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A PROPOS DU THÉORÈME FONDAMENTAL
DE LA THÉORIE DES JACOBIENS

PAR

Paul Lévy (Paris).

1. — Dans presque tous les traités d'analyse, on énonce, et
l'on croit démontrer, le théorème suivant : la condition nécessaire

et suffisante pour que n fonctions \i{ de n variables Xj (i, j — 1, 2,
n) soient liées par une relation est que leur jacobien (que nous

désignerons par S) soit nul.
Cette condition est bien nécessaire. Mais, en ce qui concerne

la réciproque, nous nous proposons de montrer que, non seulement

la démonstration classique est insuffisante, mais qu'il y a

quelques réserves à faire sur le théorème lui-même.
Observons d'abord que son énoncé manque singulièrement de

précision. D'une part, si l'on parle de jacobien, c'est sans doute
qu'on admet implicitement la continuité des u{ et l'existence
de leurs dérivées premières; nous admettrons aussi qu'elles sont
continues. D'autre part, il faut préciser la région de l'espace
décrite par le point x (de coordonnées xf) ; cela peut être l'espace
entier, et dans ce cas on ne change rien d'essentiel en supposant

^ uiles dérivées bornées; si c'est une région finie et fermée de

l'espace, elles le sont nécessairement; si de plus deux points
quelconques de cette région peuvent être reliés par une ligne
continue dont la longueur ne dépasse pas une valeur donnée,
les ut eux-mêmes sont bornés, ce qui modifie essentiellement la
nature du problème posé.

Il faut d'autre part préciser la signification des mots « fonc-
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tions liées par une relation ». La première idée qui vient à l'esprit
est que toutes les relations de la forme

<£(1^ u2 Un) 0 (1)

<E> étant une fonction continue et non identiquement nulle, peuvent
être considérées comme des relations entre les u{. Mais cela

conduirait à considérer les fonctions u — cos x et v sin y
comme liées par une relation, puisqu'on peut définir des fonctions

® (k, v) nulles dans le carré | m | < 1, | e | < 1, et
différentes de zéro à l'extérieur de ce carré; une telle convention
serait en contradiction évidente avec le sens usuel du mot « relation

». Nous conviendrons alors de dire qu'il y a une relation
entre les s'il y a une relation de la forme (1), la fonction <D étant
continue et presque partout différente de zéro. Cette relation
définit donc un ensemble fermé et de mesure nulle, qui, par suite,
n'est partout dense dans aucun volume. Inversement n'importe
quel ensemble E fermé et de mesure nulle peut être défini par
une relation du type (1) ; il n'y a qu'à prendre pour ® la distance
à cet ensemble ; cette distance vérifiant évidemment la condition
de Lipschitz

I ®i — ®a I < >

où et ®2 sont les valeurs de 0 en deux points dont la distance
est r12, on voit qu'on ne modifie pas la notion de relation entre
les u{ en imposant à la fonction ® de vérifier cette condition.

Dans le cas du plan, et pour le problème qui nous occupe, où
le lieu du point u est nécessairement un continu (si l'on suppose
que la région décrite par x est d'un seul tenant), on peut même
montrer qu'on ne change rien à la notion considérée en imposant
à la fonction ® d'avoir toutes ses dérivées de tous les ordres
continues et bornées.

Le complément E' de E est en effet toujours la réunion d'un
nombre fini ou d'une infinité dénombrable de domaines d'un
seul tenant tels que la frontière de chacun des Ûlh ne
comprenne aucune partie impropre au sens de la théorie du
problème de Dirichlet. On peut donc y définir une fonction cùh,
solution de

A <x> 4" rcù 0
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où X est la plus petite des constantes fondamentales de cette
équation pour le domaine (Rhl et qui soit comprise entre zéro et

un dans la région <Kh et nulle sur sa frontière. La fonction 9, nulle

sur E et égale dans chacun des (Rh à e est alors nulle sur E,
positive sur E', et continue ainsi que toutes ses dérivées.

