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140 N. SALTYKOW

Y désignant une fonction arbitraire de la variable y. Si I'on y
introduit, au lieu de z, la nouvelle fonction inconnue u = ¢?,
cette derniére équation devient ordinaire du type eulérien:

— = u? 4+ Yu—1.

6 désignant la nouvelle fonction arbitraire de y, I’équation
considérée admettra la solution particuliére 0.

Cela étant, I'intégrale générale de I’équation (6) de M. Gau
sera définie par 'ensemble des deux équations suivantes:

& = 0 — ﬁXﬁX—Tl—;Y’
I

6 et X désignant deux fonctions arbitraires respectivement de
y et de x.

IV. — REDpUCTION D’EQUATIONS AUX FORMES INTEGRABLES
PAR.GROUPEMENT DES TERMES.

Il s’agit, dans les lignes qui vont suivre, de transformer les
équations données aux dérivées partielles du second ordre en
d’autres équations qui soient intégrables, en groupant d’une
maniére convenable les termes d’équations données.

Pour expliquer l'idée de ce procédé, intégrons, d’abord,
I’équation classique de la corde vibrante:

r—a?*t = 0, (1)

a désignant une constante arbitraire.
Ajoutons et retranchons le terme as au premier membre de
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I’équation étudiée (1). Elle va immédiatement prendre I'une des
deux formes suivantes:

d d
ﬁ(piaq)qiag&(piaq) =0,

correspondant I'une aux signes supérieurs, et I'autre & ceux qui
sont inférieurs. Chacune des deux équations obtenues est linéaire
aux dérivées partielles du premier ordre par rapport au binéme
p =+ ag, considéré comme nouvelle fonction inconnue.

Cela étant, on mettra leurs intégrales générales respectivement
sous les formes suivantes:

p+ ag=2af (y + az),
p—oaqg=2a9’ (y — ax) ,

(2)

[ et ¢ désignant les dérivées des fonctions arbitraires de leurs
arguments; quant au facteur constant 2a, on I'introduit pour
simplifier le calcul qui va suivre.

Il suffit de 'une des deux équations intégrales obtenues (2)
pour achever l'intégration de I’équation étudiée (1). En effet,
chacune d’elles est linéaire aux dérivées partielles du premier
ordre de la fonction inconnue z.

En intégrant, par exemple, la premiére équation (2), on obtient
I'intégrale générale requise:

z=fy + az) + ¢y —aa) ,

f et ¢ étant deux fonctions arbitraires de leurs arguments.

Or, comme les deux équations (2) sont compatibles, définis-
sant les dérivées p et ¢ de la méme fonction z, cette derniére
pourrait étre définie, d’une autre maniére encore, au moyen
de Plintégration de la différentielle totale correspondante:
dz = pdx + qdy.

Comme second exemple citons I'équation classique d’Euler

r———t+2—xR=0. (3)

I est aisé, en groupant les termes de cette derniére équation,
de I’écrire de la maniére suivante:

_6_ 4 0 z 1 4
dx<p+q+;>——@<p+q+—a;>+j,;<p+q+;>=0-

-
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Celle-ci étant linéaire aux dérivées partielles du premier
. A Z » ’ 7
ordre du trindéme p + ¢ + —, considéré comme nouvelle

fonction inconnue, l'intégrale générale, dans cette derniere
hypothese, devient:

2/
p+q+§:;]‘(x+y),

f" désignant une fonction arbitraire.

Or, I’équation obtenue est, & son tour, linéaire aux dérivées
partielles du premier ordre de la fonction inconnue z. Son
intégrale générale va définir celle de ’équation d’Euler (3), sous
la forme suivante:

s=[ile+y +ol—u],

¢ étant la seconde fonction inconnue.
Un nouvel exemple est emprunté aux récentes recherches de
la théorie des probabilités, ol I'on considére 1’équation:

0%f  a’? 0*f a’ a”\ of 0
a a’

32 T a 042 or (%)

a’ et a” désignant respectivement la premiére et la seconde déri-
vée de la fonction donnée a (¢), prises par rapport & {.

