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LE CALCUL DES VARIATIONS GLOBAL1

PAR

W. Threlfall (Francfort s. M.).

La théorie dont je vais vous donner un aperçu s'appuie
sur des idées d'Henri Poincaré. Il s'agit d'un chapitre de l'analyse

globale. Cette discipline, très moderne, n'est cependant

pas encore universellement connue. Mais, par sa beauté et son
caractère d'unité elle peut soutenir la comparaison avec la théorie
classique des fonctions, qui, envisagée du point de vue de

Riemann, est une théorie globale, elle aussi: elle ne se borne pas
au voisinage d'un point, mais traite la fonction analytique dans

toute son étendue.
Les dernières décades ont été très fertiles pour les

mathématiques. On a créé de grandes théories en dehors des théories
classiques, p. ex. la théorie des nombres algébriques, l'algèbre
axiomatique ou la théorie de la relativité.

Les progrès sont si vastes qu'un seul mathématicien ne pourrait

pas embrasser d'un coup d'oeil tout le domaine. Certains
ont mal interprété ces progrès et y ont voulu voir un manque
d'unité à la place d'un développement fécond.

En effet, exiger d'un mathématicien qu'il connaisse toutes
les théories qui ont été inventées dans les divers coins du globe
serait trop demander. On n'exige pas de lui non plus qu'il
connaisse parfaitement toutes ces théories, de même qu'il serait
abusif d'exiger d'un chef d'orchestre qu'il connaisse toutes les

symphonies qui ont été composées à travers les âges.
Le chef d'orchestre qui dirige pour la première fois un nouveau

i Conférence faite à l'Institut des Hautes Etudes de Belgique, le 28 octobre 1938
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190 W. THRELFALL

morceau de musique est tout de même dans une position plus
favorable que le mathématicien qui fait connaître une nouvelle
théorie. Le premier s'adresse au cœur humain qui peut sentir
sans comprendre et sans effort intellectuel, tandis que le second

ne peut parler que devant un auditoire plus restreint habitué
aux développements des théories scientifiques. Il est vrai que
la rigueur classique effraie parfois les non-initiés qui n'entrevoient

pas toujours comment elle se concilie avec une imagination

productive.
Quant à cette discipline d'analyse globale moderne, au lieu

d'introduire une dispersion et une destruction dans le domaine
mathématique, elle inaugure, bien au contraire, une unification
des deux branches de cette science : elle fait disparaître les
frontières entre la Géométrie et l'Analyse.

On a de tout temps, il est vrai, parlé de l'analyse globale.
Mais, à part la théorie des fonctions de Riemann, ces idées ont
été isolées et étaient même quelquefois plutôt des curiosités
mathématiques. Elles ne sont devenues une véritable science

qu'avec Poincaré. C'est Henri Poincaré qui a eu le mérite
d'inventer et d'arithmétiser la topologie. De cette façon, il a donné

aux savants les moyens de faire une science systématique en

partant de ces données disparates. C'est un des plus grands
mérites de ce mathématicien qui fut sans doute le plus génial et
le plus riche en idées parmi les mathématiciens de son temps.

Le développement des idées que je vais vous présenter dans

ma conférence d'aujourd'hui, est dû à M. Marston Morse 1r

et ce développement sur le calcul des variations global repose
tout entier sur la topologie de Poincaré. Cependant, je n'exigerai
pas de vous la connaissance préliminaire de cette topologie.
Je vais vous donner, au contraire, un résumé précis des notions
fondamentales dont nous aurons besoin au cours de nos
explications. Ces quelques notions que j'introduirai sont, dans le

calcul des variations global, d'une importance aussi grande que
les notions de rayon de convergence ou de surface de Riemann
dans la théorie des fonctions.

i M. Morse, Functional topology and abstract variational theory. Mem. des sc.
math. XCII, Paris 1939. — H. Seifert, W. Threlfall, Variationsrechnung im Grossenr
Leipzig 1938.
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Le calcul des variations local se restreint au voisinage d'une

extrêmale. L'un des problèmes est, par exemple, de trouver les

conditions nécessaires et suffisantes pour que l'extrêmale donne

un minimum parmi les courbes voisines. Le calcul des variations

global envisage la variété Jn, sur laquelle le problème des variations

est défini, dans toute son étendue. Une question typique
est celle de trouver toutes les extrêmales remplissant certaines

conditions limites. On cherche, par exemple, toutes les géodé-

siques joignant deux points fixes, donnés sur une surface.

Fig. 1.

