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pour q; des valeurs s’échelonnant de 1,40 & 1,75, il y aura une
forte présomption en faveur de la loi L,, pour toutes les séries;
de 1,65 & 2,40, ce sera la loi L;; de 1,50 & 2, ce sera une loi inter-
médiaire entre L,; et L,, mais ne variant pas d’une série a I’autre.
Si au contraire les résultats obtenus donnent une dispersion assez
grande, q; variant par exemple de 1,40 & 2,40, il y a lieu de
penser que la loi n’est pas la méme pour toutes les séries; I’hypo-
these que ce soit tantét Ly, tantot L,, est alors plausible, mais
ce sera plus probablement une loi contenant au moins un para-
meétre variable et qui varie de L; a L.

Bien entendu enfin on ne devra pas exprimer de conclusion
définitive sans avoir rapproché les résultats statistiques de
Iétude des conditions des expériences. Si, par exemple, quinze
séries d’expériences sont comparables entre elles et que les cing
autres alent été effectuées dans des conditions différentes, c’est
un fait dont il faudra évidemment tenir compte.

SUR UN PROCEDE MIXTE POUR RESOUDRE LES
PROBLEMES DE CAUCHY ET DE GOURSAT RELATIFS
A L’EQUATION DES TELEGRAPHISTES

PAR

Radu Bapesco (Cluj, Roumanie).

Le probléme célébre de la télégraphie dans un fil rectiligne
indéfini, ramené pour la premiére fois par KIRCHHOFF & une
equation aux dérivées partielles du type

2U U
A3e tBE—C

02U
Y (1)

ou A, B, C sont des constantes positives, a été étudié de diffé-
rents points de vue par un grand nombre de savants. Les travaux
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de PoiNcARE et de M.-E. Picarp en particulier ! ont apporté
une contribution des plus importantes pour éclaircir cette
question.

Résumons le probléeme mathématique correspondant a la
détermination de la force électrique U en tenant compte de la
théorie de MaxweLL. On considére une décharge électrique
ayant lieu dans un intervalle (@, b) d’un fil rectiligne indéfini
et 'on trouve que la composante de la force U cherchée est
donnée, au moment ¢, et au point M, d’abscisse z, par I’équation
aux dérivées partielles (1) dans laquelle:

A est le produit de la constante électrique par le coeflicient
de perméabilité électrique,

B est le double du produit par = du coefficient de conductibi-
1ité par celui de la perméabilité électrique,

C est la vitesse de la lumiere.

Un choix convenable des unités nous permet de supposer
A = 2B = C, de sorte que ’équation correspondante a (1) s’écrira:

22U oU U _ | )
32 T4 a2 Y )

C’est une équation aux dérivées partielles du second ordre et
du type hyperbolique, les caractéristiques étant les bissectrices
des axes. Cette équation peut étre réduite a la suivante

02V 0z2vV
32 og T V=0 2)

en effectuant le changement de fonction

ou bien a I’équation plus simple

02W

sXoy — V¢ )

en faisant les changements de variables

2X =t+x, 2Y =t—=x . (5)

1 E. PicARD, Bulletin de la Soc. math. de France, t. 22, 1894.
H. PoiNcARE, Comptes rendus Ac. des Sciences, Paris, 1893.
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Cette derniére équation a comme caractéristiques les droites
paralléles aux axes de coordonnées OX et OY.

Dans une série de lecons faites & la Sorbonne, en 1925,
M. E. Prcarp a indiqué quatre types de problémes concernant
les équations linéaires aux dérivées partielles du second ordre et
du type hyperbolique, avec des conditions initiales distinctes.
Nous aborderons ici les deux premiers, — le probléme classique
de CaucHY et celui de GoursaT,—en utilisant la méthode élémen-
taire des séries, convenablement modifiée pour traiter le cas
ou les données sont seulement intégrales au sens de RIEMANN.
I1 est bien connu que cette méthode ne fournit généralement
qu’une solution soumise & de grandes restrictions mais, dans les
cas particuliers choisis — équations (2) et (4) — elle peut
donner la solution méme pour des fonctions non bornées.

Le probléme de Cauchy.

Considérons I’équation (2) et proposons-nous de déterminer la
solution V (z, ¢) qui satisfasse aux conditions !

oV

Vie, 0) = Al), |5

]t=0 ~Bz), pour0<a<z<b, (6
les fonctions connues A(x) et B(z) étant nulles en dehors de I’in-
tervalle de perturbation (a, b). C’est le probléme bien connu de
CavcHY qui donne la solution du probléme des télégraphistes
en tenant compte du changement (2).