Les termes de I’6quation écrite peuvent étre groupés de deux
maniéres différentes, tout étant mis en une formule:

e (o0, o0
o o) \3: a 0y/)

Par conséquent, I'intégration de I’équation (4) revient & celle

d’un double systeme:
== F i LIS u
a 0y ’
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L’intégration de chacune des équations de la seconde ligne (5)
produit deux valeurs distinctes u, et u, de la fonction u, corres-
pondant respectivement aux signes supérieur et inférieur dans
I’équation considérée:

Vi ’

u1=2i%¢>'(y+iloga) , u2=—2i—‘;—‘F’(y—iloga) ,

O’ et W' désignant deux fonctions arbitraires, les coefficients 2t
et — 21 y étant introduits pour faciliter le calcul qui va suivre.

Cela étant, la fonction f est définie par ’ensemble des deux
equations, en involution, aux dérivées partielles du premier
ordre,

of  .a" of _.a _, .
67_}_1—5 _y_zz ” @ (y + i log a) ,
of .a’ of N A .
__t.__z,-—aﬁ——?l-/-._—Zl,—;lF(y——-LlOga).

Il en résulte immédiatement, par une quadrature, I'intégrale
génerale requise de I’équation (4) sous la forme trés simple:

f=®(y + tloga) + ¥(y —iloga) .

Revenons a présent & deux autres équations dont on a fait
mention plus haut, dans les derniéres lignes de l'introduction,
et que G. Darboux intégre par la méthode de Monge-Ampére.

Quant & la premiere de ces équations, celle des surfaces réglées,
& plan directeur normal & ’axe des cotes,

¢#r—2pgs + p*t =0, ' (6)
1 elle peut étre écrite de la maniére suivante:

wla)  als)

03 03
4z 3y

= 0.

Il s’en suit, donc, la relation:

i ¢ (3)

8 ¢ désignant une fonction arbitraire de z.
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En multipliant la derniére relation par ¢, on obtient une
équation linéaire, dont l'intégrale générale se présente sous la
forme

y + zo(z) = ¢(9 ,

¢ désignant la seconde fonction arbitraire. C’est 1'intégrale
générale de I’équation donnée (6).

Il est opportun de faire, & cette occasion, une remarque sur
les surfaces réglées, dont le plan directeur occupe une position
arbitraire quelconque dans I’espace. L’équation aux dérivées
partielles correspondante devient alors:

(B + Cg)Pr—2(A+ Cp)(B + Cg)s + (A + Cp)?t =0, (7)

les coefficients A, B et C étant constants.
En introduisant la nouvelle fonction inconnue ¢ qui soit liée,
avec I'ancienne, par la relation

9o = Az + By + Cz ,

I’équation (7) transformée devient:

<60)2020 Odp 0p 02%¢ (602620_0

5y) 022 Loz ogonsy T\oz) 57

Elle admet, donec, la forme de I’équation (6).
Enfin, si le plan directeur est parallele & ’axe des z, I’équation
aux dérivées partielles des surfaces réglées va devenir

B%r — 2ABs + A% =0 , (8)

A et B représentant des coeflicients constants.
L’équation (8) peut étre écrite

d d -
B 5z Br—Ag — A (Bp—Ag =0,

et s’intégre immédiatement par 'une des méthodes suivantes. Il
est aisé, d’abord, de considérer cette derniére équation comme
linéaire aux dérivées partielles du premier ordre par rapport a
la nouvelle fonction inconnue Bp — Ag.
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Or, d’un autre point de vue, I’équation considérée est réduc-
tible & un systéme de Charpit *. 11 s’ensuit l'intégrale générale

Bz = af (Az + By) + ¢ (Az + By) ,

ou | et ¢ représentent deux fonctions arbitraires.
Passons, enfin, a la quatriéme équation, celle de la théorie
mécanique de la chaleur, figurant chez Darboux 2:

rt—s2 4+ a2=20, (9)

a étant un coefficient constant; elle peut étre mise sous la forme
suivante:
0 0 0

0
55lP & ). 5l F aa) — 5o (p = ay) gole T aa) =0

Il s’en suit deux intégrales intermédiaires:

p+ ay = o' (¢ — ax) ,
p—ay =4y (¢ + ax) ,

o' et ¢" désignant les dérivées des deux fonctions arbitraires o
et v

I mtegratlon peut étre achevée en partant d’une seule de ces
intégrales. Prenons, par exemple, la premiére. Si 'on y introduit
la nouvelle fonction inconnue:

Z, = 2 + axy ,

la premiere intégrale considérée va devenir:

’

1= ¢ (¢ — 2ax) ,

0
p, et ¢, désignant respectivement les dérivées %—~ et '21 :
Les variables étant séparées, on a 'intégrale compléte

21:—-—

L N. Sarrykow, Equations aux dérivées partielles du second ordre intégrables par
un systeme de Charpit (Publications mathématiques de I’ Université de Belgrade t. 11,
1933, p. 686).

