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LE CALCUL DES VARIATIONS GLOBAL'

PAR

W. TarerrALL (Francfort s. M.).

La théorie dont je vais vous donner un aper¢u s’appuie
sur des idées d’Henri Poincari. 1l s’agit d’un chapitre de I’ana-
lyse globale. Cette diseipline, trés moderne, n’est cependant
pas encore universellement connue. Mais, par sa beauté et son
caractére d’unité elle peut soutenir la comparaison avec la théorie
classique des fonctions, qui, envisagée du point de vue de
Riemann, est une théorie globale, elle aussi: elle ne se borne pas
au voisinage d’un point, mais traite la fonction analytique dans
toute son étendue.

Les derniéres décades ont été trés fertiles pour les mathé-
matiques. On a créé de grandes théories en dehors des théories
classiques, p. ex. la théorie des nombres algébriques, ’algébre
axiomatique ou la théorie de la relativité.

Les progrés sont si vastes qu’un seul mathématicien ne pour-
rait pas embrasser d’un coup d’ceil tout le domaine. Certains
ont mal interprété ces progres et y ont voulu voir un manque
d’unité a la place d’un développement fécond.

En effet, exiger d’'un mathématicien qu’il connaisse toutes
les théories qui ont été inventées dans les divers coins du globe
serait trop demander. On n’exige pas de lui non plus ‘qu’il
connaisse parfaitement toutes ces théories, de méme qu’il serait
abusif d’exiger d’un chef d’orchestre qu’il connaisse toutes les
symphonies qui ont été composées a travers les Ages.

Le chef d’orchestre qui dirige pour la premiére fois un nouveau

1 Conférence faite a I’Institut des Hautes Etudes de Belgique, 1e 28 octobre 1938
L’Enseignement mathém., 38me année, 1939 et 1940. 13



190 W. THRELFALL

morceau de musique est tout de méme dans une position plus
favorable que le mathématicien qui fait connaitre une nouvelle
théorie. Le premier s’adresse au cceur humain qui peut sentir
sans comprendre et sans effort intellectuel, tandis que le second
ne peut parler que devant un auditoire plus restreint habitué
aux développements des théories scientifiques. Il est vrai que
la rigueur classique effraie parfois les non-initiés qui n’entre-
voient pas toujours comment elle se concilie avec une imagi-
nation productive. ,,

Quant a cette discipline d’analyse globale moderne, au lieu
d’introduire une dispersion et une destruction dans le domaine
mathématique, elle inaugure, bien au contraire, une unification
des deux branches de cette science: elle fait disparaitre les fron-
tieres entre la Géométrie et 1’Analyse.

On a de tout temps, il est vrai, parlé de I'analyse globale.
Mais, & part la théorie des fonctions de Riemann, ces idées ont
été isolées et étaient méme quelquefois plutoét des curiosités
mathématiques. Elles ne sont devenues une véritable science
qu’'avec Poincaré. C’est Henri Poincaré qui a eu le mérite d’in-
venter et d’arithmétiser la topologie. De cette facgon, il a donné
aux savants les moyens de faire une science systématique en
partant de ces données disparates. C’est un des plus grands
mérites de ce mathématicien qui fut sans doute le plus génial et.
le plus riche en i1dées parmi les mathématiciens de son temps.

Le développement des idées que je vais vous présenter dans
ma conférence d’aujourd’hui, est dd & M. Marston MoRrse !,
et ce développement sur le calcul des variations global repose
tout entier sur la topologie de Poincaré. Cependant, je n’exigeral
pas de vous la connaissance préliminaire de cette topologie.
Je vais vous donner, au contraire, un résumé précis des notions
fondamentales dont nous aurons besoin au cours de nos expli-
cations. Ces quelques notions que j’introduirai sont, dans le
calcul des variations global, d’une importance aussi grande que
les notions de rayon de convergence ou de surface de Riemann
dans la théorie des fonctions.

1 M., Morse, Functional topology and abstract wvariational theory. Mém. des sc.
math., XCII, Paris 1939. — H. Serrerr, W. THrELFALL, Variationsrechnung im Grossen,
Leipzig 1938.
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LE CALCUL DES VARIATIONS GLOBAL 191

Le caleul des variations local se restreint au voisinage d’une
extrémale. L'un des problémes est, par exemple, de trouver les
conditions nécessaires et suffisantes pour que l'extrémale donne
un minimum parmi les courbes voisines. Le calcul des variations
global envisage la variété o, sur laquelle le probléme des varia-
tions est défini, dans toute son étendue. Une question typique
est celle de trouver toutes les extrémales remplissant certaines
conditions limites. On cherche, par exemple, toutes les géodé-
siques joignant deux points fixes, donnés sur une surface.

