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SUR LA VARIATION DES FONCTIONS

PAR

Ernest Vessior (Marseille).

On a généralement recours a la formule dite des accroissements
finis pour établir, dans ’enseignement, les théorémes fondamen-
taux selon lesquels une fonction de variable réelle est constante,
croissante, ou décroissante, dans un intervalle, si elle y a, en
tout point, une dérivée qui soit, respectivement, nulle, positive
ou négative. En voici des démonstrations, directes et élémen-
taires, qui ne font appel qu’a la notion méme de dérivée 1. Je
n’al pas pu savolr si elles sont nouvelles.

TutorEME I. — St une fonction f (x), définie dans un intervalle
(Xq, X,), ¥ @, en tout point, une dérivée nulle, elle est constante dans
cet intervalle.

DEmonstrATION. — Il suffira de prouver que, pour tout inter-
valle (a, b) contenu dans (x,, ,), on a, quel que soit le nombre
positif e, A

[ (6) —fla) | < e(b—a) . (1)

Car il en résultera f(b) — f(a) = 0, c’est-a-dire f(b) = f(a),
pour tout couple de points x = a, x = b, de (24, ).
Supposons, a cet effet, le contraire, c¢’est-a4-dire que, pour un

certain ¢, on ait
| f(b) —fla)| = elb—a) . (2)

1 J’en ai donné d’autres précédemment, indépendantes aussi du théoréme des
accroissements finis. Mais elles utilisaient des notions de la théorie des ensembles, et le
cas de la dérivée nulle y était traité d’une maniére indirecte. Voir Bulletin mathéma-
tique des Facultés des Sciences, tome I, 1934, p. 33-48.
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Soit ¢ = a—jg——?. Si I'on avait, a la fois,
[fle) —fla) | <ele—a), | f(8) —fle) | <elb—g¢),

on en déduirait, par addition,
[f(0) —fla)| <|fle)—Fla)| + [f(b) —flo)]| <elb—a).

c’est-a-dire I'inégalité (1) contraire a I’hypotheése (2). Donc, pour
I’un au moins des intervalles (a, ¢), (¢, b), que j’appellerai (a,, 8,),
on aurait, comme pour (a, b).

f(b1) — flay) = (b — ay) .

En raisonnant sur (a;, ;) comme on vient de le faire pour

(a, b), et ainsi de suite, on conclurait donc & l'existence d’une
b—a
g’

suite illimitée d’intervalles (a,, b,), tels que b, — a;, =

et dont chacun serait contenu dans le précédent, pour chacun
desquels on aurait, comme pour (a, ),

| F{by) — flap) | = e(by — ap) - (3)

Mais les a; et les b, tendraient alors vers une limite commune,
soit z,, appartenant a chaque intervalle (a;, 6,). Si 'un des q,
était égal & z,, il en serait de méme pour tous les suivants: on
aurait done, a partir d’un certain rang,

Ty —ap = 0, flxg) — flay) =0 .

Dans le cas contraire, on aurait, pour &k assez grand,

Flag) — flzo)

< g,

puisque a, tendrait vers xz,, et que f(x) aurait, pour z = x,,
une dérivée nulle. On aurait donc dans les deux cas, pour k
assez grand,

| f (o) _‘“f(ak) | < e(xo——ah) ’

V’égalité ne pouvant avoir lieu que pour z, = a,. On aurait,
de méme, pour k assez grand,

| F{b) — Flag) | < e(by, —ay)
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I'égalité ne pouvant avoir lieu que pour z, = b,. Comme on ne
saurait avoir @, = x, = b,, on conclurait, par addition,

| flbg) — Flag) | < 1H(b) — flao) | + If (o) — flag) | < elby —ay)

ce qui serait en contradiction avec (3). .’hypothése (2) est donc
a rejeter, quel que soit €. De sorte que (1) a bien lieu, pour tout ¢
(c.q.f.d.).

TuEorREME II. — St une fonction f (x), définte dans un inter-
valle (x4, X,), ¥ a, en tout point, une dérivée positive, elle est
croissante dans cet intervalle.

DEmMonsTrRATION. — Il 8’agit de prouver que, pour tout inter-
valle (a, b) contenu dans (z,, z,), on a

f(b) — fla) >0 . (1)

Supposons, en effet, qu’il n’en soit pas ainsi, c¢’est-a-dire que,
pour un certain intervalle (a, b), contenu dans (z,, x,), on ait

f(b)——f(a)§0- (2)
Soit ¢ = a_—g__b Si I'on avait, a la fois,
flo) —fle) >0,  fle)—fla) >0,

on en conclurait, par addition, 'inégalité (1), contraire a I’hypo-
thése faite (2). Donc, pour 'un au moins des intervalles (a, c¢),
(¢, b), que jappellerai (a,, b;), on devrait avoir, comme pour
(a) b)?

flby) — flay) <O .

En raisonnant sur (a,, b;) comme on vient de le faire pour

(a, b), et ainsi de suite, on conclurait donc a I'existence d’une
b—a
gl *

suite illimitée d’intervalles (a,, b,), tels que b, — @, =

et dont chacun serait contenu dans le précédent, pour lesquels
on aurait, comme pour (a, b),

flog) — flay) <0 . (3)
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Mais les a, et les b, tendraient alors vers une limite commune,
soit z,, appartenant & chacun des intervalles (a,, b;). SiI'on avait
a, = x, pour une valeur de k, il en serait de méme pour les
valeurs suivantes: on aurait donc, a partir d’un certain rang,

Ty = Qp flxg) — flag) = 0 .
Dans le cas contraire, on aurait, pour & assez grand,

f(ah) — f () > 0

a, —x, < 0
ah____xo ’ R 0 ’

puisque @, tendrait vers z,, pour % infini, et que f(z) aurait,
pour ¥ = x, une dérivée positive. On aurait donc, dans les
deux cas, pour k£ assez grand

?

flzo) — flay) =0,

Pégalité ne pouvant avoir lieu que pour @, = z,. On aurait de
meéme, pour £ assez grand,

flog) —f(@) =0,

I’égalité ne pouvant avoir lieu que pour 2, = b,. Comme on ne
peut pas avoir @, = z, = b, on conclurait, par addition,

flbg) — flag) >0,

ce qui serait en contradiction avec (3). L’hypothése (2) est done
a rejeter, quel que soit (a, b), contenu dans (x;, z,). De sorte
que (1) a lieu pour tout couple de points z = a, x = b de
(1, @) (c.q.f.d.).
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