N. Sarryrow, Equations aux deérivées partielles du second ordre & n variables indeé-
pendantes mtécrables par un systéme de Charpit (Publications mathématiques de
U Université de Belgrade, t. 111, 1934, p. 161).

2 Voir plus haut, p. 133, loc. cit.

I’ TEnseignement mathém., 38me année, 1939 et 1940. 10
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C et C; étant deux constantes arbitraires. En formant l'intégrale
générale et revenant a I’ancienne fonction inconnue, on obtient
Pintégrale générale de I’équation considérée (9) sous la forme
d’un ensemble des deux équations suivantes:

1
z+axy:—%<p((]~—2ax)+(]y+6((]),
1, , .

— g, ¢ (G—2az) +y 4+ 67(C) =0,

0 désignant la seconde fonction arbitraire et C étant un parameétre
variable.

Il est aisé, d’une autre maniére, de profiter des deux intégrales
intermédiaires obtenues. On pourrait les intégrer simultanément,
au moyen d’une quadrature, si 'on parvenait a tirer la dérivée ¢
hors de ’argument des fonctions arbitraires *.

Certes, on y réussit aisément, grice a la transformation de
Legendre, en prenant ¢ pour nouvelle variable indépendante
que I'on désignera par Y. En revenant, aprés la quadrature
effectuée, aux anciennes variables, on obtient I'intégrale cherchée
sous la forme d’un ensemble de deux équations:

Z:yY+2ia[¢(Y+ax)——<p(Y—ax)], a

2ay = ¢’ (Y — ax) — ¢' (Y + az) ,

ot Y figure a titre de parametre variable. On voit aisément que
cette derniére intégrale se transforme en la précédente, par une
transformation convenable du parameétre variable.

Prenons, comme nouvel exemple, ’équation de E. Goursat,
concernant la transformation des surfaces 2:

Xpt + rt—s2 =10, (10)

X désignant une fonction quelconque de la variable .

1 N. SarLTyxow, Application des transformations de contact & Dl'intégration des
équations aux dérivées partielles (Bulletin de I’ Académie royale serbe. A. Sciences mathe-
matiques et physiques, n° 3, Belgrade, 1936, p. 41).

2 American Journal of Mathematics, vol. XIV, et Cours d’Analyse, 4™e éd., t. I1I,
Paris, 1927, « Exercices », p. 88. La fonction X y est remplacée par [ (x).




5 e L S B
RRSEOE RS,

METHODES D’ INTEGRATION 147

En posant
{7 j S Xdx
X == TC' 5 L‘Q/ — € )

I’équation de E. Goursat (10) devient
&p+Xr)t—s.L.s=0
et peut étre écrite de la maniere suivante:

0 (Zp) gg__b_gb(tbip)zo.
dxz "0y Ox Oy

[l s’ensuit Pintégrale intermédiaire:
Tp =olq) ,

o étant une fonction arbitraire.

Or, cette derniére équation est aux dérivées partielles du
premier ordre, les variables étant séparées.

Par conséquent, 'intégrale générale de I’équation (10) devient

z = @(C)O) + Cy + () ,
¢’ (C) Ofx) +y + ¢'(C) = 0,
J désignant la seconde fonction arbitraire, C étant le paramétre

variable, et la fonction © (z) s’exprimant en X de la maniere
suivante:

O (a) = J}fde iz .
La nouvelle équation que nous allons étudier, est celle que
M. A. Demoulin a bien voulu me proposer d’intégrer:
1t — s* + @(z) (PPt — 2pgs + ¢*r) = 0, (11)

aprés en avoir obtenu l'intégrale générale, grace a des considé-
rations géométriques.

Pour résoudre I’équation proposée, remarquons que l'on a les
identités évidentes:

Op 0 (¢ O0p 0 (¢
it o2 — sy e A
S ﬁp[éxby(p> yéx([D) ’

N d |
p*t— 2pgs + ¢°r = P“[P@(%) ~q@(—%—)J -
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Par conséquent, I'équation (11), grace & la réduction des
termes, s’écrit de la maniére suivante:

op . 0 q) op 0 ( ‘
el o2l (LY 2P ; A I
[bx * CP(ZW}O@/(ﬂ [Oy | cP(z)quéx \p,) =0

Cela étant, divisons par p les expressions qui se trouvent
entre crochets, ainsi que le second membre de cette derniére
équation, et posons, ensuite,

el dz 7.

