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SUR DES COURBES GAUCHES

PAR

E. Turritre (Montpellier).

La variable aréolaire.

1. — Etant donnée une courbe plane quelconque, posons
xdy — ydx = r?d06 = 2do ;

o est l'aire balayée par le rayon vecteur OM & partir d’une
position fixe OM,. Les dérivées étant prises par rapport a cette
variable o:
xy’ —yx’ =2
zy" —yx" =0 ;
Posons:

Soient, d’autre part, le rayon R de courbure et @ la distance
du pole O a la tangente courante:

1 _ x/y// . y/xr/ _ 2
B = (x'2 T 47 8, — z® 1 ) 3
zy’ — yx’ 2 ds 2

D = — C — = = .
\/x’2+y’2 \/x’2+y’2’d° o >

Iexpression de A est donc
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D’ou les équations générales

(1)

pour une courbe générale du plan. .

Si cette courbe est supposée décrite par un point matériel
libre sous I’action d’une force centrale émanant du centre fixe O,
le temps est proportionnel a I’aire ¢ (loi des aires); les équations
précédentes exprimant que la loi de force centrale est

r
F—:—_‘mC?;Rms.

(m masse du point, C constante des aires). Cette expression
générale de la force centrale pour une trajectoire quelconque
est due & Morvre; il la communiqua en 1705, sans démonstra-
tion, & Jean BERNoULLI, qui la démontra en 1706.

Comme autres formules de dérivation avec la variable o,
citons les suivantes:

r2g’ = 2, r’:—%—cotgv .
d2r ré
2 ER— —
Pde Tt <1 Rza3> ’
279

LA
de* ~— ®* \' Rwo/-

4
'—d‘-gé—-— == énrn_4 [1. — ers + (n -_— 1) COtg2 V] >
= 4L nrn—4 7 T Rap
a* (Logr) 4 [2 re rt
d o? RGN T W] )

 —

2 —n 4+ (n—1) L "4].

I en résulte que r et o sont linéairement lides pour les courbes
rt = Ra3; celles-ci comprennent les cercles de centre O et les
spirales hyperboliques r0 = const.

De méme, r® et o sont liées linéairement pour

r=Ro& ;



244 E. TURRIERE

ces courbes comprennent les cercles et les spirales logarith-
miques

r
— == const.
a

Courbes analogues aux géodésiques.

2. — Considérons maintenant I’équation différentielle
x” yll z’/
a y' z | =0, (2)
X y — 2z

définissant les courbes (C) caractérisées par la propriété suivante:
le plan osculateur au point courant M est constamment paralléle
a la droite OM, symétrique de OM par rapport au plan Ozy de
coordonnées.

L’équation ci-dessus ou les dérivées sont prises par rapport a
une variable ¢ quelconque est susceptible de prendre diverses
formes par choix convenable de variable.

La variable étant I’azimut polaire 0

x = rcos0 , y = rsin0 ,
I’équation prend la forme

A2z -_.r’' dz rr” — 2r’2 — p2
e trae T 20 ¥

Si la fonction r(0) de dérivées r’ et r” est donnée, la question
est de déterminer celles des courbes (C) situées sur un cylindre
donné paralléle a I’axe Oz; elle dépend d’une équation linéaire,
homogeéne du second ordre en z.

En introduisant la fonction

I’équation se met sous une forme plus simple:

d2z u’ dz u + u”

W—FQ—J—d—e—— ” z =0, (4)
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