Fig. 1.

M. Morse, pour résoudre de tels probléemes globaux, se sert
d’une idée que nous allons expliquer dans le cas des géodésiques
sur une surface close. Les points limites A et B sont donnés a
I’avance. On ne se contente pas alors des géodésiques partant de
A et aboutissant en B et des courbes voisines, mais on consideére
toutes les courbes reliant A et B. J’en a1 esquissé quelques-unes
dans la figure 1. Nous nous bornons dans ce qui suit aux courbes
ayant une tangente continue en tous leurs points, excepté peut-
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étre en un nombre fini de sommets; ce sont les courbes «lisses
par parties» (stiickweise glatt) ou de classe D, comme disent
les Américains.

I’ensemble de ces courbes forme un espace métrique . On
peut notamment définir une distance p (a, b) entre deux courbes,
distance satisfaisant aux axiomes de ’espace métrique.

Dans ce quiva suivre, gardez-vous bien de confondre les deux
notions suivantes:

la variété N sur laquelle se trouvent les courbes, et
Pespace ), dont chaque point représente une courbe de 1.

La longueur J de cette courbe est une fonction sur €, et J est
continue grice a la définition adoptée par nous, de la distance
de deux courbes de IM. Les géodésiques sont des courbes parti-
culieres de On. Done, aux géodésiques correspondent certains
points de . On les appelle points stationnaires de J sur Q. Or,
il existe une relation entre la structure topologique de Q et le
nombre minimum de ces points stationnaires. Une fonction
continue J sur  doit avoir au moins un certain nombre de
points stationnaires, bien déterminé par les ordres de connexion
de €. Lorsque nous aurons déterminé cette relation entre le
nombre minimum des points stationnaires de J et la connexion
de €, alors, nous aurons le nombre minimum de courbes géodé-
siques sur I joignant A et B. Il s’agit donc de découvrir cette
relation. :

D’ailleurs, le fait qu’une telle relation existe n’est pas étonnant.
Elle est connue depuis longtemps en ce qui concerne le cas treés
simple que voici: £ est une surface close de genre £, c’est-a-dire
une sphere a £ anses, et J une fonction deux fois dérivable. Alors
les points, nommés stationnaires, sont ceux ou toutes les dérivées
premiéres de J par rapport aux coordonnées locales sont nulles.

Comme exemple nous prenons le tore de révolution (c’est-a-dire
la surface d’un anneau solide), que j’ai esquissé dans la figure 2.
L’axe de révolution est 'axe des x, et la fonction deux fois déri-
vable est J = z, c’est-a-dire la hauteur au-dessus du plan de 1
x et y. Nous aurons 4 points stationnaires, correspondant aux |
4 plans tangents horizontaux: un minimum, un col inférieur, un
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col supérieur et un maximum. Nous désignerons par vy, Yz, Ys» Ya
les valeurs que prend la fonction J en ces 4 points.

Simplifions encore notre probléme, supposons les points sta-
tionnaires non-dégénérés. La fonction J des coordonnées locales
étant deux fois différentiable, on peut la développer selon Taylor
jusqu’aux termes du 2me ordre. Le point stationnaire est dit

J=2

Fig. 2.

non-dégénéré si la forme quadratique composée des termes du
2me degré n’est pas dégénérée, c’est-a-dire si son déterminant
n’est pas nul. Cette condition est évidemment remplie dans le
cas du tore. On appelle alors indice de la forme quadratique
ou du point stationnaire, le nombre des carrés négatifs qui se
trouvent dans la forme quadratique normalisée.

Dans le cas de deux variables, nous obtiendrons trois types
de points stationnaires, différenciés par l'indice de la forme
quadratique. Nous désignerons les coordonnées locales par
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%1, Xy €t nous prenons comme point initial de ces coordonnées
le point stationnaire en question. La forme quadratique nor-
malisée peut étre alors ou bien

2 2 . . o« w
z -+ x, ~ indice 0, minimum, en nombre M?,
2 2 . .
ou—uzx + indice 1, col , en nombre M1,

2 2 . . .
ou—x —x, indice 2, maximum, en nombre M2,

Soient M9, M1, M2 les nombres des points stationnaires de ces
trois types respectifs. Les indices supérieurs se rattacheront
toujours a la dimension, et 1l ne faut pas les confondre avec des
exposants.

Or, ces trois nombres ne sont pas indépendants les uns des
autres. Ils sont liés par la formule de Kronecker. Soit N la caracté-
ristique d’Euler de notre surface. Alors la formule de Kronecker

sera
— MO - M! — M2 =N .