M. Morse, pour résoudre de tels problèmes globaux, se sert
d'une idée que nous allons expliquer dans le cas des géodésiques
sur une surface close. Les points limites A et B sont donnés à

l'avance. On ne se contente pas alors des géodésiques partant de

A et aboutissant en B et des courbes voisines, mais on considère
toutes les courbes reliant A et B. J'en ai esquissé quelques-unes
dans la figure 1. Nous nous bornons dans ce qui suit aux courbes

ayant une tangente continue en tous leurs points, excepté peut-
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être en un nombre fini de sommets ; ce sont les courbes « lisses

par parties » (stückweise glatt) ou de classe D, comme disent
les Américains.

L'ensemble de ces courbes forme un espace métrique Q. On

peut notamment définir une distance p (a, b) entre deux courbes,
distance satisfaisant aux axiomes de l'espace métrique.

Dans ce qui va suivre, gardez-vous bien de confondre les deux
notions suivantes:

la variété 311 sur laquelle se trouvent les courbes, et
Vespace O, dont chaque point représente une courbe de OTc.

La longueur J de cette courbe est une fonction sur Q, et J est
continue grâce à la définition adoptée par nous, de la distance
de deux courbes de OTi. Les géodésiques sont des courbes
particulières de OTl. Donc, aux géodésiques correspondent certains
points de On les appelle points stationnaires de J sur Q. Or,
il existe une relation entre la structure topologique de O et le
nombre minimum de ces points stationnaires. Une fonction
continue J sur Q doit avoir au moins un certain nombre de

points stationnaires, bien déterminé par les ordres de connexion
de Q. Lorsque nous aurons déterminé cette relation entre le

nombre minimum des points stationnaires de J et la connexion
de fl, alors, nous aurons le nombre minimum de courbes géodésiques

sur oxl joignant A et B. Il s'agit donc de découvrir cette
relation.

D'ailleurs, le fait qu'une telle relation existe n'est pas étonnant.
Elle est connue depuis longtemps en ce qui concerne le cas très
simple que voici: £2 est une surface close de genre A, c'est-à-dire
une sphère à h anses, et J une fonction deux fois dérivable. Alors
les points, nommés stationnaires, sont ceux où toutes les dérivées

premières de J par rapport aux coordonnées locales sont nulles.
Comme exemple nous prenons le tore de révolution (c'est-à-dire

la surface d'un anneau solide), que j'ai esquissé dans la figure 2.

L'axe de révolution est l'axe des xy et la fonction deux fois
dérivable est J £, c'est-à-dire la hauteur au-dessus du plan de

x et y. Nous aurons 4 points stationnaires, correspondant aux
4 plans tangents horizontaux: un minimum, un col inférieur, un
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col supérieur et un maximum. Nous désignerons par y1? y2, Y3, Y4

les valeurs que prend la fonction J en ces 4 points.
Simplifions encore notre problème, supposons les points sta-

tionnaires non-dégénérés. La fonction J des coordonnées locales

étant deux fois difîérentiable, on peut la développer selon Taylor
jusqu'aux termes du 2me ordre. Le point stationnaire est dit

non-dégénéré si la forme quadratique composée des termes du
2me degré n'est pas dégénérée, c'est-à-dire si son déterminant
n'est pas nul. Cette condition est évidemment remplie dans le

cas du tore. On appelle alors indice de la forme quadratique
ou du point stationnaire, le nombre des carrés négatifs qui se

trouvent dans la forme quadratique normalisée.
Dans le cas de deux variables, nous obtiendrons trois types

de points stationnaires, différenciés par l'indice de la forme
quadratique. Nous désignerons les coordonnées locales par
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x2 et nous prenons comme point initial de ces coordonnées
le point stationnaire en question. La forme quadratique
normalisée peut être alors ou bien

•£2 + x indice 0, minimum, en nombre M012 ' ' '

ou — indice 1, col en nombre M1,

ou — x — x indice 2, maximum, en nombre M2.12' '

Soient M0, M1, M2 les nombres des points stationnaires de ces

trois types respectifs. Les indices supérieurs se rattacheront
toujours à la dimension, et il ne faut pas les confondre avec des

exposants.
Or, ces trois nombres ne sont pas indépendants les uns des

autres. Ils sont liés par la formule de Kronecker. Soit N la caractéristique

d'Euler de notre surface. Alors la formule de Kronecker
sera

— M0 -b M1 — M2 N

La caractéristique d'Euler peut être calculée d'une part au moyen
du nombre d'anses h de notre surface, d'autre part au moyen
des nombres a0, a1, a2 des sommets, des arêtes et des faces d'un
polyèdre représentant la surface. On a

N 2 (h — 1) — a0 -f a1 — a2

M0 et M2 sont toujours >. 1, car il y a toujours au moins un
minimum et un maximum. La formule de Kronecker nous montre
donc que M1 > 2ft; il y a au moins 2k cols. Ecrivons donc le

résultat
M0 > 1 M1 > 2 h M2 > 1.

