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A PROPOS DU THEOREME FONDAMENTAL
DE LA THEORIE DES JACOBIENS

PAR

Paul L&vy (Paris).

1. — Dans presque tous les traités d’analyse, on énonce, et
Pon croit démontrer, le théoréme suivant: la condition nécessaire
et suffisante pour que n fonctions u; de n variables x;(i, ] = 1, 2,
..., ) sotent liées par une relation est que leur jacobien (que nous
désignerons par 3) soit nul.

Cette condition est bien nécessaire. Mais, en ce qui concerne
la réciproque, nous nous proposons de montrer que, non seule-
ment la démonstration classique est insuffisante, mais qu’il y a
quelques réserves a faire sur le théoréme lui-méme.

Observons d’abord que son énoncé manque singuliérement de
précision. D’une part, si ’on parle de jacobien, c¢’est sans doute
qu’on admet implicitement la continuité des u; et 'existence
de leurs dérivées premiéres; nous admettrons aussi qu’elles sont
continues. D’autre part, il faut préciser la région de 'espace
décrite par le point x (de coordonnées z;); cela peut étre I'espace

entier, et dans ce cas on ne change rien d’essentiel en supposant
ou,
les dérivées 6}1 bornées; si c’est une région finie et fermée de

, j
I’espace, elles le sont nécessairement; si de plus deux points

quelconques de cette région peuvent étre reliés par une ligne
continue dont la longueur ne dépasse pas une valeur donnée,
les u; eux-mémes sont bornés, ce qui modifie essentiellement la
nature du probléme posé.

Il faut d’autre part préciser la signification des mots « fone-
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tions liées par une relation ». La premiére idée qui vient & 'esprit
est que toutes les relations de la forme

(I)(ul, Ug 5 oy u’n) =0, (1)

@ étant une fonction continue et non identiquement nulle, peuvent
étre considérées comme des relations entre les u;. Mais cela
conduirait & considérer les fonctions u = cos z et ¢ = siny
comme liées par une relation, puisqu’on peut définir des fonc-
tions @ (u, ¢) nulles dans le carré l u[ < 1, io] < 1, et difté-
rentes de zéro a l'extérieur de ce carré; une telle convention
serait en contradiction évidente avec le sens usuel du mot «rela-
tion ». Nous conviendrons alors de dire qu'il y a une relation
entre les u; s’tl y a une relation de la forme (1), la fonction © étant
continue et presque partout différente de zéro. Cette relation
définit donc un ensemble fermé et de mesure nulle, qui, par suite,
n’est partout dense dans aucun volume. Inversement n’importe
quel ensemble E fermé et de mesure nulle peut étre défini par
une relation du type (1); il n’y a qu’a prendre pour @ la distance
a cet ensemble; cette distance vérifiant évidemment la condition

de Lipschitz
‘q)l_q)2| < 7“1’2 s

ou @, et @, sont les valeurs de ® en deux points dont la distance
est r,,, on voit qu’on ne modifie pas la notion de relation entre
les u; en imposant & la fonction @ de vérifier cette condition.

Dans le cas du plan, et pour le probléme qui nous occupe, ol
le lieu du point u est nécessairement un continu (si ’on suppose
que la région décrite par z est d’un seul tenant), on peut méme
montrer qu’on ne change rien 4 la notion considérée en imposant
a la fonction @ d’avoir toutes ses dérivées de tous les ordres
continues et bornées.

Le complément E’ de E est en effet toujours la réunion d’un
nombre fini ou d’une infinité dénombrable de domaines d’un
seul tenant R;, tels que la frontiére de chacun des R, ne
comprenne aucune partie impropre au sens de la théorie du
probleme de Dirichlet. On peut donc y définir une fonction wy,,
solution de

Aw + Ao =

?
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ou A est la plus petite des constantes fondamentales de cette
équation pour le domaine (R;, et qui soit comprise entre zéro et

un dans la région R, et nulle sur sa frontiére. La fonction ¢, nulle
1

sur E et égale dans chacun des R, & e “*, est alors nulle sur E,
positive sur E’, et continue ainsi que toutes ses dérivées.

Désignons par %, , un multiplicateur positif tel que, dans Ry,
le produit X, , ait toutes ses dérivées d’ordre p au plus égales a
I'unité en valeur absolue, par k, le plus petit des nombres 1,
Moty s Mp, €0 par @ une fonction nulle sur E et égale a k¢
dans chacun des R;,. Ses dérivées d’ordre p, étant bornées dans
chacun des R}, et ne pouvant y dépasser 'unité que pour les
p régions d’indices < p, cette fonction est bornée dans tout le
plan ainsi que n’importe laquelle de ses dérivées; comme @ = 0
caractérise les points de E, le résultat énoncé est bien établi.