La caractéristique d’Euler peut étre calculée d’une part au moyen
du nombre d’anses ~ de notre surface, d’autre part au moyen
des nombres «° o!, «? des sommets, des arétes et des faces d’un
polyédre représentant la surface. On a

N=2h—1)=—a 4+ o — a? .

MO et M2 sont toujours =1, car il y a toujours au moins un
minimum et un maximum. La formule de Kronecker nous montre
donc que M! = 2#; 1l y a au moins 24 cols. Ecrivons donc le
résultat

Le nombre d’anses de notre tore est ~ = 1; 1l y a en effet 2 cols,
et dans les trois relations on a les signes d’égalite.

Notre exemple assez simple nous a donné des limites inférieures
pour le nombre des points stationnaires d’indice k£ sur I'espace €,
déterminées par la structure topologique de Q. Dans ce qui suit,
il s’agit de généraliser ces relations a des variétés de dimension
quelconque et méme a des espaces métriques quelconques qui
n’ont pas de dimension finie du tout.
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Afin d’exécuter cette généralisation, occupons-nous tout
d’abord de la structure topologique de 'espace Q, et ensuite de
la définition et de la classification des points stationnaires de
la fonction J sur Q.

Pour déterminer la structure topologique, on devrait répondre
a la question: quand deux espaces métriques sont-ils homeo-
morphes ? Mais on ne saurait répondre a cette question et on
ne peut méme pas I'attaquer directement. Par conséquent, le
procédé général de la topologie consiste en ce qu’on met des
objets bien connus de dimension finie dans I’espace en question
et qu’on analyse les possibilités qui s’y présentent. Ces objets
nous les appellerons des chaines.

Bornons-nous a la théorie de connexion, ou, comme on dlt
aussi, & la théorie d’homologie modulo 2. Rappelons-nous les
notions fondamentales de cette théorie. Ce sont les notions de
chaine, de Paddition des chaines et du bord d’une chaine, puis
Phomologie des chaines, et leur indépendance, et enfin le nombre
de connexion de dimension £. ‘

Une chaine de dimension O est un ensemble fini de points de
Pespace €. Quant aux chaines de dimension 1, on peut s’imaginer
une ou plusieurs courbes tracées dans l'espace (2; quant aux
chaines de dimension 2, une ou plusieurs surfaces bordées ou
closes dans Q, etc. Mon intention n’est pas de donner par 1a une
définition. La définition exacte introduirait les chaines de
dimension 0, 1, 2, ..., &k, ... comme systémes d’images continues
de simplexes de dimension 0, 1, 2, ..., k, ... . Mais nous nous
contenterons aujourd’hui de Pintuition.

Chaque chaine de dimension & a un bord; c’est une chaine de
dimension k—1. Si cette chaine est la chaine 0 de dimension
k—1, alors on dit que la chaine de dimension % est fermée, ou
est un cycle de dimension £.

Prenons comme premier exemple un segment du plan joignant
deux points; c’est une chaine de dimension 1. Son bord consiste
dans les deux points, et ces deux points forment un cycle de
dimension 0. — Prenons comme deuxiéme exemple une surface
close quelconque de I'espace ordinaire; ¢’est un cycle de dimen-
sion 2. Si Pon fait un trou dans la surface en y découpant un
petit cercle, on aura une chaine de dimension 2 ( qui ne sera plus
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un cycle). Cette chaine est bordée par un cycle de dimension 1,
c’est-a-dire par la circonférence du cercle.

Les chaines, et spécialement les cycles jouissent de la possibilité
d’étre additionnés dans un certain sens. On ne peut additionner
que des chaines de méme dimension k. L’élément O de cette
addition est la chaine 0 de dimension k.

L’essentiel est de savoir que les chaines ne sont pas orientées:
On fait abstraction de toute direction des courbes qui repré-
sentent des chaines de dimension 0, de méme de toute orienta-
tion des surfaces et de tout sens de vissage des chaines & trois
dimensions, etc. Or, nous exigerons de I’addition des chaines que
le bord d’une somme de deux chaines soit égal & la somme des
bords des chaines composantes. Cela nous oblige a exécuter I’addi-
tion modulo 2.

Prenons pour exemple deux triangles du plan, ayant une aréte
en commun. Ce sont deux chaines de dimension 2 du plan. Leur
somme est un quadrilatére. I.’aréte commune se trouve deux fois
dans la somme des bords des deux triangles, mais elle ne figure
plus dans le bord du quadrilatére. Nous considérons donc le
double de chaque chaine de dimension £ comme équivalent a la
chaine 0 de dimension £.