Pour cela, supposons que la solution V (z,#) cherchée peut
étre représentée par une série de TAYLOR en ¢

Vie, ) = > -—1Rn(x) ; (7)

Calculant alors les dérivées qui figurent dans (2) et procédant
a une identification en ¢, on trouve I'équation aux différences
mélées |
AR, _,

dx?

R,(x) =R, _,(x) + n=0,1, ... (8)

1 La perturbation électrique a lieu au moment t = 0.
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qui nous permettra de calculer toutes les fonctions R,(x). En
éliminant, par des dérivations, les fonctions

Rzp_z () Rgp_4 (), .., Ry(2), Ry(x) ,
RQp__1 (.’IC), RQp_~3 (Zl’)) LI | Rs (x) b R3 (x) ’

on obtient par un calcul élémentaire, pour n = 2p,

b .

etpourn=2p -+ 1

P
(p —1) (p — 1+ 1) -
op) = 317 2 REP2 () . (10)

Dans les expressions de ces fonctions figurent seulement les
fonctions R,(x) et R,(x), ainsi que leurs dérivées. Comme les
coefficients qui figurent dans les sommes (9) et (10) sont juste-
ment les coefficients binomiaux, il est naturel de chercher une
représentation intégrale des fonctions R,(z) et R,(x) telle
que les dérivées paires par rapport & x se reproduisent multipliées
sous le signe [ par une certaine puissance de la variable d’inté-
gration. Une telle représentation est donnée par l'intégrale

Ry () :fK(u) . F(zu) . du (11)

et s1 I'on suppose que la fonction Fz(x) est une solution de
I’équation différentielle

F’(z) = &+ F(x) , (12)

I’intégrale correspondante répondra aux conditions requises.
Prenons a = 0 et £ = oo pour retrouver une classe d’intégrales
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connues et posons

/.K . cos (xu) . du ,

[Kl . sin (zu) . du ,

K,(z) et K,(u) étant deux fonctions intégrales pour u > 0.
Or, les égalités (13) peuvent étre inversées par les relations bien

connues

R, (z) — %f Ry (u) . cos (zw) . du , (14)

2 [Rl . sin (zu) . du

F‘ I

de sorte que les fonctions K, (u) et K,(z) sont parfaitement
définies dés que ’on connait R,(z) et R, (z), et réciproquement.
On calcule maintenant trés facilement les sommes (9) et (10)

oo

Ry, () = ’ Ko(u) . (1 — u®)P . cos (zu) . du ,

famiod

Ry, (@) :J" K, (1) . (1 — u?)? . sin {zu) . du
0

et 'on obtient immeédiatement I’expression correspondante de la
solution cherchée! observant que les séries qui figurent sous le
signe [ sont justement les développements des fonctions

costy/u2—1etsint/u2—1

o0

Vi, t) = (Ko(u) . COS t\/uz———— 1. cos {zu) . du +
0 (16)

+ | Kylw) . s ey/ud —1 . sin (on) . du .
0

1 11 est inutile de se préoccuper si ’on peut intervertir les signes S et =
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On vérifie immédiatement que cette expression est une solution
de ’équation (2), quelles que soient les fonctions K, (u) et K, (u)
assujetties & la seule condition de rendre les intégrales corres-
pondantes convergentes. Nous devons donc supposer que les
intégrales

oC
»

(J; W | du | {1] () | du f|R (u) | du etoflRl(u)[du (17)

ont un sens, conditions identiques a celles qui se référent a
I'inversion des relations (13)1

Les conditions de CAucuY (6) nous permettent de déterminer
par le méme procédé les fonctions K, (z) et K, (u), car ces condi-
tions deviennent dans notre cas

[ Kolu) - cos (zu) . du = Ala) , f—wsin (uz) . du = B(%) ,

mais, pour pouvoir inverser la seconde, il faudra supposer que
I'intégrale

/‘ } Ky(w) |4,

¢ Ve —1

a elle-aussi un sens. Le probléme est ainsi résolu.

La solution (16) présente un grand avantage sur celle qui
correspondrait aux expressions (9) et (10), cas ou l'on doit
supposer les fonctions R, (z) et R, (x) développables en une série
de TAvLOR pour toutes les valeurs positives de «.