Cette démonstration est en défaut dans le cas de l'espace,
comme on le voit en considérant le domaine dont la frontiere
est constituée par la surface d’une sphere et un de ses rayons.
Il semble pourtant que le résultat subsiste. Contentons-nous
d’observer qu’il devient évident si 'on accepte que ® s’annule,
en dehors de E, sur un ensemble E; de mesure nulle; E’ désignant
alors le complément de E + E;, on peut prendre pour E’ la
réunion d’une infinité dénombrable de domaines sphériques, et,
a l'intérieur de chacune de ces sphéres (R}, prendre pour w, la
puissance par rapport a la sphére, changée de signe.

2. — Rappelons maintenant, pour en montrer 'insuffisance,
le raisonnement par lequel on démontre habituellement que
d = 0 entraine I'existence d’une relation entre les u;. Il nous
suffira de considérer le cas de deux fonctions u et ¢ de deux
variables z et y.

Si, dit-on, les quatre dérivées uy, u,, ¢y, ¢, sont nulles, u et ¢
sont, constants et, dans ce cas, on a méme deux relations u = c,
¢ = ¢, vérifiées par u et ¢. Dans le cas contraire, supposons, pour
fixer les 1dées, que V,:J ne soit pas nul; de ¢ = g (z, y), on tire
y = o (z, ¢), et 'expression de u devient

u:f(x’y):f[x>(P(xav)]:fl(x7v)‘ (2)

BRI
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D’ailleurs
S_D(u,v)_D(u,v)D(x,v)_bfl(x,())a/
" D,y Dfe,9) D,y o Y7
, .y [z,
et, comme ¢, n'est pas nul, 3§ = 0 entraine ﬁ—gc—f—) = 0;

la relation (2) est donc une relation entre u et .

Il v a, dans ce raisonnement, une confusion entre le point de
vue local et le point de vue global. Si le premier cas est celui ol
les quatre dérivées premiéres de u et ¢ sont partout nulles, dans
le second, on peut stirement trouver une des dérivées qui ne soit
pas partout nulle; si tel est le cas pour ¢, le raisonnement que
nous venons de rappeler est correct au voisinage de tout point
ou cette dérivée n’est pas nulle. Le résultat énoncé est donc bien
établi, localement, au voisinage de tout point ou les quatre
dérivées premieres ne sont pas toutes nulles.

Au point de vue local, il reste & examiner ce qui se passe au
voisinage d’un point A, (z,, y¥,) ou l'on ait

u, = u, =9, = ¢ =0, (3)

si ces dérivées ne restent pas nulles dans ce voisinage. Il peut
arriver que, dans ce voisinage, les équations (3) définissent un
ensemble qui sépare la partie du plan voisine de A, en plusieurs
régions distinctes; on pourra alors avoir différentes relations

chacune étant vérifiée dans une de ces régions.

Il n’est méme pas nécessaire, pour mettre en défaut le raison-
nement rappelé plus haut, que les quatre équations (3) soient
vérifiées sur des lignes séparant le plan en régions distinctes.
Il suffit que les deux premieres soient vérifiées sur certaines
lignes L et les deux autres sur des lignes L.’. Au voisinage d’une
ligne L, il y aura slirement une relation ¢ = ¢ (u); au voisinage
d’une ligne L', il y aura stirement une relation u = ¢, (v). Mais,
si 'on traverse successivement une ligne L et une ligne L, rien
ne prouve que la relation entre u et ¢ puisse conserver une méme
forme @ (u, ¢) = 0; comme plusieurs lignes L et L’ peuvent se
couper en A, cette objection se présente déja dans le cas de

L’Enseignement mathém., 38™e année, 1939 et 1940. 15
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I'étude locale. A fortiori se présente-t-elle pour I'étude du plan
tout entier.

On peut étre tenté de répondre a ces objections de la maniére
suivante: le plan, ou la région du plan ou u et ¢ sont définis,
peuvent en tout cas étre décomposés en une infinité dénombrable
au plus de régions dans chacune desquelles u et ¢ varient en
vérifiant une relation @, (u, ¢v) = 0, séparées par des lignes ou
des régions ou u et ¢ sont constants. Il suffit alors de trouver une
suite d’exposants «, rendant convergent le produit

D u, o) =ILD, (u, o) |,

pour dire que, dans tout le plan, u et ¢ vérifient la relation
D (u,v) = 0.

Mais cette suite d’exposants o, n’existe pas toujours; cela
résulte des exemples que nous allons maintenant indiquer.