Il est aisé de voir qu'une chaine de dimension k&, bordant une
chaine de dimension k& -+ 1, est fermée, c’est-a-dire est un cycle.
Par exemple le bord d’un triangle est un cycle de dimension 1,
homéomorphe a la circonférence. L’inverse, est-il vrai aussi ?
Il en est ainsi dans le plan. En effet, chaque cycle de dimension 1
borde une chaine de dimension 2 (un ou plusieurs morceaux du
plan).

Mais il en est autrement dans des variétés plus compliquées.
On peut s’en rendre compte sur le tore. Un méridien a du tore
est un cycle de dimension 1, qui ne borde pas une portion de
dimension 2 du tore. Pour le mettre en évidence, coupons le tore
par le méridien a et par un paralléle b, et développons-le sur un
rectangle du plan (fig. 3). Le méridien se calque deux fois, notam-
ment sur deux cotés paralléles du rectangle et le parallele sur
les deux autres cotés. Evidemment un c6té seul ne borde pas un
morceau du rectangle.

Si un cycle de dimension & jouit de la propriété spéciale de
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border une chaine de dimension k& -+ 1, on I'appelle homologue
a 0.

On appelle homologues deux chaines de dimension k, si elles
forment ensemble le bord d’une chaine de dimension & - 1.
En particulier, deux cycles qui peuvent se déduire I'un de "autre
par une déformation continue
sont certainement homologues. ‘ a
Un systéme de cycles de di-
mension k est dit indépendant,
si aucune combinaison de ces b b
cycles ne borde une chaine de
dimension & -+ 1. ' |

Nous voici arrivés aux nom-

bres de connexion de l’espace a
Q. Le nombre R* de connexion
de dimension k& est le nombre Fig. 3.

maximum de cycles indépen-
dants de dimension %, qu’on peut placer dans I’espace L.

Déterminons, par exemple, les nombres de connexion du tore.
On a R® = 1. Il n’y a qu'un seul cycle indépendant de dimen-
sion 0; c’est un point quelconque du tore. Chaque autre point
est homologue. & celui-ci, car les deux points bordent ensemble
une chaine de dimension 1, notamment un segment qui les joint.
— On a R! = 2. Il y a deux cycles de dimension 1 qui ne bordent
pas ensemble une chaine de dimension 2, le méridien a et le
paralléle 4. Il est aisé de prouver que tout autre cycle de dimen-
sion 1 est homologue & une combinaison de ces deux. — Finale-
ment, on a R? = 1. Le seul cycle de dimension 2 qui existe est
le tore entier lui-méme. Il est homologiquement indépendant,
c’est-a-dire qu’il n’est pas homologue a O sur le tore, car il ne borde
pas une chaine de dimension 3. En effet, nous ne considérons que
la surface de dimension 2, et & ce point de vue, il n’existe pas de
dimensions plus grandes que 2. Pour la méme raison, tous les
nombres de connexion de dimension supérieure a 2 sont 0.

On peut déterminer de la méme maniére les nombres de
connexion d’une surface close quelconque. La seule différence
concerne le nombre de dimension 1. S’il s’agit d’une sphére a
h anses, ce nombre est égal & 2h. On peut prendre comme 24
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cycles indépendants de dimension 1 un systéme de coupures
canoniques de la surface de Riemann de genre A.

Etant arrivés a ce résultat, nous pouvons écrire les inégalités
obtenues plus haut sous la forme

MO>RO—1, M'>R'— 2, M:>Re—1.

On peut de méme les prouver pour les variétés de dimension n.
On aura toujours les inégalités de Morse:

Mk > Rk, (k=0,1,2,..)

R* est le nombre de connexion de dimension k de la variété
et M* le nombre des points stationnaires, supposés non-dégé-
nérés, d’indice k& d’une fonction J deux fois dérivable par
rapport aux n coordonnées locales.

Ces inégalités ont d’ailleurs une évidence bien intuitive sur
les surfaces. Revenons a l'exemple du tore avec la fonction
J = z. Plongeons le tore dans I’eau. J nous donnera alors la
hauteur du niveau. Désignons la partie mouillée sans compter
le niveau par

{ J < c} partie mouillée ouverte

et la partie mouillée avec les points du niveau par
{ J=¢ } partie mouillée parfaite .