Désignons par Xh>p un multiplicateur positif tel que, dans dlh,
le produit \h v ait toutes ses dérivées d'ordre p au plus égales à

l'unité en valeur absolue, par kh le plus petit des nombres 1,

X/a, \hh, et par <Ê> une fonction nulle sur E et égale k kh(p

dans chacun des ûlh. Ses dérivées d'ordre />, étant bornées dans
chacun des (Rh, et ne pouvant y dépasser l'unité que pour les

p régions d'indices < /?, cette fonction est bornée dans tout le

plan ainsi que n'importe laquelle de ses dérivées; comme 0 0

caractérise les points de E, le résultat énoncé est bien établi.
Cette démonstration est en défaut dans le cas de l'espace,

comme on le voit en considérant le domaine dont la frontière
est constituée par la surface d'une sphère et un de ses rayons.
Il semble pourtant que le résultat subsiste. Contentons-nous
d'observer qu'il devient évident si l'on accepte que O s'annule,
en dehors de E, sur un ensemble Ex de mesure nulle; E' désignant
alors le complément de E -f- Ex, on peut prendre pour E' la
réunion d'une infinité dénombrable de domaines sphériques, et,
à l'intérieur de chacune de ces sphères <Rhl prendre pour cùh la
puissance par rapport à la sphère, changée de signe.

2. — Rappelons maintenant, pour en montrer l'insuffisance,
le raisonnement par lequel on démontre habituellement que
S 0 entraîne l'existence d'une relation entre les ut. Il nous
suffira de considérer le cas de deux fonctions u et v de deux
variables x et y.

Si, dit-on, les quatre dérivées um uyl v'y sont nulles, u et e

sont constants et, dans ce cas, on a même deux relations u c,

v c\ vérifiées par u et e. Dans le cas contraire, supposons, pour
fixer les idées, que v'y ne soit pas nul; de v g (x, ?/), on tire

y 9 (x, e), et l'expression de u devient

u f (x y) f [x 9 (x ç)] fx (x v) (2)
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D'ailleurs
D [u, ç) D (u p) D (a;, g) p) /

D {x, y) D (x, v) D (x, 2/) drc y

/ àf(xv)
et, comme n'est pas nul, S 0 entraîne —— 0;

la relation (2) est donc une relation entre u et p.

Il y a, dans ce raisonnement, une confusion entre le point de

vue local et le point de vue global. Si le premier cas est celui où
les quatre dérivées premières de u et p sont partout nulles, dans
le second, on peut sûrement trouver une des dérivées qui ne soit

pas partout nulle ; si tel est le cas pour p'y, le raisonnement que
nous venons de rappeler est correct au voisinage de tout point

I où cette dérivée n'est pas nulle. Le résultat énoncé est donc bien

I établi, localement, au voisinage de tout point où les quatre
jj dérivées premières ne sont pas toutes nulles.

Au point de vue local, il reste à examiner ce qui se passe au
voisinage d'un point A0 (x0l yQ) où l'on ait

si ces dérivées ne restent pas nulles dans ce voisinage. Il peut
arriver que, dans ce voisinage, les équations (3) définissent un
ensemble qui sépare la partie du plan voisine de A0 en plusieurs
régions distinctes ; on pourra alors avoir différentes relations

#>, c) *= 0 (v 1 2

chacune étant vérifiée dans une de ces régions.
Il n'est même pas nécessaire, pour mettre en défaut le

raisonnement rappelé plus haut, que les quatre équations (3) soient
vérifiées sur des lignes séparant le plan en régions distinctes.
Il suffit que les deux premières soient vérifiées sur certaines
lignes L et les deux autres sur des lignes L'. Au voisinage d'une
ligne L, il y aura sûrement une relation p — cp (u); au voisinage
d'une ligne L', il y aura sûrement une relation u cp1 (c). Mais,
si l'on traverse successivement une ligne L et une ligne L', rien
ne prouve que la relation entre u et p puisse conserver une même
forme ® (k, p) ~ 0; comme plusieurs lignes L et L' peuvent se

couper en A0 cette objection se présente déjà dans le cas de

L'Enseignement mathém., 38me année, 1939 et 1940. 15
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l'étude locale. A fortiori se présente-t-elle pour l'étude du plan
tout entier.

On peut être tenté de répondre à ces objections de la manière
suivante: le plan, ou la région du plan où u et ç sont définis,
peuvent en tout cas être décomposés en une infinité dénombrable
au plus de régions dans chacune desquelles u et v varient en
vérifiant une relation Ov (u, v) 0, séparées par des lignes ou
des régions où u et v sont constants. Il suffit alors de trouver une
suite d'exposants ocv rendant convergent le produit

<ï>(U5 ç) iii<dvk ç) |av

pour dire que, dans tout le plan, u et v vérifient la relation
O (m, e) 0.

Mais cette suite d'exposants av n'existe pas toujours; cela
résulte des exemples que nous allons maintenant indiquer.