3. — Premier exemple. — Divisons le plan des zy en une infi-
nité dénombrable de couronnes circulaires, séparées par des
cercles concentriques de rayons Ry, R, ..., R, ..., indéfiniment
croissants, et tels que la différence R, ; — R, croisse aussiindé-
finiment avec v. Posons

2 2 52

w = (R} — R*’ pour =2 + 9y <R},

w=(r—R))*R, ,—7r)? pour R, <r <R, ,b=1,2,..).

v v+1

Cette fonction w est continue, a dérivées premieres continues, et
admet dans la v®™® couronne circulaire un maximum m, qui
augmente indéfiniment avec v. En désignant par o« un nombre
irrationnel, posons

u=wecosvra, ¢=wsinvra (R <r <R, . (5)

v
Nous obtenons ainsi deux fonctions u et ¢ continues ainsi que
leurs dérivées premiéres. Le lieu du point (u, ¢) est constitué par
une infinité de segments OM,, portés par des demi-droites for-
mant un ensemble partout dense dans le plan; la longueur m,
du segment OM, augmentant indéfiniment avec v, I’ensemble de
ces segments eux-mémes est aussi partout dense, de sorte qu’il
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ne peut y avoir aucune relation entre u et ¢. Pourtant le jacobien

de ces deux fonctions est partout nul.
1

En remplacant w par WeT, on aurait un exemple analogue,
mais pour lequel toutes les dérivées de tous les ordres de u et ¢
seralent continues.

On peut naturellement varier & I'infini le schéma précédent,
en considérant d’autres modes de décomposition du plan en une

infinité dénombrable de régions.

4. — Deuxiéme exemple. (Cet exemple est di & M. Laurent
Schwartz.) — Considérons dans le plan des u, ¢ une courbe de
Jordan qui, indéfiniment prolongée, remplisse un ensemble
partout dense dans le plan; par exemple

w = zsin x , p=zxsinacz, (6)

o étant irrationnel. Le parametre étant z, et u et ¢ étant ainsi
indépendants de y, le jacobien de ces fonctions est nul; pourtant
il n’y a aucune relation entre u et ¢.

De méme, en posant

u, = x; sin «, (t=1,2,..,n), (7)

on obtient, si les «; sont linéairement indépendants, n fonctions

de z, 7y, ..., z, dont le jacobien est nul, et telles méme que tous
D(u;, u)

1, ) s ,
YT sont nuls, puisque les u; ne dépendent que de z;.

Pourtant I’ensemble des positions du point (u,, u,, ..., u,) est
partout dense, dans tout ’espace.

On peut généraliser d’une maniére analogue le premier exemple
en remplacant les demi-droites qui portent les vecteurs OM, par
des demi-droites formant un ensemble dense dans toutes les
directions possibles de I’espace & n dimensions.

les

5. — Dans les exemples précédents, nous ne nous sommes
. ou,
pas préoccupés de borner les dérivées 6—.221 . Dans ces conditions

J
le résultat subsiste si le point z est assujetti & rester dans une
région finie de Pespace; une transformation continue permet en
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effet de faire correspondre & I’espace entier cette région, ou une
sphere qui lui soit intérieure.
Si au contraire nous supposons les _521 bornés, il est essentiel

0z,

de distinguer le cas ou le point z décrit 'espace entier (ou cer-
taines portions infinies de I’espace) et celui ou il est astreint a
rester dans une région finie.

Dans le premier cas le résultat obtenu subsiste. Dans le premier
exemple, il suffit de multiplier w par un facteur constant dans
chacune des régions considérées, de maniére que les dérivées du
produit soient bornées dans tout le plan (ou dans tout ’espace);
pourvu que les régions considérées soient de plus en plus grandes,
cela n’empéche pas les vecteurs OM, d’avoir des longueurs de
plus en plus grandes. Dans le second exemple, il suffit de supposer
que la courbe de Jordan considérée soit décrite avec une vitesse
bornée (en fonction de z,); ainsi, dans les formules (6) et (7), il

suffit de remplacer z; par 1/z,.