Nous conserverons cette notation méme dans le eas ou la
fonction J ne peut pas étre interprétée par la hauteur du niveau
d’eau. Faisons monter Peau du minimum au maximum. La
structure topologique de la partie mouillée ne changera que
lorsque le niveau passe par un point stationnaire. Et 'expérience
nous montre qu’en passant sur un point d’indice £ on aura un
nouveau cycle de dimension k. Passant le minimum (d’indice 0),
le nombre de connexion de dimension 0 saute de 0 & 1, car la
partie mouillée est vide avant que le niveau ait passé le mini-
mum, et apreés, elle est un seul domaine cohérent, homéomorphe
au cercle. Dans ce domaine, il y a une seule chaine indépendante
de dimension 0. Elle consiste en un seul point quelconque, comme
nous l'avons déja vu.
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Le passage du col inférieur (d’indice 1) donne naissance a un
premier cycle de dimension 1 qui n’est pas homologue a 0.
C’est le méridien a de la figure 2. De méme, le passage du col
supérieur v joint le paralléle b. Puis la partie mouillée est le
tore avec un trou. Celui-ci se ferme dés que le niveau dépasse

Fig. 4.

le maximum (d’'indice 2). C’est alors le nombre R? qui saute
de 0 a 1.

Naturellement, il ne faut pas s’attendre & ce que chaque point
stationnaire fournisse un nouveau cycle, comme il arrive dans
I’exemple. Appliquons deux appendices au tore. On le voit dans
la figure 4. Les nombres de connexion n’ont pas changé, car le
tore avec les appendices est homéomorphe au tore sans appen-
dices; on peut les déformer I'un dans ’autre. Au contraire, les
points stationnaires ont augmenté. En effet, le col le plus bas
ne donne pas naissance a4 un cycle global de dimension 1. Alors
le signe d’égalité n’est pas valable dans les inégalités de- Morse.
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Inversement, un cycle de dimension %k ne peut certainement
pas naitre sans que le niveau passe sur un point stationnaire
d’indice k. On peut prouver cela pour une variété close quelconque
pourvu que tous les points stationnaires soient non-dégénérés.
Quand on cherche a tirer un cycle de dimension & aussi bas que
possible, ce cycle restera accroché & un certain point station-
naire d’indice k&, et chaque point stationnaire n’arrétera qu’un
seul cycle, & moins qu’on ne choisisse convenablement la base
d’homologie des cycles de dimension k. Mais ce résultat n’est
autre chose que les inégalités de Morse.

Tout de méme, ce théoréme est encore sans valeur pour le
calcul des variations. Il faut généraliser les inégalités a 'espace
fonctionnel du probléme des variations.

Les deuxiémes membres de ces inégalités, les nombres de
connexion R” ont déja une signification purement topologique,
qui s’étend d’elle-méme & des espaces quelconques. Quant aux
premiers membres, pour les définir, nous avons fait usage des
dérivées de la fonction J. Or, une fonction, donnée sur un espace
métrique quelconque, peut étre continue, mais on ne peut pas
la dériver. Il faut donc définir et classer les points station-
naires non pas d’aprés I'indice, mais d’une maniére topologique.
(C’est la I'idée essentielle de M. Morse. Développons-la dans ce
qui suit.

On rangera dans la méme classe deux points stationnaires,
appartenant aux valeurs J = vy et J = v/, s’ils ont des voisi-
nages homéomorphes qui peuvent étre représentés l'un sur
Pautre de maniére que les sous-ensembles {J <y}, {J =},
{J > v} se calquent sur les sous-ensembles {J < y'},
{J =+"},{J > v} respectivement. Autrement dit, il existe
alors une représentation topologique qui conserve le niveau
d’eau.

Décider la possibilité d’une telle représentation serait résoudre
le probléeme d’homéomorphie de ces sous-ensembles. Mais, pour
résoudre ce probléme, nous sommes aussil impuissants que pour
résoudre le probléme d’homéomorphie des espaces globaux.

Les conditions suffisantes' manquant, il faut se contenter de
conditions nécessaires de I’équivalence des deux points station-
naires. Il suffit de considérer le sous-ensemble {J < v} du
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voisinage du point stationnaire. Les invariants topologiques
de ce sous-ensemble seront en méme temps des invariants
topologiques du point stationnaire. Pour les obtenir, on se sert
de la méme méthode topologique qui nous a déja donné les
nombres de connexion de lespace global. Aux nombres de
connexion R* de Iespace entier correspondront les nombres-
types m* d’un point stationnaire. |

Rendons-nous compte des changements qu'il faut appliquer
a la définition des nombres de connexion pour arriver aux
nombres-types. Pour simplifier le raisonnement, supposons qu’il
n'y ait qu'un seul point stationnaire de valeur J = vy, et pour
fixer les idées pensons d’abord encore au cas ou () est une
variété, ou J est deux fois dérivable et le point stationnaire
non-dégénéreé.

