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UNE FONCTION CONTINUE SANS DERIVEE

PAR

Henri LEBEsGcuE, Membre de I’Institut (Paris).

Avant d’exposer son intéressant exemple de fonction dépour-
vue de dérivée, M. R. TamBs LycHE remarque trés juste-
ment que la premiére fonction de cette nature, celle due a
WEIERSTRASS, conviendrait mal pour un enseignement élémen-
taire; cela m’a conduit a rechercher comment, de ce point de vue
pédagogique, améliorer cet exemple qui, utilisant le développe-
ment en série de Fourier, a le grand avantage de montrer que
des fonctions non dérivables peuvent se présenter au cours d’un
calcul d’allure tout a fait normale. Cela est facile, aussi I’ob-
servation qui suit n’est certainement pas nouvelle; il peut
cependant étre utile de la publier ici.

Soit, par exemple, la fonction, évidemment continue,
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La limite supérieure de la valeur absolue du »*™ terme de (2)
est aussi celle de ]u;(x)[, done la valeur absolue de la somme
des m — 1 premiers termes de (2) est au plus
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car chaque terme 2™ ™ est inférieur a la moitié du suivant.
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Donnons a & les quatre valeurs
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les arcs o, = 2™z subissent alors, pour n > m, des accroisse-
ments, positifs ou négatifs, qui sont des multiples entiers de
27 et, par suite, (2) se réduit & ses m premiers termes.

Pour n = m, arc «, subit un accroissement

T
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d’ou, pour sin «,, un accroissement (cos a, — sin a,) ou
— (cos a, + sin «,,), et la somme des carrés de ces deux
quantités étant égale & 2, I'une d’elles au moins n’est pas infé-
ieme

rieure & 1 en valeur absolue. Ainsi, la valeur absolue du m
terme de (2) est au moins

1 . 2m2*m+ 1
om 3T 3r ’
2m2 +1

soit pour h, et h,, soit pour k, et k;, et d’ailleurs ce terme aura
tel signe que nous voudrons puisque ky et Ay, h, et k3 donnent
des résultats de signes contraires.

En résumé, on aura:

flo +m) —fla)) 2" mesmts
h 3
flo + k) — 1)

h augmente indéfiniment en valeur absolue

pour la suite des valeurs de A2 que nous assoclons a la suite
des entiers m, et cela avec le signe que nous voulons.

La fonction f(x) n’a donc en aucun point une dérivée déter-
minée, ni finte, ni infinie.

Si, au lieu d’avoir affaire & des éléves débutants, il s’agissait
d’étudiants au courant des profonds résultats de M. DenNJoOY
sur I'indétermination du rapport (2), la fonction f (x) fournirait
un exercice facile et instructif: classer les diverses valeurs de x
dans les quatre types prévus par M. Denjoy.
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