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pour q'2 des valeurs s'échelonnant de 1,40 à 1,75, il y aura une
forte présomption en faveur de la loi L2, pour toutes les séries;
de 1,65 à 2,40, ce sera la loi L^; de 1,50 à 2, ce sera une loi
intermédiaire entre Lx et L2, mais ne variant pas d'une série à l'autre.
Si au contraire les résultats obtenus donnent une dispersion assez

grande, q2 variant par exemple de 1,40 à 2,40, il y a lieu de

penser que la loi n'est pas la même pour toutes les séries; l'hypothèse

que ce soit tantôt Lx, tantôt L2, est alors plausible, mais
ce sera plus probablement une loi contenant au moins un
paramètre variable et qui varie de Lx à L2.

Bien entendu enfin on ne devra pas exprimer de conclusion
définitive sans avoir rapproché les résultats statistiques de

l'étude des conditions des expériences. Si, par exemple, quinze
séries d'expériences sont comparables entre elles et que les cinq
autres aient été effectuées dans des conditions différentes, c'est
un fait dont il faudra évidemment tenir compte.

SUR UN PROCÉDÉ MIXTE POUR RÉSOUDRE LES
PROBLÈMES DE CAUCHY ET DE GOURSAT RELATIFS

A L'ÉQUATION DES TÉLÉGRAPHISTES

PAR

Radu Badesco (Cluj, Roumanie).

Le problème célèbre de la télégraphie dans, un fil rectiligne
indéfini, ramené pour la première fois par Kirchhoff à une
équation aux dérivées partielles du type -

ö2U _ ÔU „ ô2U
ôî2 + ôï Y? ' W

où A, B, C sont des constantes positives, a été étudié de différents

points de vue par un grand nombre de savants. Les travaux
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de Poincaré et de M.-E. Picard en particulier 1 ont apporté
une contribution des plus importantes pour éclaircir cette
question.

Résumons le problème mathématique correspondant à la
détermination de la force électrique U en tenant compte de la
théorie de Maxwell. On considère une décharge électrique
ayant lieu dans un intervalle (a, b) d'un fil rectiligne indéfini
et l'on trouve que la composante de la force U cherchée est

donnée, au moment £, et au point M, d'abscisse x, par l'équation
aux dérivées partielles (1) dans laquelle:

A est le produit de la constante électrique par le coefficient
de perméabilité électrique,

B est le double du produit par iz du coefficient de conductibilité

par celui de la perméabilité électrique,
C est la vitesse de la lumière.
Un choix convenable des unités nous permet de supposer

A 2B — C, de sorte que l'équation correspondante à (1) s'écrira:

*5 + 2^-^ 0 (1)
dt2 + dt dx2 U

C'est une équation aux dérivées partielles du second ordre et
du type hyperbolique, les caractéristiques étant les bissectrices
des axes. Cette équation peut être réduite à la suivante

52y 52 y
Is»

en effectuant le changement de fonction

U(xt t) e~l. \(x, t) (3)

ou bien à l'équation plus simple

ô2Ww W (4)ôXôY

en faisant les changements de variables

2 X t + x 2 Y — t — x (5)

1 E. Picard, Bulletin de la Soc. math, de France, t. 22, 1894.
H. Poincaré, Comptes rendus Ac. des Sciences, Paris, 1893.
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Cette dernière équation a comme caractéristiques les droites
parallèles aux axes de coordonnées OX et OY.

Dans une série de leçons faites à la Sorbonne, en 1925,
M. E. Picard a indiqué quatre types de problèmes concernant
les équations linéaires aux dérivées partielles du second ordre et
du type hyperbolique, avec des conditions initiales distinctes.
Nous aborderons ici les deux premiers, — le problème classique
de Cauchy et celui de Goursat, — en utilisant la méthode élémentaire

des séries, convenablement modifiée pour traiter le cas
où les données sont seulement intégrales au sens de Riemann.
Il est bien connu que cette méthode ne fournit généralement
qu'une solution soumise à de grandes restrictions mais, dans les

cas particuliers choisis — équations (2) et (4) — elle peut
donner la solution même pour des fonctions non bornées.

Le problème de Cauchy.