Le nombre d'anses de notre tore est h 1 ; il y a en effet 2 cols,
et dans les trois relations on a les signes d'égalité.

Notre exemple assez simple nous a donné des limites inférieures

pour le nombre des points stationnaires d'indice k sur l'espace O,
déterminées par la structure topologique de Q. Dans ce qui suit,
il s'agit de généraliser ces relations à des variétés de dimension
quelconque et même à des espaces métriques quelconques qui
n'ont pas de dimension finie du tout.
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I Afin d'exécuter cette généralisation, occupons-nous tout
j d'abord de la structure topologique de l'espace £î, et ensuite de

: la définition et de la classification des points stationnaires de

| la fonction J sur Q.

Pour déterminer la structure topologique, on devrait répondre
à la question: quand deux espaces métriques sont-ils homéo-

morphes Mais on ne saurait répondre à cette question et on
ne peut même pas l'attaquer directement. Par conséquent, le

procédé général de la topologie consiste en ce qu'on met des

objets bien connus de dimension finie dans l'espace en question
et qu'on analyse les possibilités qui s'y présentent. Ces objets,

1 nous les appellerons des chaînes.
Bornons-nous à la théorie de connexion, ou, comme on dit

aussi, à la théorie d'homologie modulo 2. Rappelons-nous les

notions fondamentales de cette théorie. Ce sont les notions de

chaîne, de l'addition des chaînes et du bord d'une chaîne, puis
l'homologie des chaînes, et leur indépendance, et enfin le nombre
de connexion de dimension k.

Une chaîne de dimension 0 est un ensemble fini de points de

l'espace Q. Quant aux chaînes de dimension 1, on peut s'imaginer
| une ou plusieurs courbes tracées dans l'espace O; quant aux
j chaînes de dimension 2, une ou plusieurs surfaces bordées ou
j closes dans £3, etc. Mon intention n'est pas de donner par là une
j définition. La définition exacte introduirait les chaînes de

dimension 0, 1, 2, k, comme systèmes d'images continues
j de simplexes de dimension 0, 1, 2, &, Mais nous nous

j contenterons aujourd'hui de l'intuition.
Chaque chaîne de dimension k a un bord ; c'est une chaîne de

| dimension k—1. Si cette chaîne est la chaîne 0 de dimension
j k—1, alors on dit que la chaîne de dimension k est fermée, ou

est un cycle de dimension k.
Prenons comme premier exemple un segment du plan joignant

deux points; c'est une chaîne de dimension 1. Son bord consiste
dans les deux points, et ces deux points forment un cycle de
dimension 0. — Prenons comme deuxième exemple une surface
close quelconque de l'espace ordinaire; c'est un cycle de dimension

2. Si l'on fait un trou dans la surface en y découpant un
petit cercle, on aura une chaîne de dimension 2 qui ne sera plus
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un cycle). Cette chaîne est bordée par un cycle de dimension 1,
c'est-à-dire par la circonférence du cercle.

Les chaînes, et spécialement les cycles jouissent de la possibilité
d'être additionnés dans un certain sens. On ne peut additionner
que des chaînes de même dimension k. L'élément 0 de cette
addition est la chaîne 0 de dimension k.

L'essentiel est de savoir que les chaînes ne sont pas orientées :

On fait abstraction de toute direction des courbes qui
représentent des chaînes de dimension 0, de même de toute orientation

des surfaces et de tout sens de vissage des chaînes à trois
dimensions, etc. Or, nous exigerons de l'addition des chaînes que
le bord d'une somme de deux chaînes soit égal à la somme des

bords des chaînes composantes. Cela nous oblige à exécuter l'addition

modulo 2.

Prenons pour exemple deux triangles du plan, ayant une arête
en commun. Ce sont deux chaînes de dimension 2 du plan. Leur
somme est un quadrilatère. L'arête commune se trouve deux fois
dans la somme des bords des deux triangles, mais elle ne figure
plus dans le bord du quadrilatère. Nous considérons donc le
double de chaque chaîne de dimension k comme équivalent à la
chaîne 0 de dimension k.

Il est aisé de voir qu'une chaîne de dimension &, bordant une
chaîne de dimension k + 1, est fermée, c'est-à-dire est un cycle.
Par exemple le bord d'un triangle est un cycle de dimension 1,

homéomorphe à la circonférence. L'inverse, est-il vrai aussi

Il en est ainsi dans Je plan. En effet, chaque cycle de dimension 1

borde une chaîne de dimension 2 (un ou plusieurs morceaux du
plan).