Nous avons retrouvé par cette voie élémentaire certains des
résultats de PoiNcARE sous une forme légérement différente.
Par cette méme voie, nous pourrons traiter aussi le probléme
de GOURSAT qui nous conduira a des résultats plus intéressants.

Le probléme de Goursat.

Ce probléme consiste dans la détermination de la solution
d’une équation aux dérivées partielles du second ordre et du type

1 Voir E. PicarDp, Legons sur quelques types simples d’équations aux dérivées partielles...
Gauthier-Villars, Paris, 1927, page 42. On a des conditions analogues pour les fonc-
tions A (x) et B (x).
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hyperbolique en se donnant les valeurs que cette solution prend
sur deux caractéristiques de systémes différents. Nous considé-
rerons ici le cas de ’équation (4) car notre procédé de résolution
n’est applicable que si les caractéristiques mentionnées sont des
droites paralleles aux axes. Les données seront donc, pour
a <z < b,!

Wiz, y) = Aly), Wiz, y) = Blx) , (18)

avec la condition de continuité A (y,) = B (z,). Posons cette
fois-ci

2 (y — 3/0 (x) (19)

02
et, aprés avoir calculé la dérivée —— , procédons & une identi-

dz dy
fication en (y — y,) dans 1’équation (4). On obtient le systéme

infini d’équations aux différences mélées

que 'on peut résoudre de la maniére suivante: on 1ntegre la
premiére relation (n = 1) de 2, & =z

X
Ry(e) = | Ro(a)day + Ryfeo)
Xo
on fait de méme de la seconde (n = 2) et, si ’on tient compte de
la relation précédente, on obtient

R, (z) = fdxz fl%o (1) dzy + Ry(xo) - (2 — z) + R, (xo) .

De proche en proche on arrive a ’expression générale de R,, ()

n—i

X X X1
III — )
Xo &0 -Xo ‘ .

1 Nous remplagons X et Y par x et y.

L’Enseignement mathém., 38me année, 1939 et 1940. 16
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Les n intégrales du second membre peuvent étre remplacées par
une seule intégrale en utilisant une formule bien connue?!

n—i

@ — g™t Ry | dt+2R(oi(T_xoz))_!_

o
=
&
l
=
[~
R
ga"ﬁa

et alors la solution cherchée pourra étre écrite sous la forme 2
Les conditions (18) donnent

Wi, 1) = 3\ R, (o) L2 — Aly) . Wega) = Rele) = B(a)

et de la premiére on déduit que les constantes R, (z,) sont res-
pectivement égales aux coeflicients tayloriens correspondants au
développement de la fonction A (y) au voisinage de la valeur y,:

Rwazﬁﬁﬁl — A™(y,) .
" dy"™  1y_y,

Sous la forme (20), la solution W (z, y) exige I’existence du déve-
loppement taylorien de la fonction donnée A (y), tandis que B(z)
est supposée seulement intégrable au sens de Riemann. Cette
remarque nous conduit & chercher si on ne peut pas former une
solution de (4) en prenant I'intégrale qui figure dans la relation
(20) et en lui ajoutant 'intégrale obtenue de celle-ci par le chan-
gement entre elles des variables x et y [’équation (4) se présente
sous la méme forme apres ce changement 3] et dans laquelle A (¢)
serait remplacée par B (¢). En effet, la fonction

Yy
[0 ]
—1
(x — xo)n (y t)n
— dt
Wz, y) = Aly) +f2 ST Al d+
n=1
Yo
X
a (z— )"y — )
0 i
B(t) - dt 21
+B(x)+f2 m—1)Tnl (2) (21)
n=1
%o
1 Voir par exemple GOURSAT, Analyse, t. 1T, 4= éd., p. 520. ¢
2 I1 est inutile, ici aussi, de se préoccuper si I’on peut intervertir les signes X et [. i

2W 2W

3 On se borne a la recherche des fonctions W pour lesquelles on 4 —— = ——.
ox by by dy dx
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est bien une solution de I’équation (4), ce qui est facile & vérifier,
mais elle ne satisfait plus aux conditions (18) car

pour x = &z, Wiz,, y) = Aly) + Bz, ,
A

(22)
(o) + B(z) = B(z) + B) .