: : : : ou; ~ :
I1 est bien clair, au contraire, que si les — sont bornés, et si

ox;
le point x reste dans une région bornée, le poin?t u reste aussi dans
une région bornée, et son lieu ne peut pas étre dense dans tout
I’espace. La question suivante se pose alors: peut-il étre dense
dans une région bornée de ’espace ? Si la réponse est affirmative,
le théoreme généralement énoncé doit étre considéré comme
faux; si elle est négative, il peut étre considéré comme exact, a
wi
bxj
bornés. C’est cette seconde alternative qui est réalisée, comme
nous allons le voir, par un raisonnement trés simple di a
M. Laurent Schwartz.
Le point z décrivant une région R que I'on peut supposer
fermée, le lieu du point u est un continu E, borné et fermé. Sa

mesure est au plus

condition d’en préciser I’énoncé en spécifiant que les sont

‘ | 3| dxy day ... dx,, , (8)
®

c¢’est-a-dire zéro, puisque 3 = 0; E ne peut donc étre dense dans
aucun volume, c’est-a-dire qu’il y a bien une relation entre
les u;.
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Ce raisonnement trés simple nous parait devoir étre précisé
sur un point. Ce qu’on démontre en général dans les traités
d’analyse, ce qui, en tout cas, résulte de la théorie du changement
de variables dans les intégrales multiples, c’est que, si & n’est
pas nul, P'intégrale (8) représente la mesure de I’ensemble décrit
par le point u quand z décrit (R), & condition de compter chaque
partie de ce volume autant de fois qu’elle est décrite; si donc on
ne compte chaque partie qu'une fois, on obtient une mesure
bornée supérieurement par P'intégrale (8). Mais, s1 & est partout
nul dans R, le raisonnement tombe en défaut: il n’y a pas corres-
pondance biunivoque entre (z) et (u), et la théorie du change-
ment de variables ne s’applique plus.

I1 est facile de répondre a cette objection, pal exemple en
raisonnant par continuité. Introduisant un parametre 2, on peut
évidemment définir des fonctions continues ¢; (j = 1, 2, ..., n)
des z; et de A, se réduisant aux u; pour A = 0, et dont le jacobien
A(X) soit égal & A. Alors I'intégrale (8), ou 3§ est remplacé par
A(X) = A, borne supérieurement le volume V(1) déerit par le
point (¢); ce volume tend donc vers zéro avec A. Or la surface
transformée d’une surface donnée dans (R varie d’une maniére
continue avec A; si donc E remplissait une sphére de rayon p,
pour A assez petit, V(A) remplirait un volume limité par une
surface trés voisine de celle de cette sphére, et qui, par exemple,

contiendrait & son intérieur la sphére de rayon % concentrique

& la précédente; c’est impossible, puisque V(A) tend vers zéro.

On peut aussi donner un raisonnement géométrique direct.
Si 3 est nul en un point z,, on peut, a tout e positif, faire corres-
pondre un nombre 7 (¢) tel que, si 2 décrit une sphére de centre x,
et de rayon p < %(¢), u décrive un volume de mesure au plus

. . & . .
égale a PR Si d est partout nul dans R, on peut alors recou-

vrir R par une infinité dénombrable de sphéres X, ayant chacune
cette propriété que, si z décrit X, u décrit un ensemble de mesure
au plus égale au produit par € du volume de X ; on peut s’arran-
ger de plus pour que, X, désignant une sphére concentrique a
2, et de rayon deux fois plus petit, les sphéres X, soient exté-
rieures les unes aux autres. Le volume total des sphéres X, est
alors au plus égal & 2" Q (Q étant le volume de (R), et la mesure
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de E est donc au plus 2" Qe; ¢ étant arbitrairement petit, elle
est nulle, c.q.f.d.

Naturellement, lorsque R augmente et arrive & comprendre
tout Iespace, la mesure de E reste nulle; mais on ne peut plus
aflirmer que cet ensemble soit fermé. Le résultat finalement
obtenu peut donc s’énoncer comme suit.

St uy, Uy, ..., u, sont des fonctions de x,, X, ..., X, continues, d
dérivées premiéres continues et bornées, et d jacobien nul, le lieu
du point u de coordonnées u,, u,, ..., u,, est un ensemble E de
mesure nulle. St le point x de coordonnées x4, X,, ..., X, reste dans
une région R bornée, 'ensemble E est fermé, et n’est par suite dense
dans aucun volume; il existe alors entre les u; une relation

(I)(ula u2, e, U

la fonction @ étant continue, et presque partout différente de zéro
on peut par exemple prendre pour ® la distance a E. St le point x
décrit tout Uespace, il peut au contraire arriver que E soit partout
dense, dans tout l'espace.

C’est naturellement le premier de ces résultats qui s’applique
dans le cas ou le point x décrit, non I'espace euclidien, mais une
sphére de Riemann & n dimensions. Si n fonctions de ce point
sont continues, a dérivées premieres continues, les dérivées
géométriques étant bornées, et si leur jacobien est nul, il existe
une relation entre elles.




	PROPOS DU THÉORÈME FONDAMENTAL DE LA THÉORIE DES JACOBIENS