3. — Premier exemple. — Divisons le plan des xy en une infinité

dénombrable de couronnes circulaires, séparées par des

cercles concentriques de rayons Rl7 R2, Rv, indéfiniment
croissants, et tels que la différence Rv+i — Rv croisse aussi
indéfiniment avec v. Posons

i / Tv 2 f—v 2 \ 2 2 2.2 >• -y v 2
w — (Rjl — R pour r — x + y < Ri

(4)

f w {r — Rv)2 (Rv+1 — r)2 Pour Rv < r < Rv+1(v= 1 2

Cette fonction W est continue, à dérivées premières continues, et
admet dans la vieme couronne circulaire un maximum rav qui
augmente indéfiniment avec v. En désignant par a un nombre

irrationnel, posons

u w cos V7U0C v — w sin vruoc (Ry < r < Rv+i) • (5>

Nous obtenons ainsi deux fonctions u et v continues ainsi que
leurs dérivées premières. Le lieu du point (w, ç) est constitué par
une infinité de segments OMv, portés par des demi-droites
formant un ensemble partout dense dans le plan; la longueur mv

du segment OMv augmentant indéfiniment avec v, l'ensemble de

ces segments eux-mêmes est aussi partout dense, de sorte qu'il
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ne peut y avoir aucune relation entre u et e. Pourtant le jacobien
de ces deux fonctions est partout nul.

i
En remplaçant w par we w on aurait un exemple analogue,

mais pour lequel toutes les dérivées de tous les ordres de u et v

seraient continues.
On peut naturellement varier à l'infini le schéma précédent,

en considérant d'autres modes de décomposition du plan en une
infinité dénombrable de régions.

4. — Deuxième exemple. (Cet exemple est dû à M. Laurent
Schwartz.) — Considérons dans le plan des v une courbe de

Jordan qui, indéfiniment prolongée, remplisse un ensemble

partout dense dans le plan; par exemple

u — x sin x ç x sin a x (6)

a étant irrationnel. Le paramètre étant x, et u et e étant ainsi
indépendants de y, le jacobien de ces fonctions est nul; pourtant
il n'y a aucune relation entre u et e.

De même, en posant

u. x1 sin oc. xx (i ~ 1 2 n) (7)

on obtient, si les oq sont linéairement indépendants, n fonctions
de xt, x2, xn dont le jacobien est nul, et telles même que tous

D (zq u-)
les g-j—' yy sont nuls, puisque les ut ne dépendent que de xx.

Pourtant l'ensemble des positions du point u2, un) est

partout dense, dans tout l'espace.
On peut généraliser d'une manière analogue le premier exemple

en remplaçant les demi-droites qui portent les vecteurs OMv par
des demi-droites formant un ensemble dense dans toutes les
directions possibles de l'espace à n dimensions.

5. — Dans les exemples précédents, nous ne nous sommes
ô u-

pas préoccupés de borner les dérivées ^—. Dans ces conditions

le résultat subsiste si le point x est assujetti à rester dans une
région finie de l'espace; une transformation continue permet en
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effet de faire correspondre à l'espace entier cette région, ou une
sphère qui lui soit intérieure.

^ uiSi au contraire nous supposons les bornés, il est essentiel

de distinguer le cas où le point x décrit l'espace entier (ou
certaines portions infinies de l'espace) et celui où il est astreint à

rester dans une région finie.
Dans le premier cas le résultat obtenu subsiste. Dans le premier

exemple, il suffit de multiplier w par un facteur constant dans
chacune des régions considérées, de manière que les dérivées du

produit soient bornées dans tout le plan (ou dans tout l'espace) ;

pourvu que les régions considérées soient de plus en plus grandes,
cela n'empêche pas les vecteurs OMv d'avoir des longueurs de

plus en plus grandes. Dans le second exemple, il suffit de supposer
que la courbe de Jordan considérée soit décrite avec une vitesse
bornée (en fonction de x^)\ ainsi, dans les formules (6) et (7), il
suffit de remplacer x1 par \/~xv

àuiIl est bien clair, au contraire, que si les sont bornés, et si

le point x reste dans une région bornée, le point u reste aussi dans

une région bornée, et son lieu ne peut pas être dense dans tout
l'espace. La question suivante se pose alors: peut-il être dense

dans une région bornée de l'espace Si la réponse est affirmative,
le théorème généralement énoncé doit être considéré comme
faux; si elle est négative, il peut être considéré comme exact, à

àui
condition d'en préciser l'énoncé en spécifiant que les t— sont

O Xj

bornés. C'est cette seconde alternative qui est réalisée, comme
nous allons le voir, par un raisonnement très simple dû à