Les nombres-types doivent étre déja fixés si 'on connait un
voisinage du point stationnaire aussi petit qu’'on veut. On se
servira donec, au lieu des cycles globaux de 'espace Q, de petits
morceaux de cycles qui passent par le point stationnaire. Tout
ce qui se passe au-dessous de la valeur J = v ne nous intéresse
point. Nous regarderons donc toute chaine de dimension £,
située entiérement dans {J < vy}, comme équivalente a la
chaine 0 de dimension %. Il s’ensuit que toute chaine est regardée
comme fermeée, si son bord se trouve au-dessous de J = vy. On
appelle une telle chaine un cycle relatif du point stationnaire,
ou un cycle de {J < v} modulo {J < v} . Cela veut dire qu'on
peut ajouter ou laisser de coté des chaines de {J < v}, sans
changer le cycle relatif, de méme qu’on peut ajouter & un nombre,
ou en retrancher des multiples d’un nombre entier sans changer
son caractere de reste relatif a cet entier. On peut en particulier
découper d’un cycle relatif des chaines partielles qui sont entiére-
ment situées au-dessous de ¥.

La définition des nombres-types sera alors une répétition
de celle des nombres de connexion. Il faut introduire les notions
d’homologie et d’indépendance des cycles relatifs et le nombre-
type de dimension % est le nombre maximum des cycles relatifs
indépendants qui existent au point stationnaire.

Prenons par exemple comme espace Q le plan et comme
fonction
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Elle a un col au point initial 0, et la valeur en ce point station-
naire est J = 0. On voit, dans la figure 5, les lignes de niveau
de J. Le domaine {J < 0} consiste en deux quarts du plan
qui ont été hachurés dans la figure. Le segment 102 est un cycle
relatif de dimension 1 du point stationnaire, car les deux points
qui le bordent sont situés au-dessous de J = 0. De méme, la
ligne brisée 1’02’ est un cycle relatif de dimension 1.

N /////4"\S
N il 7z LS
NN\
7z J
x
J >0 /J>‘I

U, X

(-

i
S ~. E\;\\

s N

Fig. 5.

On appelle homologues deux cycles relatifs de dimension £,
s’ils bordent, ensemble ou avec des chaines situées au-dessous
de la valeur stationnaire vy, une chaine de dimension %k 4 1.
En particulier, deux cycles sont homologues, si 'on peut trans-
former I’un dans ’autre par une déformation, car alors ils bordent
la variété que I'un a recouverte pendant la déformation dans
Pautre. Il s’ensuit qu’on ne changera pas la classe d’homologie
d’un cycle relatif en en déformant la partie située au-dessous
de v, sans quitter le domaine {J < y} (la partie mouillée
ouverte). '
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On appelle homologue & 0 un cycle relatif de dimension & qui,
seul, ou avec des chaines situées au-dessous de vy, borde une
chaine de dimension k& -+ 1 de la partie mouillée parfaite
{J < v}. Un cycle relatif est donc certainement homologue
a 0, si on peut le déformer sur {J < y} en un cycle de
{J < v}, c’est-a-dire si 'on peut le tirer du point stationnaire
sans quitter le domaine {J < v}, le bord restant fixe pendant
toute la déformation.

Le cycle relatif 1’ 02" de I’exemple donné (fig. 5) est homo-
logue a 0, car il borde avec la chaine pointillée 1" 2" une chaine
de dimension 2. Au contraire, le cycle rectiligne 102 n’est pas
homologue & 0. On ne peut pas le déformer vers le bas sans
dépasser la valeur stationnaire y = 0, et il n’est en aucune
fagon homologue dans {J < 0} a un cycle inférieur & J = 0.
Voici un autre exemple: Couvrons le maximum du tore d’une
petite calotte comme on la voit dans la figure 4. C’est un cycle
relatif de dimension 2, car son bord est situé au-dessous de la
valeur maximum. Ce cycle n’est pas homologue & 0; on ne
peut pas le tirer du maximum, le bord restant fixe.

On appelle indépendant un systéme de cycles relatifs de
dimension %, si aucune combinaison de ces cycles ne borde une
chaine de dimension % + 1. Un seul cycle est donc dit indé-
pendant, s’'il n’est pas homologue & 0.

Nous voici arrivés aux nombres-types. Le nombre-type de
dimension k£ d’un point stationnaire est le nombre maximum
des cycles relatifs indépendants de dimension %, admis par le
point stationnaire.

Un minimum (d’indice 0) a donc les nombres-types

m® = 1, tous les autres = 0 .

En effet, on ne peut pas déformer vers le bas un cycle relatif de
dimension 0, c¢’est-a-dire un point coincidant avec le minimum,
la partie au-dessous du minimum étant vide. Des cycles relatifs
de dimension plus élevée, non homologues & 0, n’existent plus
du tout au minimum.