Mais il en est autrement dans des variétés plus compliquées.
On peut s'en rendre compte sur le tore. Un méridien a du tore
est un cycle de dimension 1, qui ne borde pas une portion de

dimension 2 du tore. Pour le mettre en évidence, coupons le tore

par le méridien a et par un parallèle à, et développons-le sur un
rectangle du plan (fig. 3). Le méridien se calque deux fois, notamment

sur deux côtés parallèles du rectangle et le parallèle sur
les deux autres côtés. Evidemment un côté seul ne borde pas un
morceau du rectangle.

Si un cycle de dimension k jouit de la propriété spéciale de
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border une chaîne de dimension ft + 1, on l'appelle homologue

à 0.

On appelle homologues deux chaînes de dimension ft, si elles

forment ensemble le bord d'une chaîne de dimension ft + 1.

En particulier, deux cycles qui peuvent se déduire l'un de l'autre

par une déformation continue
sont certainement homologues.
Un système de cycles de

dimension k est dit indépendant,
si aucune combinaison de ces

cycles ne borde une chaîne de

dimension ft + 1.

Nous voici arrivés aux nombres

de connexion de l'espace
£1 Le nombre Rfe de connexion
de dimension k est le nombre Fig. 3.

maximum de cycles indépendants

de dimension ft, qu'on peut placer dans l'espace Q.

Déterminons, par exemple, les nombres de connexion du tore.
On a R° 1. Il n'y a qu'un seul cycle indépendant de dimension

0; c'est un point quelconque du tore. Chaque autre point
est homologue à celui-ci, car les deux points bordent ensemble

une chaîne de dimension 1, notamment un segment qui les joint.
— On a R1 2. Il y a deux cycles de dimension 1 qui ne bordent

pas ensemble une chaîne de dimension 2, le méridien a et le

parallèle b. Il est aisé de prouver que tout autre cycle de dimension

1 est homologue à une combinaison de ces deux. — Finalement,

on a R2 1. Le seul cycle de dimension 2 qui existe est
le tore entier lui-même. Il est homologiquement indépendant,
c'est-à-dire qu'il n'est pas homologue à 0 sur le tore, car il ne borde

pas une chaîne de dimension 3. En effet, nous ne considérons que
la surface de dimension 2, et à ce point de vue, il n'existe pas de
dimensions plus grandes que 2. Pour la même raison, tous les
nombres de connexion de dimension supérieure à 2 sont 0.

On peut déterminer de la même manière les nombres de
connexion d'une surface close quelconque. La seule différence
concerne le nombre de dimension 1. S'il s'agit d'une sphère à
h anses, ce nombre est égal à 2h. On peut prendre comme 2h



198 W. THRELFALL

cycles indépendants de dimension 1 un système de coupures
canoniques de la surface de Riemann de genre h.

Etant arrivés à ce résultat, nous pouvons écrire les inégalités
obtenues plus haut sous la forme

M0 > R° 1 M1 > R1 2h M2 > R2 1

On peut de même les prouver pour les variétés de dimension n.
On aura toujours les inégalités de Morse:

M* > R*. (k 0, 1, 2,

est le nombre de connexion de dimension k de la variété
et Mfe le nombre des points stationnaires, supposés non-dégénérés,

d'indice k d'une fonction J deux fois dérivable par
rapport aux n coordonnées locales.

Ces inégalités ont d'ailleurs une évidence bien intuitive sur
les surfaces. Revenons à l'exemple du tore avec la fonction
J z. Plongeons le tore dans l'eau. J nous donnera alors la
hauteur du niveau. Désignons la partie mouillée sans compter
le niveau par

| J < c } partie mouillée ouverte

et la partie mouillée avec les points du niveau par

[ J c } partie mouillée parfaite

Nous conserverons cette notation même dans le cas où la
fonction J ne peut pas être interprétée par la hauteur du niveau
d'eau. Faisons monter l'eau du minimum au maximum. La
structure topologique de la partie mouillée ne changera que
lorsque le niveau passe par un point stationnaire. Et l'expérience
nous montre qu'en passant sur un point d'indice k on aura un
nouveau cycle de dimension k. Passant le minimum (d'indice 0),
le nombre de connexion de dimension 0 saute de 0 à 1, car la

partie mouillée est vide avant que le niveau ait passé le

minimum, et après, elle est un seul domaine cohérent, homéomorphe
au cercle. Dans ce domaine, il y a une seule chaîne indépendante
de dimension 0. Elle consiste en un seul point quelconque, comme
nous l'avons déjà vu.
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Le passage du col inférieur (d'indice 1) donne naissance à un

premier cycle de dimension 1 qui n'est pas homologue à 0,

C'est le méridien a de la figure 2. De même, le passage du col

supérieur y joint le parallèle b. Puis la partie mouillée est le

tore avec un trou. Celui-ci se ferme dès que le niveau dépasse

Fig. 4.

le maximum (d'indice 2). C'est alors le nombre R2 qui saute
de 0 à 1.

