u2u"^ + U2(u + u")z 0 (6)

Ces équations s'appliqueront à la détermination des courbes

considérées situées sur les surfaces

En posant

l'équation linéaire

\ 2

0>

2 dr

aura l'intégrale:

n + 1
+ (re2 _ 2 71 — 1) p 1

^
1 + *2.n-n'2

1
a n+1

p sn^ir+i + Ar

d'où 0 (z) par quadrature.

3. — La courbe (C) peut aussi être représentée au moyen de

son plan osculateur

x cos t + y sin t + [iz H ;

[1 et H sont deux fonctions arbitraires de t. Le point d'oscu-
lation M de ce plan a pour cote

H -h H"
z — VTH- + P-

H" et p." désignant les dérivées secondes de H et [i en fonction
de t. La condition de parallélisme du plan osculateur avec la
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droite de direction (x, 2/, — z) est

c'est une équation

x cos t + y sin t — 2 0.
2 [lz H

2 (i. (H + H") H (pi + n")

^=1+2^.
pi H

Y" /(X) • Y

P)

lorsque l'une ou l'autre des fonctions pi ou H est imposée,
l'autre restant l'inconnue.

On peut encore se donner une fonction T arbitraire de t et
déterminer les intégrales des deux équations indépendantes
l'une de l'autre

H" T • H ; pi" (2T + 1) pi

4. — Si la courbe projetée sur 0xy est représentée en
coordonnées polaires tangentielles

x cos 9 + 2/ sin 9 — ®

— a: sin 9 + y cos 9

x' cos 9 + y' sin 9 0

— x' sin 9 + 2/' cos 9 R

x" cos 9 + y" sin 9 — R

— x" sin 9 + y" cos 9 R'

où R désigne l'expression algébrique

r m + m"

du rayon de courbure et R' sa dérivée en 9, l'équation différentielle

est

-R R' 2"

0 R 2' 0

& W — 2

c'est-à-dire
d2z dLog(ojR) dz R
d 92 ß?9 d 9 W

(8)



SUR DES COURBES GAUCHES 247

5. — Ainsi l'équation générale des courbes (C) a été ramenée
à diverses formes d'équations linéaires et homogènes du second

ordre. Mais le choix de la variable aréolaire lui donnera la forme
la plus expressive.

Les coordonnées x et y d'une courbe quelconque du plan 0xy
satisfaisant aux identités (1)

d2x kx
dd2 + R©3 ~~ '

d2V Jty__ — o
da2 R©3

l'équation des courbes (C) sera donc

(9)
da2 R®3 ' [ '

c'est-à-dire l'équation dérivant de (1) par le changement de
variable a en ia.

La détermination des courbes (C) connaissant leurs projections

sur Oxy s'effectue donc en exprimant x et y en fonction
de la variable aréolaire c. La solution générale est

z — Ax (ia) + By(ia)

(A et B constantes arbitraires).

6. — Par exemple, au cercle

x — cos 0, y sin 0 0 — 2a,

sera associée:
s Ach0-fBsh0.

A l'hyperbole xch «, ysh u,2 a, sera associée :

A cos u + B sin u
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A la spirale hyperbolique rd 1,

2 G r0 — r
on associera:

a ch 0 + b sh 6

7. — Dans le cas de l'hyperboloïde de révolution

z2 r2 — a2

à méridienne équilatère, l'équation (3) est identique à celle des

géodésiques de la surface. L'intégration se fait par les fonctions
elliptiques.

8. — Détermination des surfaces (S) dont les lignes asympto-
tiques sont des courbes (C).

La propriété des courbes (C) d'être les courbes dont le plan
osculateur au point (x, y, z) courant est parallèle à la direction de

droite (x, y, — z) donne immédiatement l'équation

px + qy + z 0

aux dérivées partielles, linéaire, du premier ordre des surfaces

(2).
2 est donc une fonction homogène, de degré — 1 de x et y.
L'équation générale des surfaces (S) peut donc être prise sous

la forme
1 cl)

z — —e ;

r

O est une fonction arbitraire de 0.

Les lignes (C) tracées sur cette surface ont pour équation

<ï>" + 4 -<D/ — ®'2

Log (§) ± I
•

Elles sont identiques aux deux familles d'asymptotiques.
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Ces surfaces (2) rentrent dans le type plus général des surfaces
de Jamet

„/({) _ F „>

avec ici

FM J ;

d'où une nouvelle méthode de réduction à une quadrature de

leurs lignes asymptotiques.
En particulier, la surface de révolution

z \/x2 + y2 1

engendrée par la rotation de l'hyperbole équilatère autour d'une
asymptote, admet pour asymptotiques et courbes (C) les courbes

2z'* z2

2 r'2 r2

e

/yr r0evz

Ce sont des spirales logarithmiques, en projection sur 0xy. Le
même résultat s'obtient comme cas particulier n — 1 des
surfaces

du paragraphe 2.
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