Un col (d’indice 1) a les nombres-types

ml = 1, tous les autres = 0 .
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Car nous avons déja vu qu’il existe un cycle de dimension 1,
non homologue a 0, notamment le cycle rectiligne 102. Evidem-
ment, tous les autres cycles relatifs de dimension 1 sont homo-
logues & celui-ci. Un cycle de dimension O peut étre tiré vers
le bas, il est homologue a 0 pour cette raison, tandis que des
cycles relatifs de dimension plus élevée non homologues a 0
n’existent pas.
Le maximum (d’indice 2) a les nombres-types

m? = 1, tous les autres = 0 .

Un cycle relatif de dimension 2, non homologue a 0 nous est
donné par la calotte que nous avons mise sur le tore de la figure 4.
Tout autre cycle peut étre tiré vers le bas.

Nous avons donc réussi a classer les points stationnaires
d’une maniére tout a fait topologique. Cela ne nous apprend
rien de nouveau dans le cas que nous venons de considérer.
Car, si les points stationnaires sont non-dégénérés, les nom-
bres-types m” sont déterminés par indice i selon la formule

0 pour £k # 1
m:3?: P .
1 pour k = 1

Nous avons trouvé cette formule exacte dans notre exemple
du tore, et on peut de méme en prouver I'’exactitude pour une
variété de dimension n. Nous montrerons maintenant par un
exemple comment on peut attribuer ainsi un nombre-type a
un point stationnaire dégénéré, pour lequel un indice n’est
pas défini.

Considérons dans le plan les deux lemniscates semblables
(fig. 6) L,, L, déquations respectives f, = (2% 4 y?)? —
2@ —y?) =0, fy= (22 4+ y*)? — (2 —y?) = 0, et prenons
pour J la fonction f; f,, qui prend des valeurs positives & I'exté-
rieur de L, et a I'intérieur de Li,, et des valeurs négatives entre
L, et L,. Le point O est un point stationnaire dégénéré pour J;
son nombre-type m! pour la dimension 1 est égal a 3, puisque le
voisinage du point O admet les 3 cycles relatifs homologique-
ment indépendants 102, 304, 103; on voit en effet que les autres
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cycles relatifs sont des combinaisons de ceux-ci, puisque 1'addi-
tion se fait modulo 2. |

Mais la classification topologique subsiste également pour les
espaces quelconques ou il n’y a plus d’indice. On peut prouver
dans ce cas aussi les inégalités de Morse

- Mk = RE

MF désigne maintenant la somme des nombres-types m* de

" dimension k, M* = 2 mb, prise par rapport & tous les points
v

stationnaires convenablement définis..

Fig. 6.

Nous voici bien préparés pour appliquer ces inégalités au
calcul des variations global. L’espace Q est alors ’espace fonction-
nel d’'une variété o, c’est-a-dire 1’espace de toutes les courbes
joignant deux points A et B de 91t. Les points stationnaires sont
les géodésiques parmi ces courbes. Ce n’est donc pas pour la
définition des points stationnaires que nous faisons usage des
nombres-types, mais nous les emploierons pour la classification.

Dans ce but, considérons la longueur des courbes de I,
joignant A et B. C’est une fonction J continue sur Q. Soit
J = v la longueur d’une géodésique isolée, allant de A a B.

Nous désignerons une telle géodésique de I, ainsi que le point
correspondant. de Q, par la lettre g.

Déterminons le: nombre maximum des cycles relatifs indé-
pendants de dimension % de la partie {J < v} + g (c’est-a-dire
de la partie mouillée ouverte augmentée du point g), modulo
{J < v} (c’est-a-dire modulo la partie mouillée ouverte seule).

I’Enseignement mathém., 38=me année, 1939 et 1940, 14
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Ce nombre est le nombre-type m* de dimension k de la géodé-
sique g.

On peut prouver que les nombres-types de tout point qui
n’est pas stationnaire sont tous = 0. Par cela la notation « points
stationnaires » est justifiée, car, sur une variété, un point non-
stationnaire a aussi tous ses nombres-types nuls.

La géodésique g est dite non-dégénérée s’il n’y a pas de géo-
désique infiniment voisine. Dans ce cas, on peut prouver qu’un
seul nombre-type est = 1 et que tous les autres sont = 0. S’il
se trouve ¢ points conjugués au point initial sur g, le i-iéme
nombre-type est = 1. Mais, en d’autres cas, les nombres-types
peuvent étre > 1.

Notre but est de prouver le théoréme principal suivant: il
existe toujours une infinité de géodésiques joignant les deux
points A et B.

S’il y a une géodésique non isolée le théoréme sera vrai. Il est
donc permis de supposer qu’il n’y a qu’un nombre fini de géo-
désiques de longueur bornée.

La preuve se fait alors en trois étapes.

Premiérement, il nous faut prouver les inégalités de Morse

M* > R* .