Naturellement, il ne faut pas s'attendre à ce que chaque point
stationnaire fournisse un nouveau cycle, comme il arrive dans

l'exemple. Appliquons deux appendices au tore. On le voit dans
la figure 4. Les nombres de connexion n'ont pas changé, car le

tore avec les appendices est homéomorphe au tore sans appendices;

on peut les déformer l'un dans l'autre. Au contraire, les

points stationnaires ont augmenté. En effet, le col le plus bas

ne donne pas naissance à un cycle global de dimension 1. Alors
le signe d'égalité n'est pas valable dans les inégalités de Morse.
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Inversement, un cycle de dimension k ne peut certainement
pas naître sans que le niveau passe sur un point stationnaire
d'indice k. On peut prouver cela pour une variété close quelconque
pourvu que tous les points stationnaires soient non-dégénérés.
Quand on cherche à tirer un cycle de dimension k aussi bas que
possible, ce cycle restera accroché à un certain point stationnaire

d'indice &, et chaque point stationnaire n'arrêtera qu'un
seul cycle, à moins qu'on ne choisisse convenablement la base

d'homologie des cycles de dimension k. Mais ce résultat n'est
autre chose que les inégalités de Morse.

Tout de même, ce théorème est encore sans valeur pour le

calcul des variations. Il faut généraliser les inégalités à l'espace
fonctionnel du problème des variations.

Les deuxièmes membres de ces inégalités, les nombres de

connexion Rfe, ont déjà une signification purement topologique,
qui s'étend d'elle-même à des espaces quelconques. Quant aux
premiers membres, pour les définir, nous avons fait usage des

dérivées de la fonction J. Or, une fonction, donnée sur un espace
métrique quelconque, peut être continue, mais on ne peut pas
la dériver. Il faut donc définir et classer les points stationnaires

non pas d'après l'indice, mais d'une manière topologique.
C'est là l'idée essentielle de M. Morse. Développons-la dans ce

qui suit.
On rangera dans la même classe deux points stationnaires,

appartenant aux valeurs J y et J y', s'ils ont des

voisinages homéomorphes qui peuvent être représentés l'un sur
l'autre de manière que les sous-ensembles {J < y) { J — y }
{J > y} se calquent sur les sous-ensembles {J < y'}
(J — y'}, {J>t} respectivement. Autrement dit, il existe
alors une représentation topologique qui conserve le niveau
d'eau.

Décider la possibilité d'une telle représentation serait résoudre
le problème d'homéomorphie de ces sous-ensembles. Mais, pour
résoudre ce problème, nous sommes aussi impuissants que pour
résoudre le problème d'homéomorphie des espaces globaux.

Les conditions suffisantes manquant, il faut se contenter de

conditions nécessaires de l'équivalence des deux points stationnaires.

Il suffit de considérer le sous-ensemble {J < y} du
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voisinage du point stationnaire. Les invariants topologiques
de ce sous-ensemble seront en même temps des invariants

topologiques du point stationnaire. Pour les obtenir, on se sert

de la même méthode topologique qui nous a déjà donné les

nombres de connexion de l'espace global. Aux nombres de

connexion Rk de l'espace entier correspondront les nombres-

types mk d'un point stationnaire.
Rendons-nous compte des changements qu'il faut appliquer

à la définition des nombres de connexion pour arriver aux
nombres-types. Pour simplifier le raisonnement, supposons qu'il
n'y ait qu'un seul point stationnaire de valeur J y, et pour
fixer les idées pensons d'abord encore au cas où O est une

variété, où J est deux fois dérivable et le point stationnaire
non-dégénéré.