pour y =y, Wiz, y,

Comparant alors les conditions (18) et (22), on observe que, pour
trouver la solution de (4) qui vérifie les conditions (2), il suffit
d’ajouter a la fonction (21) la solution particuliére de (4) prenant
sur les droites caractéristiques z = z, et y = y, la valeur cons-
tante — B (z,). Cette solution s’obtient immédiatement de la

fonction (20) en y faisant
Rn(xo) =0 ’ (n = 13 27 “') ] car Rn(xﬂ) = A(n)(yO) ’

et la fonction A(y) est maintenant une constante, — et rempla-
cant B (z) par — B (x,); on trouve

solution que I’on peut encore écrire sous la forme

—Ba) 3 =B g g2V w e — )
n=0 )
(23)

Jo(u) étant la fonction de BrsseL d’ordre zéro.

La fonction que I'on obtient en ajoutant & (21) la solution (23)
satisfait bien aux conditions (18); c¢’est la solution cherchée du
probléme de GoURSAT. |

Si la fonction A (y) admet une dérivée intégrable dans (y,, y),
une intégration par parties de la premiére intégrale figurant
dans (21) nous permet d’englober le terme (23) dans la somme
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qui est sous le signe [ : 1
Yo

x-—t —
Wiz, y) = fZ n__iy,n'y") B (t) dt +

f; y*t xmx") dAdt()dt. (24)
Yo

La méme opération peut se faire lorsque B(z) admet une
dérivée intégrable dans (z,, ).

La solution du probléeme de GoursaT mise sous la forme
(21 4 24) ou (23) correspond aux cas suivants:

10 les fonctions A (y) et B(y) sont développables en série de
TAYLOR respectivement dans les intervalles ¢ <z, <z < b et
c <Yy <y <d; dans ces conditions, la solution W (z, y) est
définie dans le rectangle correspondant a ces intervalles et on
peut la représenter aussi a I’aide des développements qui figurent
dans la relation (20). On peut évidemment prendre aussi z << x,
et y < Y.

20 Les fonctions A(y) et B(y) sont bornées et intégrables dans
les intervalles mentionnés. Tel est 'exemple suivant:

=Vy—y, Bl)=+Vz—a,

quand B (z,) = A(y,) = 0. Ces fonctions ne sont pas dévelop-
pables dans le voisinage des valeurs y, et ;.

3° Les fonctions A(y) et B(a:) sont seulement intégrables, mais
elles admettent des valeurs finies au point M, (%, y,). Tel est le
cas des fonctions:

Afy) = Aely) B(z) = __Bo(2) a <z < b
/\3/(3/ - yl)_f ’\3/(93 — ;)2 e <y, <d

1 On observe que

v
A(y) —A(yo) = | ——dt .
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ot les numérateurs sont des fonctions bornées et intégrables,
assujetties & vérifier pour les premiers membres I'égalite
B (xz,) = A(y,). La solution W(z, y) est alors infinie sur les
caractéristiques z = xz, et y = y; comme A(y) et B(z). Ce cas
nous semble nouveau, les deux premiers rentrant dans les études
générales faites du probleme de GoURSAT.

Remarque sur I'équation

0PW
0x 0y

= H(z) K(y) W(z, y) . (25)

Dans une Note présentée & 1I’Académie des Linceil, nous
avons montré que la méthode de M. PicoNE permettant la réso-
lution des équations linéaires aux dérivées partielles du I1¢ ordre
et du type hyperbolique, pouvait étre étendue aussi & des équa-
tions du méme type ayant des coefficients non bornés, mais inté-
grables. En effet, prenant I’équation particuliere (25), ou H (x) et
K (y) sont des fonctions données, intégrables au sens de RIEMANN,
on peut tout de suite se rendre compte sur cet exemple particulier
du motif pour lequel cette extension a été possible. Il suffit pour
cela de faire les changements de variables

X——-/‘H(x)-dx et Y= [K(y-dy (26)

qui nous conduisent a I’équation (4) pour laquelle le probléme
de GOURSAT a été déja résolu. Il en est donc de méme du probléme
correspondant & I’équation (25) et ainsi sa résolution ne suppose
que I'intégrabilité des fonctions H (z) et K(y) qui ne figurent
que dans les changements de variables (26).

Cette méthode s’étend aussi & I’équation linéaire générale
du II¢ ordre et du type hyperbolique, extension que nous expo-
serons dans un autre recueil.

1 Vol. XXVII, série 6-a, I sem., fasc. 12, p. 624.
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