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SUR LA VARIATION DES FONCTIONS

PAR

Ernest Vessiot (Marseille).

On a généralement recours à la formule dite des accroissements
finis pour établir, dans l'enseignement, les théorèmes fondamentaux

selon lesquels une fonction de variable réelle est constante,
croissante, ou décroissante, dans un intervalle, si elle y a, en
tout point, une dérivée qui soit, respectivement, nulle, positive
ou négative. En voici des démonstrations, directes et élémentaires,

qui ne font appel qu'à la notion même de dérivée \ Je

n'ai pas pu savoir si elles sont nouvelles.

Théorème I. — Si une fonction f (x), définie dans un intervalle
(xl7 x2), y a, en tout point, une dérivée nulle, elle est constante dans
cet intervalle.

Démonstration! — Il suffira de prouver que, pour tout intervalle

(a, b) contenu dans (x±1 a?2), on a? fiuel fiue Ie nombre

positif s,

\f(b)-f(a)\<e(b~a) (1)

Car il en résultera f(b) — f(a) 0, c'est-à-dire f(b) /(a),
pour tout couple de points x a, x &, de (xx, x2).

Supposons, à cet effet, le contraire, c'est-à-dire que, pour un
certain s, on ait

\f(b) — f (a) \ > z(b — a) (2)

1 J'en ai donné d'autres précédemment, indépendantes aussi du théorème des
accroissements finis. Mais elles utilisaient des notions de la théorie des ensembles, et le
cas de la dérivée nulle y était traité d'une manière indirecte. Voir Bulletin mathématique

des Facultés des Sciences, tome I, 1934, p. 33-48.
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Soit c — —y~ • Si l'on avait, à la fois,

| f(c) — /(a) I < e(c — a) \f(b) —f{c) \ < e(b — c)

on en déduirait, par addition,

i f(b)—f(a) | < \f(c)—f(a)\ + | f(b)—f(c) \<s(b — a)

c'est-à-dire l'inégalité (1) contraire à l'hypothèse (2). Donc, pour
l'un au moins des intervalles (a, c), (c, è), que j'appellerai (%, ^q),

on aurait, comme pour (a, b).

f(bi) —/(%) > s(^ — %)

En raisonnant sur (%, iq) comme on vient de le faire pour
(a, à), et ainsi de suite, on conclurait donc à l'existence d'une

suite illimitée d'intervalles (ak, 6ft), tels que bk — ak
b

a,

et dont chacun serait contenu dans le précédent, pour chacun
desquels on aurait, comme pour (a, è),

l/(*fc)-/K)l > — aÄ) (3)

Mais les et les tendraient alors vers une limite commune,
soit x0, appartenant à chaque intervalle (ak, £q). Si l'un des

était égal à #0, il en serait de même pour tous les suivants: on
aurait donc, à partir d'un certain rang,

^0 — ak 0 f (x0) — / (aft) 0

Dans le cas contraire, on aurait, pour k assez grand,

/K) — / M < £

puisque ak tendrait vers x0l et que f(x) aurait, pour x x0,
une dérivée nulle. On aurait donc dans les deux cas, pour k
assez grand,

I fixo) — /K) I <e(x0 — ah)

l'égalité ne pouvant avoir lieu que pour x0 ak. On aurait,
de même, pour A assez grand,

I f(h) —f(xo) I < z{bk~xo)
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l'égalité ne pouvant avoir lieu que pour x0 bk. Comme on ne
saurait avoir ak x0 — bk, on conclurait, par addition,

I / ih) — f (ak) I < I / ibk) — / M I + 1/ {«o) — / K) I < e (bk — ak)

ce qui serait en contradiction avec (3). L'hypothèse (2) est donc
à rejeter, quel que soit s. De sorte que.(l) a bien lieu, pour tout z

(c.q.f.d.).

Théorème II. — Si une fonction f (x), définie dans un intervalle

(x1? x2), y a, en tout point, une dérivée positive, elle est

croissante dans cet intervalle.

Démonstration. — Il s'agit de prouver que, pour tout intervalle

(a, b) contenu dans (xx, x2), on a

f(b) /(a) > 0 (1)

Supposons, en effet, qu'il n'en soit pas ainsi, c'est-à-dire que,
pour un certain intervalle (a, à), contenu dans (xly x2), on ait

f(b) / (a) < 0 (2)

Soit c - Si l'on avait, à la fois,

fW-f(c) >0 f (c) / (a) >0

on en conclurait, par addition, l'inégalité (1), contraire à l'hypothèse

faite (2). Donc, pour l'un au moins des intervalles (a, c),

(c, è), que j'appellerai (alf Zq), on devrait avoir, comme pour
(a, b),

f(bi)— f(<h) <0 •

En raisonnant sur (al5 b±) comme on vient de le faire pour
(a, à), et ainsi de suite, on conclurait donc à l'existence d'une

suite illimitée d'intervalles (aft, 6fe), tels que bk — ak a,

et dont chacun serait contenu dans le précédent, pour lesquels

on aurait, comme pour (a, 6),

/(&ä) — / K) < 0 • (3)
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Mais les ak et les bk tendraient alors vers une limite commune,
soit xQl appartenant à chacun des intervalles (aky bk). Si l'on avait
ak ~ pour une valeur de /c, il en serait de même pour les

valeurs suivantes: on aurait donc, à partir d'un certain rang,

x0= ak f(x0) —f(ak) 0

Dans le cas contraire, on aurait, pour k assez grand,

/K)—/W _——— > 0 ak — x0 < 0
ak xo

puisque ak tendrait vers x0, pour k infini, et que f(x) aurait,
pour x — x0} une dérivée positive. On aurait donc, dans les
deux cas, pour k assez grand

f(x0) —f(ak) > 0 t

l'égalité ne pouvant avoir lieu que pour ak x0. On aurait de

même, pour k assez grand,

f,(h) —f(xo) > 0

l'égalité ne pouvant avoir lieu que pour x0 bk. Comme on ne
peut pas avoir ak x0 bh, on conclurait, par addition,

ce qui serait en contradiction avec (3). L'hypothèse (2) est donc
à rejeter, quel que soit (a, b), contenu dans (x^ x2). De sorte
que (1) a lieu pour tout couple de points x a, x b de
(x±1 x2) (c.q.f.d.).
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