Les nombres-types doivent être déjà fixés si l'on connaît un
voisinage du point stationnaire aussi petit qu'on veut. On se

servira donc, au lieu des cycles globaux de l'espace Ü, de petits
morceaux de cycles qui passent par le point stationnaire. Tout
ce qui se passe au-dessous de la valeur J — y ne nous intéresse

point. Nous regarderons donc toute chaîne de dimension &,

située entièrement dans {J < y} comme équivalente à la
chaîne 0 de dimension k. Il s'ensuit que toute chaîne est regardée
comme fermée, si son bord se trouve au-dessous de J y. On

appelle une telle chaîne un cycle relatif du point stationnaire,
ou un cycle de { J < y } modulo { J < y } Cela veut dire qu'on
peut ajouter ou laisser de côté des chaînes de { J < y} sans

changer le cycle relatif, de même qu'on peut ajouter à un nombre,
ou en retrancher des multiples d'un nombre entier sans changer
son caractère de reste relatif à cet entier. On peut en particulier
découper d'un cycle relatif des chaînes partielles qui sont entièrement

situées au-dessous de y.
La définition des nombres-types sera alors une répétition

de celle des nombres de connexion. Il faut introduire les notions
d'homologie et d'indépendance des cycles relatifs et le nombre-
type de dimension k est le nombre maximum des cycles relatifs
indépendants qui existent au point stationnaire.

Prenons par exemple comme espace Q le plan et comme
fonction

J x2 — y2
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Elle a un col au point initial 0, et la valeur en ce point station-
naire est J 0. On voit, dans la figure 5, les lignes de niveau
de J. Le domaine {J < 0} consiste en deux quarts du plan
qui ont été hachurés dans la figure. Le segment 102 est un cycle
relatif de dimension 1 du point stationnaire, car les deux points
qui le bordent sont situés au-dessous de J — 0. De même, la
ligne brisée l'02' est un cycle relatif de dimension 1.

On appelle homologues deux cycles relatifs de dimension ky

s'ils bordent, ensemble ou avec des chaînes situées au-dessous

de la valeur stationnaire y, une chaîne de dimension k + 1.

En particulier, deux cycles sont homologues, si l'on peut
transformer l'un dans l'autre par une déformation, car alors ils bordent
la variété que l'un a recouverte pendant la déformation dans

l'autre. Il s'ensuit qu'on ne changera pas la classe d'homologie
d'un cycle relatif en en déformant la partie située au-dessous

de y, sans quitter le domaine {J < y} (la partie mouillée

ouverte).

y J ^
3>ö

3 "v
Fig. 5.
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On appelle homologue à 0 un cycle relatif de dimension k qui,
seul, ou avec des chaînes situées au-dessous de y, borde une
chaîne de dimension k + 1 de la partie mouillée parfaite
{ J < y} Un cycle relatif est donc certainement homologue
à 0, ' si on peut le déformer sur {J < y} en un cycle de

{ J < y } c'est-à-dire si l'on peut le tirer du point stationnaire
sans quitter le domaine { J < y} le bord restant fixe pendant
toute la déformation.

Le cycle relatif 1' 02' de l'exemple donné (fig. 5) est homologue

à 0, car il borde avec la chaîne pointillée 1' 2' une chaîne
de dimension 2. Au contraire, le cycle rectiligne 102 n'est pas
homologue à 0. On ne peut pas le déformer vers le bas sans
dépasser la valeur stationnaire y 0, et il n'est en aucune
façon homologue dans {J <0} à un cycle inférieur à J 0.

Voici un autre exemple: Couvrons le maximum du tore d'une
petite calotte comme on la voit dans la figure 4. C'est un cycle
relatif de dimension 2, car son bord est situé au-dessous de la
valeur maximum. Ce cycle n'est pas homologue à 0; on ne
peut pas le tirer du maximum, le bord restant fixe.

On appelle indépendant un système de cycles relatifs de
dimension &, si aucune combinaison de ces cycles ne borde une
chaîne de dimension k + 1. Un seul cycle est donc dit
indépendant, s'il n'est pas homologue à 0.

Nous voici arrivés aux nombres-types. Le nombre-type de
dimension k d'un point stationnaire est le nombre maximum
des cycles relatifs indépendants de dimension A, admis par le
point stationnaire.

Un minimum (d'indice 0) a donc les nombres-types

m0 — 1, tous les autres 0

En effet, on ne peut pas déformer vers le bas un cycle relatif de
dimension 0, c'est-à-dire un point coïncidant avec le minimum,
la partie au-dessous du minimum étant vide. Des cycles relatifs
de dimension plus élevée, non homologues à 0, n'existent plus,
du tout au minimum.

Un col (d'indice 1) a les nombres-types

m1 1, tous les autres 0
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Car nous avons déjà vü qu'il existe un cycle de dimension 1,

non homologue à 0, notamment le cycle rectiligne 102. Evidemment,

tous les autres cycles relatifs de dimension 1 sont
homologues à celui-ci. Un cycle de dimension 0 peut être tiré vers
le bas, il est homologue à 0 pour cette raison, tandis que des

cycles relatifs de dimension plus élevée non homologues à 0

n'existent pas.
Le maximum (d'indice 2) a les nombres-types

m2 1, tous les autres 0

Un cycle relatif de dimension 2, non homologue à 0 nous est
donné par la calotte que nous avons mise sur le tore de la figure 4.