M. Laurent Schwartz.
Le point x décrivant une région cR que l'on peut supposer

fermée, le lieu du point u est un continu E, borné et fermé. Sa

mesure est au plus

| | S | dxx dx2 dxn
k

c'est-à-dire zéro, puisque S 0; E ne peut donc être dense dans

aucun volume, c'est-à-dire qu'il y a bien une relation entre
les ut.
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Ce raisonnement très simple nous parait devoir être précisé

sur un point. Ce qu'on démontre en général dans les traités
d'analyse, ce qui, en tout cas, résulte de la théorie du changement
de variables dans les intégrales multiples, c'est que, si S n'est

pas nul, l'intégrale (8) représente la mesure de l'ensemble décrit

par le point u quand x décrit (tR), à condition de compter chaque
| partie de ce volume autant de fois qu'elle est décrite; si donc on
j ne compte chaque partie qu'une fois, on obtient une mesure
j bornée supérieurement par l'intégrale (8). Mais, si S est partout
j nul dans tR, le raisonnement tombe en défaut : il n'y a pas corres-
] pondance biunivoque entre (x) et (w), et la théorie du change-

ment de variables ne s'applique plus.
"j II est facile de répondre à cette objection, par exemple en
j raisonnant par continuité. Introduisant un paramètre X, on peut
j évidemment définir des fonctions continues (j — 1, 2, n)
j des Xi et de X, se réduisant aux u{ pour X 0, et dont le jacobien

À(X) soit égal à X. Alors l'intégrale (8), où S est remplacé par
j A(X) — X, borne supérieurement le volume V(X) décrit par le
j point (e); ce volume tend donc vers zéro avec X. Or la surface
j transformée d'une surface donnée dans <31 varie d'une manière

continue avec X; si donc E remplissait une sphère de rayon p,

pour X assez petit, V (X) remplirait un volume limité par une
surface très voisine de celle de cette sphère, et qui, par exemple,

contiendrait à son intérieur la sphère de rayon ~ concentrique
à la précédente; c'est impossible, puisque V(X) tend vers zéro.

On peut aussi donner un raisonnement géométrique direct.
Si S est nul en un point x0, on peut, à tout e positif, faire
correspondre un nombre 73 (e) tel que, si x décrit une sphère de centre xQ

et de rayon p < 73(e), u décrive un volume de mesure au plus
égale à —Trp3£. Si S est partout nul dans tR, on peut alors recouvrir

(31 par une infinité dénombrable de sphères 2V ayant chacune
cette propriété que, si x décrit 2V, u décrit un ensemble de mesure
au plus égale au produit par s du volume de 2V; on peut s'arranger

de plus pour que, 2^ désignant une sphère concentrique à
2V et de rayon deux fois plus petit, les sphères 2^ soient
extérieures les unes aux autres. Le volume total des sphères 2V est
alors au plus égal à 2nQ (Q étant le volume de cR), et la mesure
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de E est donc au plus 2n£2s; g étant arbitrairement petit, elle
est nulle, c.q.f.d.

Naturellement, lorsque Ûi augmente et arrive à comprendre
tout l'espace, la mesure de E reste nulle; mais on ne peut plus
affirmer que cet ensemble soit fermé. Le résultat finalement
obtenu peut donc s'énoncer comme suit.

Si Uj, u2, un sont des jonctions de xx, x2, xn continues, à
dérivées premières continues et bornées, et à jacobien nul, le lieu
du point u de coordonnées ux, u2, un, est un ensemble E de

mesure nulle. Si le point x de coordonnées xx, x2, xn reste dans

une région ûl bornée, Vensemble E est fermé, et n'est par suite dense

dans aucun volume ; il existe alors entre les Ui une relation

u2, Un) 0

la fonction O étant continue, et presque partout différente de zéro ;
on peut par exemple prendre pour 0 la distance à E. Si le point x
décrit tout Vespace, il peut au contraire arriver que E soit partout
dense, dans tout Vespace.

C'est naturellement le premier de ces résultats qui s'applique
dans le cas où le point x décrit, non l'espace euclidien, mais une
sphère de Riemann à n dimensions. Si n fonctions de ce point
sont continues, à dérivées premières continues, les dérivées

géométriques étant bornées, et si leur jacobien est nul, il existe

une relation entre elles.


	PROPOS DU THÉORÈME FONDAMENTAL DE LA THÉORIE DES JACOBIENS

