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156 N. SALTYKOW

dont I'intégrale devient:
t+y+zp+9q9 =Jfp+aq, (10)

f désignant une fonction arbitraire. Pour intégrer I’équation aux
dérivées partielles du premier ordre (10), posons

p+q== 2. (11)

L’intégrale compléte de cette derniere équation (11), en y
considérant x, comme une constante, devient:

z = (g —y)x + hy + 3,

y, et z, désignant deux nouvelles constantes arbitraires. Si I'on
prend cette derniere relation, comme la formule fondamentale
de la transformation de contact !, I’équation (10) transformée
prend la forme suivante, en considérant z, comme nouvelle
fonction inconnue de nouvelles variables indépendantes z, et y;:

(mi + 2)py + (v + Vg = x5 — floy)
.. . : » . e 03,
p; et ¢, désignant respectivement les nouvelles dérivées 3z et
iy L’intégrale générale de cette derniere équation admet la

0y, '
forme évidente:

o désignant la seconde fonction arbitraire.
Par conséquent, I'intégrale générale de I’équation primitive (9)
s’obtient au moyen de la transformation inverse des variables.

VI. — GENERALISATION DES METHODES EXPOSEES.

Euler, en inaugurant les méthodes d’intégration que nous
étudions, avait montré, en méme temps, comme on pouvait

1 N. Savryrow, Application des transformations de contact & Pintégration des
équations aux dérivées partielles (Bulletin de I’ Académie des Sciences math. et natur.
A. Sc. math., n° 3, Belgrade, 1936, p. 41).
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étendre leurs applications, en commencant par l'intégration des
plus simples équations pour passer, ensuite, a celles plus compli-
quées. Comme excellent exemple, sous ce rapport, on pourrait
reprendre le probléme de la corde vibrante a densité variable.
Dans ce but, EULER ! considére I’équation:

t— P2r =0 ’ (1)
P désignant une fonction des variables z et y vérifiant la condi-
tion:

e —P— =10 . (2)

L’équation (1), grace & cette derniere hypothese (2), se réduit
immédiatement & une équation linéaire aux dérivées partielles du
premier ordre:

“O—y——PWZO’ (3)
ou 'on a posé:

0 0

6—;+P;3—§:U. (4)

Ce qui est fort important, ¢’est que I'intégration du probléme
considéré, dans I’hypotheése (2), peut étre poussée jusqu’aux
quadratures.

En effet, 'ensemble d’équations (2) et (3) représente un sys-
teme de Charpit 2. Formons, pour définir les fonctions P et U,
le systéme correspondant d’équations différentielles ordinaires:

Ce dernier systéme admet trois intégrales distinctes suivantes:

P:("‘la U:C2: x+Py:C37

L Instilutiones Calculi Integralis, V, III, p. 193, probl. 49,
2 Voir plus haut, p. 145, loc. cit.
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(i, Cy et Cy désignant trois constantes arbitraires. Cela étant,
Iintégrale générale du systéme de Charpit (2) — (3) devient:

P=ogw, U=d), (9)
©w =2z + ¢o(wy (6)

@ et { désignant deux fonctions arbitraires.

Intégrons, a présent, ’équation (4), en y substituant les
expressions (5) de P et de U. Transformons de plus I’équation
(4), en introduisant comme nouvelle variable indépendante o,
au lieu de z. L’équation (4) transformée devient:

ro® 29 00

= 7
 F T se =¥ o)

© désignant I'expression de la fonction inconnue z qui est expri-
mee en nouvelles variables.

L’intégration de cette derniére équation linéaire (7) produit
Pintégrale générale de I’équation donnée (1) sous la forme
suivante:

= (e eve) St
Sl SR e [E0)

ou ¥ et f désignent deux fonctions arbitraires, o étant le para-
meétre variable défini par la relation (6); quant & la fonction
arbitraire o, elle définit la valeur du coefficient P de ’équation
donnée (1).

EurLeEr ! donne, comme second exemple, I’équation:

P oP
(—Pr+ Qe+ (PQ+ 5 P p =0,

P et () désignant des fonctions quelconques de x et de y.
On met aisément I’équation considérée (8) sous la forme sui-

vante:

_?E__PQ_E+QU_O, (9)
oy

1 Ibid., p. 202, probl. 50.
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en posant
0z 0z

5y + P =TU. (10)

Le probléeme de I'intégration de I’équation donnée (8) revient
donc & celle de I’équation (9) pour définir, d’abord, la valeur de
la fonction U et, ensuite, a 'intégration de ’équation (10) qui
donne l'intégrale générale requise.

Les problémes cités représentent une introduction a I'ceuvre
de Legendre sur I'intégration d’équations linéaires aux dérivées
partielles du second ordre a une fonction inconnue, dont les
coefficients ne dépendent que des variables indépendantes. Cette
derniére théorie est une généralisation de I’élégante méthode de
Laplace pour intégrer les équations hyperboliques. On sait
maintenant que toutes ces recherches simplifient et unifient, en
meéme temps, la méthode de G. Monge et celle de G. Darboux
intégrant les équations linéaires en question 1.

I1 se pose done, & présent, un nouveau probléme de généralisa-
tion concernant la recherche d’une méthode qui suppléerait
celles de G. Monge et de G. Darboux pour les équations linéaires
de la forme générale.

1 N. Sanrykow, Note sur la méthode de Legendre pour intégrer les équations linéaires
aux derivées partielles du second ordre (Travaux du Deuxiéme Congrés des Mathémati-
ciens slaves. Prague, septembre 1934).

N. SaLryxow, Théorie des équations linéaires aux dérivées partielles du second ordre
a une fonction inconnue (Bulletin de I’ Acad. des Sc. math. et natur. A. Sciences mathé-
matiques et physigues, n° 2. Belgrade, 1935).
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