Considérons l'équation (2) et proposons-nous de déterminer la
solution Y (x, t) qui satisfasse aux conditions 1

Y (x, 0) A(x)
0

B.(x) > Pour 0 < a < x < b (6)

les fonctions connues A(x) et B(x) étant nulles en dehors de
l'intervalle de perturbation (a, b). C'est le problème bien connu de
Cauchy qui donne la solution du problème des télégraphistes
en tenant compte du changement (2).

Pour cela, supposons que la solution V (x, t) cherchée peut
être représentée par une série de Taylor en t

Y<*' *) S nRr>> • (7)

71 0

Calculant alors les dérivées qui figurent dans (2) et procédant
à une identification en t,on trouve l'équation aux différences
mêlées

d2 R
Rn(*) Rn—2*») + —fôT (1 0,1,...) (8)

i La perturbation électrique a lieu au moment t 0,
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qui nous permettra de calculer toutes les fonctions Rn(x). En
éliminant, par des dérivations, les fonctions

R2p—2 ^ ' E2p-4 ix) 1 • • * y R4 ix) R2 (x)

^2^—1 3 ' ' R5 (x) R3 (^) >

on obtient par un calcul élémentaire, pour n 2/?,

*V*) 2 R^fx) (9)

i~0

et pour n 2 p + 1

R2p+1 (x) 2 RM) (ie, (10)

i — 0

Dans les expressions de ces fonctions figurent seulement les

fonctions R0(x) et Rx(^), ainsi que leurs dérivées. Comme les

coefficients qui figurent dans les sommes (9) et (10) sont justement

les coefficients binomiaux, il est naturel de chercher une
représentation intégrale des fonctions R0(^) et Ri (a?) telle
que les dérivées paires par rapport à x se reproduisent multipliées
sous le signe f par une certaine puissance de la variable
d'intégration. Une telle représentation est donnée par l'intégrale

3

R-oM 501 f K (m) • h (xu) • du (11)

oc

car la dérivée seconde est

t
R0(a?) — K(m) T?" (xu) u2du

a

et si l'on suppose que la fonction F (x) est une solution de

l'équation différentielle

F"(s) ± F(s) # (12)

l'intégrale correspondante répondra aux conditions requises.
Prenons a 0 et ß 00 pour retrouver une classe d'intégrales
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connues et posons
oo

R0 (x)I K o(u)cos • du

0 • (13)

R Kx (u) sin (xu) du
b

K0(w) et K1(u) étant deux fonctions intégrales pour u > 0.

Or, les égalités (13) peuvent être inversées par les relations bien

connues

2 f*
R0 (x) — — / R0(^) • cos (xu) du (14)

TU *J
0

(x > 0)

2 {*
Kx(^) — — j Rj(m) sin (xu) du

0

de sorte que les fonctions K0(&) et Kj(^) sont parfaitement
définies dès que l'on connaît R0(x) et Rx(^), et réciproquement.

On calcule maintenant très facilement les sommes (9) et (10)

oo

R2p(s) K0(w) • (1 — u2)p cos (xu) du
o (15)

R,2p-f i (x) J Kj (w) (1 — u2)p sin (xu) du

et l'on obtient immédiatement l'expression correspondante de la
solution cherchée 1 observant que les séries qui figurent sous le

signe / sont justement les développements des fonctions
cos t -y/a2 — 1 et sin t yV — 1

oo
r»

Y (x. t)— K0(it) cos (V«2 — 1 • cos du +
6 (16)

oo
/»

+ K1(u) siu ï\/w2 — 1 sin tew) dw

1 II est inutile de se préoccuper si l'on peut intervertir les signes f et 2.
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On vérifie immédiatement que cette expression est une solution
de l'équation (2), quelles que soient les fonctions K0 (u) et Kx (u)
assujetties à la seule condition de rendre les intégrales
correspondantes convergentes. Nous devons donc supposer que les

intégrales
OC 00 00 oo

| | K0(u) | du | | K±(u) | du f | R0(m) I du et f | R1(u) | du (17)
0 0 0 0

ont un sens, conditions identiques à celles qui se réfèrent à

l'inversion des relations (13)1.
Les conditions de Cauchy (6) nous permettent de déterminer

par le même procédé les fonctions K0 (u) et K± (u), car ces conditions

deviennent dans notre cas

oo oo

f K0(u) cos (xu) du A (x) f —^L==rsin (ux) du — B (x)
o i Vu*- 1

mais, pour pouvoir inverser la seconde, il faudra supposer que
l'intégrale

KAu)/ \/u
du

a elle-aussi un sens. Le problème est ainsi résolu.
La solution (16) présente un grand avantage sur celle qui

correspondrait aux expressions (9) et (10), cas où l'on doit
supposer les fonctions R0 (x) et Rx (x) développables en une série
de Taylor pour toutes les valeurs positives de x.