“MF* est maintenant la somme des nombres-types de dimension £,
prise par rapport a toutes les géodésiques. M* peut étre infini.
Deuzxiémement nous avons le théoréme de limitation (Endlich-
keitssatz): chaque géodésique ne contribue & la somme M* que
par un montant fini, et ce montant est 0, exception faite pour
un nombre fini de dimensions. Donc, nous sommes sirs d’avoir
une infinité de géodésiques si la connexion de I'espace fonction-
nel Q est infinie, c’est-a-dire si la somme des nombres de
connexion R”, prise sur toutes les dimensions & est infinie.

Nous avons donc troisiémement & déterminer les nombres de
connexion R* de Q, ou au moins, & évaluer leur somme. En
général, c’est une tdche désespérée. Il n'y a pas de méthodes
qui permettent d’aborder ce probléme.

Mais, par une méthode indirecte, on sait déterminer par
exemple les nombres de connexion de ’espace fonctionnel d’une
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surface close simplement connexe. On prouve d’abord que ces
nombres sont des invariants topologiques de la surface (et non
seulement de D'espace fonctionnel), c’est-a-dire qu’ils sont indé-
pendants du choix de la métrique de Riemann et de la situation
des deux points frontiéres.

Pour calculer les nombres de connexion R* de I’espace fonc-
tionnel d’une surface quelconque homéomorphe a la sphére, il
suffit donc de les déterminer pour I’espace fonctionnel de la
sphére métrique. On trouve que tous ces nombres sont = 1.

11 s’ensuit le résultat principal qu’il y a une infinité de géodé-
siques joignant deux points sur une surface close simplement
connexe.

La situation des points frontiéres étant arbitraire, on peut
les faire coincider. Alors le résultat se réduit au théoréme: il
y a en chaque point une infinité de boucles géodésiques.

Peut-étre trouvera-t-on ce résultat un peu banal. Mais,
jusqu’a présent, on n’avait jamais réussi & en donner une preuve
mathématique.

Tirons finalement de la théorie un autre résultat. Déformons
la sphére métrique en la serrant par le milieu. Considérons deux
points A et B sur la ceinture de la taille ainsi formée. On les voit
dans la figure 1. Il s’offre immédiatement une infinité de géodé-
siques joignant A et B, notamment les deux parties de la ceinture
entre A et B, et celles-c1 augmentées des pourtours complets de
la taille. Il est aisé de voir que toutes ces géodésiques fournissent
un minimum de la longueur, comparée & celle des courbes voi-
sines. Donc, les nombres-types sont toujours

m® = 1, tous les autres = 0 .,

Mais tous ces nombres-types ne sont pas encore suffisants pour
satisfaire aux inégalités de Morse.

Mk > Rk
car ils ne contribuent qu’a la somme MO, Dong, il y a encore une
infinité de géodésiques qui passent en dehors de la ceinture.
On en voit une dans la figure 1.
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*
* *

Au cours de ma conférence je vous ai donné un résumé d’une
partie de la théorie de M. Morse. C’est & mon ami, le professeur
Seifert, que je dois les simplifications essentielles que j'y ai
apportées. Malgré ces simplifications, il y a encore dans ce que
jai dit des démonstrations assez difficiles. Mais, je me suis
efforcé de vous les dissimuler le plus possible.

Nos méthodes sont autres que celles bien connues de ’analyse
classique. Quant a la rigueur, elles ne le cédent en rien aux
méthodes classiques. Il ne peut en étre, en effet, autrement, car
étre rigoureux en mathématique ce n’est pas faire preuve de
mesquinerie, tandis qu’au contraire, manquer de rigueur, c’est
manquer d’imagination, c’est laisser échapper les possibilités
de nouvelles découvertes.

UNE FONCTION CONTINUE SANS DERIVEE

PAR

R. Tamss LycHE (Trondheim, Norveége).

1. — L’exemple donné par WEIERSTRASs d’une fonction
continue quin’admet de dérivée pour aucune valeur de la variable
est trop compliqué pour que ’on puisse I’exposer dans un cours
élémentaire d’Analyse. On doit & M. B. L. van der WAERDEN
(Math. Zeitschr., 32. Band, 1930, p. 474) un exemple de nature
bien simple. Toutefois, pour étre présentée d’une maniere intel-
ligible aux débutants, la démonstration exige des considérations
un peu compliquées, bien qu’elles soient de nature élémentaire
(voir par exemple E. LaNpAu: Einfihrung in die Differential-
rechnung und Integralrechnung, p. 73, ou I'auteur examine un
exemple de méme espéce).

Vu l'importance d’une conception précise de la notion de
dérivée, il ne semble pas inutile de pouvoir fournir un exemple
ou la démonstration peut étre donnée en peu de lignes. Celui que
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