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UNE FONCTION CONTINUE SANS DÉRIVÉE

PAR

Henri Lebesgue, Membre de l'Institut (Paris).

Avant d'exposer son intéressant exemple de fonction dépourvue

de dérivée, M. R. Tambs Lyche remarque très justement

que la première fonction de cette nature, celle due à

Weiebstrass, conviendrait mal pour un enseignement élémentaire;

cela m'a conduit à rechercher comment, de ce point de vue
pédagogique, améliorer cet exemple qui, utilisant le développement

en série de Fourier, a le grand avantage de montrer que
des fonctions non dérivables peuvent se présenter au cours d'un
calcul d'allure tout à fait normale. Cela est facile, aussi
l'observation qui suit n'est certainement pas nouvelle; il peut
cependant être utile de la publier ici.

Soit, par exemple, la fonction, évidemment continue,
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La limite supérieure de la valeur absolue du nieme terme de (2)
est aussi celle de un(x) |, donc la valeur absolue de la somme
des m — 1 premiers termes de (2) est au plus

m-1 m-1
"S1 —- 2n2 N1 2n2~n < + l — 2m2~3m+3
Z-l 971 J

" "** "
1 z 1

car chaque terme 2n2~n est inférieur à la moitié du suivant.



FONCTION CONTINUE SANS DÉRIVÉE 213

Donnons à h les quatre valeurs
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les arcs ocn 2n2x subissent alors, pour n > m, des accroissements,

positifs ou négatifs, qui sont des multiples entiers de

2n et, par suite, (2) se réduit à ses m premiers termes.

Pour n — m, l'arc ocn subit un accroissement
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d'où, pour sin am, un accroissement (cos am — sin ocm) ou

— (cos am + sin ocm), et la somme des carrés de ces deux

quantités étant égale à 2, l'une d'elles au moins n'est pas
inférieure à 1 en valeur absolue. Ainsi, la valeur absolue du rrC'"1"

terme de (2) est au moins

I 2rn2-~m+l

2m 3 7T 3 7r

soit pour hx et Ä4, soit pour A2 et A3, et d'ailleurs ce terme aura
tel signe que nous voudrons puisque hx et A4, A2 et h3 donnent
des résultats de signes contraires.

En résumé, on aura:

f(x + h) — f(x) cymZ-m+l

^ _ 2m2~3m + 3

3 7T

f (x 4- h) f (x)
donc — ^augmente indéfiniment en valeur absolue

pour la suite des valeurs de h que nous associons à la suite
des entiers m, et cela avec le signe que nous voulons.

La fonction f(x) n'a donc en aucun point une dérivée
déterminée;, ni finie, ni infinie.

Si, au lieu d'avoir affaire à des élèves débutants, il s'agissait
d'étudiants au courant des profonds résultats de M. Denjoy
sur l'indétermination du rapport (2), la fonction / (x) fournirait
un exercice facile et instructif : classer les diverses valeurs de x
dans les quatre types prévus par M. Denjoy.
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