Nous avons retrouvé par cette voie élémentaire certains des

résultats de Poincaré sous une forme légèrement différente.
Par cette même voie, nous pourrons traiter aussi le problème
de Goursat qui nous conduira à des résultats plus intéressants.

Le problème de Goursat.

Ce problème consiste dans la détermination de la solution
d'une équation aux dérivées partielles du second ordre et du type

i Voir E. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles...
Oauthier-Villars, Paris, 1927, page 42. On a des conditions analogues pour les fonctions

A Oc) et B (x).
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hyperbolique en se donnant les valeurs que cette solution prend
sur deux caractéristiques de systèmes différents. Nous considérerons

ici le cas de l'équation (4) car notre procédé de résolution
n'est applicable que si les caractéristiques mentionnées sont des

droites parallèles aux axes. Les données seront donc, pour
a < x < è,1

W(s0î y) A (y) W (x y0) B(x) (18)

avec la condition de continuité A (y0) B (#0). Posons cette
fois-ci

W(S, y)y (y~y°)nRn(«) (19)
71 0

ô2W
et, après avoir calculé la dérivée procédons à une
identification en (y— y0) dans l'équation (4). On obtient le système
infini d'équations aux différences mêlées

dRn (x)

dx Rn-1 (s) (^ 1,2,

que l'on peut résoudre de la manière suivante: on intègre la
première relation (n 1) de x0 à x

%

Ri {%} J R0 (*^i) dx-^ 4" R^ (Xq)

X0

on fait de même de la seconde (n 2) et, si l'on tient compte de
la relation précédente, on obtient

OC OC 2

R2 ix) j* dx2 Jr0 (34) dx1 + Ri (x0) {x x0) 4" R2 (^0) •

X0 Xq

De proche en proche on arrive à l'expression générale de Rn (x)

Rn (x) J dxnjJdxn_z ...jR„+ 2 Ri <*«> ^
Xn Xn Xn ^ 1

n-i

iT
1 Nous remplaçons X et Y par x et y.

L'Enseignement mathém., 38me année, 1939 et 1940. 16
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Les n intégrales du second membre peuvent être remplacées par
une seule intégrale en utilisant une formule bien connue 1

R» {n J- i)n_t RoW • + S 7^
Xn t=l

(x — ^o)71

•)

et alors la solution cherchée pourra être écrite sous la forme 2

Les conditions (18) donnent

W(*„ y)2 R„K) A (y) W(*,y.) R„(s, B

n= 0

et de la première on déduit que les constantes Rn(^0) sonf res_

pectivement égales aux coefficients tayloriens correspondants au
développement de la fonction A (y) au voisinage de la valeur y0 :

Rn W dnA(y) A<n)(t/o)

y-yo

Sous la forme (20), la solution W (x^ y) exige l'existence du
développement taylorien de la fonction donnée A (2/), tandis que B(#)
est supposée seulement intégrable au sens de Riemann. Cette

remarque nous conduit à chercher si on ne peut pas former une
solution de (4) en prenant l'intégrale qui figure dans la relation
(20) et en lui ajoutant l'intégrale obtenue de celle-ci par le

changement entre elles des variables x et y [l'équation (4) se présente
sous la même forme après ce changement3] et dans laquelle A (t)
serait remplacée par B(t). En effet, la fonction

y
Aïl-i

W(x,y)=A(y) + / .77..'^ I''r v (»-».h
/ n\ (n -

x

/OOs
n= 1

+ B(*) + / y (* Bit) (21,

x0

1 Voir par exemple Ooursat, Analyse, t. II, 4me éd., p. 520.
2 II est inutile, ici aussi, de se préoccuper si l'on peut intervertir les signes S et /.

b2 w b2 w3 On se borne à la recherche des fonctions W pour lesquelles on a -bx by by bx
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est bien une solution de l'équation (4), ce qui est facile à vérifier,
mais elle ne satisfait plus aux conditions (18) car

pour x x0W (x0, y)A (y)+ B
(22)

pour y y0 W{x, y0) A (yQ) -f B (x) B (x0) + B(x)

