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dont l'intégrale devient:

m -f y + z(p 4" q) J(p + q) (10)

/ désignant une fonction arbitraire. Pour intégrer l'équation aux
dérivées partielles du premier ordre (10), posons

p + q Xl (il)

L'intégrale complète de cette dernière équation (11), en y
considérant xx comme une constante, devient:

2 (Xl — yx) x + yx y + zx

y1 et z1 désignant deux nouvelles constantes arbitraires. Si l'on
prend cette dernière relation, comme la formule fondamentale
de la transformation de contact1, l'équation (10) transformée
prend la forme suivante, en considérant z, comme nouvelle
fonction inconnue de nouvelles variables indépendantes x1 et yx:

(x\ + 2) Pi + (Xii/i + 1)^1 ^1% — f(x1)

ô z
Pi el désignant respectivement les nouvelles dérivées ^ et
ô z

L'intégrale générale de cette dernière équation admet la

forme évidente:

z I/V+ 2
S /' + J •/i + /

' '/i' I

1
1 î J "(*î + 2)S/2 \Vx\ + 2 J K + 2)3/2J

9 désignant la seconde fonction arbitraire.
Par conséquent, l'intégrale générale de l'équation primitive (9)

s'obtient au moyen de la transformation inverse des variables.

VI. — Généralisation des méthodes exposées.

Euler, en inaugurant les méthodes d'intégration que nous
étudions, avait montré, en même temps, comme on pouvait

i N. Saltykow, Application des transformations de contact à l'intégration des
équations aux dérivées partielles (Bulletin de l'Académie des Sciences math, et natur.
A. Sc. math., n° 3, Belgrade, 1936, p. 41).
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étendre leurs applications, en commençant par l'intégration des

plus simples équations pour passer, ensuite, à celles plus compliquées.

Comme excellent exemple, sous ce rapport, on pourrait
3 reprendre le problème de la corde vibrante à densité variable.
3 Dans ce but, Euler 1 considère l'équation:

t — P2r 0 (1)

P désignant une fonction des variables x et y vérifiant la condition

:

AP-p|P 0. (2)
oy ox

L'équation (1), grâce à cette dernière hypothèse (2), se réduit
immédiatement à une équation linéaire aux dérivées partielles du

premier ordre :

où l'on a posé:

^U-P^ 0, (3)
dy à x

jp+pÈf u. (4)
o y ox

I Ce qui est fort important, c'est que l'intégration du problème
considéré, dans l'hypothèse (2), peut être poussée jusqu'aux

1 quadratures.
j En effet, l'ensemble d'équations (2) et (3) représente un sys-

tème de Charpit2. Formons, pour définir les fonctions P et U,
j le système correspondant d'équations différentielles ordinaires:

dx dP dPJ

j

dy
-p

: T~ô '

;j Ce dernier système admet trois intégrales distinctes suivantes :

ii P Ci U C2 x + Py — C3

I
1 Institutiones Calculi Inlegralis, V, III, p. 193, probl. 49.
2 Voir plus haut, p. 145, loc. cit.
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Cl7 C2 et C3 désignant trois constantes arbitraires. Gela étant,
l'intégrale générale du système de Gharpit (2) — (3) devient:

P 9 M u - i>(<ù) (5)

(0 X + cp (co) ?/ (6)

9 et ^ désignant deux fonctions arbitraires.
Intégrons, à présent, l'équation (4), en y substituant les

expressions (5) de P et de U. Transformons de plus l'équation
(4), en introduisant comme nouvelle variable indépendante co,

au lieu de x. L'équation (4) transformée devient:

r ö © 2cp à0

dy+ i-y9' d co - + ' (7)

0 désignant l'expression de la fonction inconnue 2 qui est exprimée

en nouvelles variables.
L'intégration de cette dernière équation linéaire (7) produit

l'intégrale générale de l'équation donnée (t) sous la forme
suivante :

'

d d(?
+

2q>3/2(./ WÏ->V*)J-.

où d et / désignent deux fonctions arbitraires, co étant le
paramètre variable défini par la relation (6); quant à la fonction
arbitraire cp, elle définit la valeur du coefficient P de l'équation
donnée (1).

Euler 1 donne, comme second exemple, l'équation:

/ ÔP ÔP\
« - Pr + Qq + (PQ + ^ ~ P Tx)p - 0 (8)

P et Q désignant des fonctions quelconques de x et de y.
On met aisément l'équation considérée (8) sous la forme

suivante :

ôrJ-p7r + QU 0
> (9)

dy dx

i Ibid., p. 202, probl. 50.
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en posant

|i + P|5ŒU. do)
dy ox

Le problème de l'intégration de l'équation donnée (8) revient
donc à celle de l'équation (9) pour définir, d'abord, la valeur de

la fonction U et, ensuite, à l'intégration de l'équation (10) qui
donne l'intégrale générale requise.

Les problèmes cités représentent une introduction à l'œuvre
de Legendre sur l'intégration d'équations linéaires aux dérivées

partielles du second ordre à une fonction inconnue, dont les
coefficients ne dépendent que des variables indépendantes. Cette
dernière théorie est une généralisation de l'élégante méthode de

Laplace pour intégrer les équations hyperboliques. On sait
maintenant que toutes ces recherches simplifient et unifient, en
même temps, la méthode de G. Monge et celle de G. Darboux
intégrant les équations linéaires en question L

Il se pose donc, à présent, un nouveau problème de généralisation

concernant la recherche d'une méthode qui suppléerait
celles de G. Monge et de G. Darboux pour les équations linéaires
de la forme générale.

i N. Saltykow, Note sur la méthode de Legendre pour intégrer les équations linéaires
aux dérivées partielles du second ordre (Travaux du Deuxième Congrès des Mathématiciens

slaves. Prague, septembre 1934).
N. Saltykow, Théorie des équations linéaires aux dérivées partielles du second ordre

à une fonction inconnue (Bulletin de l'Acad. des Sc. math, et natur. A. Sciences
mathématiques et physiques, n° 2. Belgrade, 1935).
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