Tout autre cycle peut être tiré vers le bas.
Nous avons donc réussi à classer les points stationnaires

d'une manière tout à fait topologique. Cela ne nous apprend
rien de nouveau dans le cas que nous venons de considérer.
Car, si les points stationnaires sont non-dégénérés, les

nombres-types mk sont déterminés par l'indice i selon la formule

[ 0 pour k ^ i
mh S*

P

f 1 pour k i

Nous avons trouvé cette formule exacte dans notre exemple
du tore, et on peut de même en prouver l'exactitude pour une
variété de dimension n. Nous montrerons maintenant par un
exemple comment on peut attribuer ainsi un nombre-type à

un point stationnaire dégénéré, pour lequel un indice n'est

pas défini.
Considérons dans le plan les deux lemniscates semblables

(fig. 6) Lt, L2 d'équations respectives /x {x2 + y2)2 —
2 (x2 — y2) 0, /2 (x2 + y2)2 — (x2 — y2) — 0, et prenons
pour J la fonction f1 /2, qui prend des valeurs positives à l'extérieur

de Lx et à l'intérieur de L2, et des valeurs négatives entre
et L2. Le point 0 est un point stationnaire dégénéré pour J ;

son nombre-type m1 pour la dimension 1 est égal à 3, puisque le

voisinage du point 0 admet les 3 cycles relatifs homologique-
ment indépendants 102, 304, 103; on voit en effet que les autres
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cycles relatifs sont des combinaisons de ceux-ci, puisque l'addition

se fait modulo 2.

Mais la classification topologique subsiste également pour les

espaces quelconques où il n'y a plus d'indice. On peut prouver
j dans ce cas aussi les inégalités de Morse

I
-

Mk >Rk
j

j Mfe désigne maintenant la somme des nombres-types mk de

I dimension A, Mk EmJ, prise par rapport à tous les points
I v
I stationnaires convenablement définis.

Nous voici bien préparés pour appliquer ces inégalités au
calcul des variations global. L'espace Q est alors l'espace fonctionnel

d'une variété 311, c'est-à-dire l'espace de toutes les courbes

joignant deux points A et B de 31t. Les points stationnaires sont
les géodésiques parmi ces courbes. Ce n'est donc pas pour la
définition des points stationnaires que nous faisons usage des

nombres-types, mais nous les emploierons pour la classification.
Dans ce but, considérons la longueur des courbes de 311,

joignant A et B. C'est une fonction J continue sur Q. Soit
J — y la longueur d'une géodésique isolée, allant de A à B.

Nous désignerons une telle géodésique de 311, ainsi que le point
correspondant de ß, par la lettre g.

Déterminons le nombre maximum des cycles relatifs
indépendants de dimension A-de la partie {J < y} + g (c'est-à-dire
de la partie mouillée ouverte augmentée du point g), modulo
{ J < y} (c'est-à-dire modulo la partie mouillée ouverte seule),

L'Enseignement mathém., 38me année, 1939 et 1940. 14
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Ce nombre est le nombre-type mk de dimension k de la géodé-
sique g.

On peut prouver que les nombres-types de tout point qui
n'est pas stationnaire sont tous 0. Par cela la notation « points
stationnaires » est justifiée, car, sur une variété, un point non-
stationnaire a aussi tous ses nombres-types nuls.

La géodésique g est dite non-dégénérée s'il n'y a pas de géo-
désique infiniment voisine. Dans ce cas, on peut prouver qu'un
seul nombre-type est 1 et que tous les autres sont — 0. S'il
se trouve i points conjugués au point initial sur g, le t-ième
nombre-type est 1. Mais, en d'autres cas, les nombres-types
peuvent être > 1.

Notre but est de prouver le théorème principal suivant: il
existe toujours une infinité de géodésiques joignant les deux
points A et B.