Comparant alors les conditions (18) et (22), on observe que, pour
trouver la solution de (4) qui vérifie les conditions (2), il suffit
d'ajouter à la fonction (21) la solution particulière de (4) prenant
sur les droites caractéristiques x — x0 et y y0 la valeur
constante — B(#0). Cette solution s'obtient immédiatement de la
fonction (20) en y faisant

RnW 0 (n 1, 2 car Rn(a;0) A(n) (y0)

et la fonction A (y) est maintenant une constante, — et remplaçant

B (x) par — B (x0) ; on trouve

-Bw-Bw r,yo)?v/ z-JJ (n — 1! n\
«-- n= 1 v '
Xo

solution que l'on peut encore écrire sous la forme

— B (x0)2 — B M J0 [2 V(s — ®o) (2/o -^)]
n=0 [ ''

(23)

J0(&) étant la fonction de Bessel d'ordre zéro.
La fonction que l'on obtient en ajoutant à (21) la solution (23)

satisfait bien aux conditions (18); c'est la solution cherchée du
problème de Goursat.

Si la fonction A (y) admet une dérivée intégrable dans (y0, ?/),
une intégration par parties de la première intégrale figurant
dans (21) nous permet d'englober le terme (23) dans la somme
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y

qui est sous le signe / : 1

ï/o

XX

/ooE
n= 1

x0

y
X» 00

La même opération peut se faire lorsque B(x) admet une
dérivée intégrable dans (x0l x).

La solution du problème de Goursat mise sous la forme
(21 -f- 24) ou (23) correspond aux cas suivants:

1° les fonctions A (y) et B (y) sont développables en série de

Taylor respectivement dans les intervalles a < x0 < x < b et
c < Vo < V < d; dans ces conditions, la solution W(x, y) est
définie dans le rectangle correspondant à ces intervalles et on
peut la représenter aussi à l'aide des développements qui figurent
dans la relation (20). On peut évidemment prendre aussi x < x0

et y < y0.

2° Les fonctions A (y) et B (y) sont bornées et intégrables dans
les intervalles mentionnés. Tel est l'exemple suivant:

quand B (xQ) — A (y0) 0. Ces fonctions ne sont pas développables

dans le voisinage des valeurs y0 et xQ.

3° Les fonctions A (y) et B(x) sont seulement intégrables, mais
elles admettent des valeurs finies au point M0(;r0, y0). Tel est le

cas des fonctions:

A (y) Vy — Vo » B(s) y/iX Xq

i On observe que

My) _A(yo) yWd(
Vo
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où les numérateurs sont des fonctions bornées et intégrables,

assujetties à vérifier pour les premiers membres l'égalité
B(x0) A(y0). La solution W(#, y) est alors infinie sur les

caractéristiques x xx et y yx comme A (y) et B(x). Ce cas

nous semble nouveau, les deux premiers rentrant dans les études

générales faites du problème de Goursat.

Remarque sur Véquation

r\2W
HWK(2/)W(^' V) ' <25)

Dans une Note présentée à l'Académie des Lincei1, nous
avons montré que la méthode de M. Picone permettant la
résolution des équations linéaires aux dérivées partielles du IIe ordre
et du type hyperbolique, pouvait être étendue aussi à des équations

du même type ayant des coefficients non bornés, mais
intégrables. En effet, prenant l'équation particulière (25), où H (x) et
K (y) sont des fonctions données, intégrables au sens de Riemann,
on peut tout de suite se rendre compte sur cet exemple particulier
du motif pour lequel cette extension a été possible. Il suffit pour
cela de faire les changements de variables

X fH(x) dxetY K (y) dy (26)

qui nous conduisent à l'équation (4) pour laquelle le problème
de Goursat a été déjà résolu. Il en est donc de même du problème
correspondant à l'équation (25) et ainsi sa résolution ne suppose
que l'intégrabilité des fonctions H (x) et K {y) qui ne figurent
que dans les changements de variables (26).

Cette méthode s'étend aussi à l'équation linéaire générale
du IIe ordre et du type hyperbolique, extension que nous
exposerons dans un autre recueil.

i Vol. XXVII, série 6-a, I sem., fasc. 12, p. 624.
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