S'il y a une géodésique non isolée le théorème sera vrai. Il est
donc permis de supposer qu'il n'y a qu'un nombre fini de

géodésiques de longueur bornée.
La preuve se fait alors en trois étapes.
Premièrement, il nous faut prouver les inégalités de Morse

Mk >Rk

Mft est maintenant la somme des nombres-types de dimension A,

prise par rapport à toutes les géodésiques. Mk peut être infini.
Deuxièmement nous avons le théorème de limitation

(Endlichkeitssatz): chaque géodésique ne contribue à la somme Mk que
par un montant fini, et ce montant est 0, exception faite pour
un nombre fini de dimensions. Donc, nous sommes sûrs d'avoir
une infinité de géodésiques si la connexion de l'espace fonctionnel

Ü est infinie, c'est-à-dire si la somme des nombres de

connexion Rfe, prise sur toutes les dimensions k est infinie.
Nous avons donc troisièmement à déterminer les nombres de

connexion Rfe de Ü, ou au moins, à évaluer leur somme. En
général, c'est une tâche désespérée. Il n'y a pas de méthodes

qui permettent d'aborder ce problème.
Mais, par une méthode indirecte, on sait déterminer par

exemple les nombres de connexion de l'espace fonctionnel d'une
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surface close simplement connexe. On prouve d'abord que ces

nombres sont des invariants topologiques de la surface (et non
seulement de l'espace fonctionnel), c'est-à-dire qu'ils sont indé-

I pendants du choix de la métrique de Riemann et de la situation
des deux points frontières.

Pour calculer les nombres de connexion Rfe de l'espace fonc-
j bionnel d'une surface quelconque homéomorphe à la sphère, il
] suffit donc de les déterminer pour l'espace fonctionnel de la
j sphère métrique. On trouve que tous ces nombres sont 1.

j II s'ensuit le résultat principal qu'il y a une infinité de géodé-
J siques joignant deux points sur une surface close simplement

j connexe.
j La situation des points frontières étant arbitraire, on peut

les faire coïncider. Alors le résultat se réduit au théorème: il
j y a en chaque point une infinité de boucles géodésiques.
j Peut-être trouvera-t-on ce résultat un peu banal. Mais,
j jusqu'à présent, on n'avait jamais réussi à en donner une preuve
j mathématique.

Tirons finalement de la théorie un autre résultat. Déformons
| la sphère métrique en la serrant par le milieu. Considérons deux
| points A et B sur la ceinture de la taille ainsi formée. On les voit
I dans la figure 1. Il s'offre immédiatement une infinité de géodé-
j siques joignant A et B, notamment les deux parties de la ceinture

entre A et B, et celles-ci augmentées des pourtours complets de
la taille. Il est aisé de voir que toutes ces géodésiques fournissent
un minimum de la longueur, comparée à celle des courbes voi-

j sines. Donc, les nombres-types sont toujours

m0 1, tous les autres 0

Mais tous ces nombres-types ne sont pas encore suffisants pour
; satisfaire aux inégalités de Morse.

1 > RA
I ~

car ils ne contribuent qu'à la somme M0. Donc, il y a encore une
infinité de géodésiques qui passent en dehors de la ceinture.
On en voit une dans la figure 1.
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** *

Au cours de ma conférence je vous ai donné un résumé d'une
partie de la théorie de M. Morse. C'est à mon ami, le professeur
Seifert, que je dois les simplifications essentielles que j'y ai
apportées. Malgré ces simplifications, il y a encore dans ce que
j'ai dit des démonstrations assez difficiles. Mais, je me suis
efforcé de vous les dissimuler le plus possible.

Nos méthodes sont autres que celles bien connues de l'analyse
classique. Quant à la rigueur, elles ne le cèdent en rien aux
méthodes classiques. Il ne peut en être, en effet, autrement, car
être rigoureux en mathématique ce n'est pas faire preuve de

mesquinerie, tandis qu'au contraire, manquer de rigueur, c'est

manquer d'imagination, c'est laisser échapper les possibilités
de nouvelles découvertes.

UNE FONCTION CONTINUE SANS DÉRIVÉE

PAR

R. Tambs Lyche (Trondheim, Norvège).

1. — L'exemple donné par Weierstrass d'une fonction
continue qui n'admet de dérivée pour aucune valeur de la variable
est trop compliqué pour que l'on puisse l'exposer dans un cours
élémentaire d'Analyse. On doit à M. B. L. van der Waerden
(Math. Zeitschr., 32. Band, 1930, p. 474) un exemple de nature
bien simple. Toutefois, pour être présentée d'une manière
intelligible aux débutants, la démonstration exige des considérations
un peu compliquées, bien qu'elles soient de nature élémentaire
(voir par exemple E. Landau: Einfuhrung in die Differentialrechnung

und Integralrechnung, p. 73, où l'auteur examine un
exemple de même espèce).

Vu l'importance d'une conception précise de la notion de

dérivée, il ne semble pas inutile de pouvoir fournir un exemple
où la démonstration peut être donnée en peu de lignes. Celui que
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