L’équation étudiée devient alors:

\

d d "q) d o g\
e P55 () — 5y e r i () =0

Il s’ensuit I'intégrale de cette derniére équation sous la forme:

i),

f désignant une fonction arbitraire de %

Or, cette derniére équation aux dérivées partielles du premier
ordre appartient au type des équations de Lagrange, dont I'in-
tégrale complete s’obtient, en joignant l'intégrale des caracté-

ristiques —g~ = (, G désignant une constante arbitraire.

Il s’en suit, donc, I'intégrale générale de I’équation (11) sous
forme de I'ensemble des deux équations:

(/2@ 4 — §(C) (w + Cy) + $1C)
f(Cy + 7(C) (z + Cy) + $7(C) =0,
f ety désignant deux fonctions arbitraires, C étant un parameéetre
auxiliaire variable.

Il est aisé d’intégrer beaucoup d’autres équations, grice aux
procédés du groupement des termes.
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Considérons, de ce fait, les quatre types d’équations suivants:

r—t+ o +aflp—qg =0, (12)
Pt ey, p—q) =0, (13)
r+2s+t+ 9@ flp+q =0, (14)
r+2s+t+flz,y,ptgqg =0, (15)

les fonctions ¢ et f admettant des expressions quelconques.

M. A. DemouLIN m’avait communiqué une méthode directe
d’intégration de I’équation (12) dans le cas, ot f(p —¢) = p — ¢,
et de I’équation (14) dans le cas, ot f(p + ¢) = (p + 9)*

Or, pour intégrer l'équation (12), dans I’hypotheése la plus
générale, retranchons et ajoutons la variable s au premier
membre de ’équation étudiée (12).

Elle pourra, alors, s’écrire sous la forme suivante:

?Tp“‘l—'«‘iz‘)[%(p—ﬂ + %(p“_Q)] + o) (p+qg =0.

En y introduisant les désignations:

SE=l —op—a, [owi=1,

la derniere équation va devenir:

865;[®(p—9)+z}+5%[®(p~q) + 2] =0.

L'intégration de I’équation obtenue, linéaire et du premier
ordre par rapport aux dérivées partielles de la fonction qui se

trouve entre crochets, donne Iintégrale générale premiére de
Péquation (12): ,
Qip—qg)+ 74 =Vy—a, (16)

V" désignant une fonction arbitraire.

Si Pon introduit deux nouvelles variables indépendantes &
et = liées avec les anciennes par les relations:

y—zx==%6, y+ax=n, (17)
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Péquation (16) prend la forme d’une équation différentielle
ordinaire:

@(_22—2) L7 =W .

L’intégration de cette derniere équation dépendra de la forme
des fonctions @ et Z. Son intégrale générale contiendra, au lieu
de la constante arbitraire, une fonction arbitraire de la variable .
On en tirera l'intégrale générale de ’équation étudiée (12), au
moyen de la transformation inverse des variables.

Quant a I’équation (13), on la mettra, ainsi que la précédente,
sous la forme suivante:

2o+ rlp—q + ey p—g =0. (18

(C’est une équation linéaire, par rapport au bindéme p — ¢,
dont I'intégration dépendra de celle d’une équation différentielle
ordinaire formée au moyen de la fonction f. 1l restera, enfin, &
intégrer une seconde équation linéaire aux dérivées partielles du
premier ordre, pour en tirer I'intégrale générale de I’équation
donnée (13).

Passons a présent aux deux derniéres équations (14) et (15).

On écrira aisément I’équation (14) de la maniere suivante:

(p +4q [0 d . B
Y R VY IEXTIET E

Cette derniére équation peut étre mise sous la forme:

d ‘ O i .
a—;c[U(PJFQ)‘FZ]+@[L(P+Q)+Z]:O (19)
ou les fonctions U et Z sont définies respectivement par les

quadratures:

Up+q = / Kp*—f(ﬁ Cj:";f 1) . 7 = (/'cp(z)dz :

Cela étant, on obtient, intégrant I’équation (19), I'intégrale
générale premiére de I'équation (14) sous la forme:

Ulp+4q) +72 =Yy +a), (20)

¥ étant une fonction arbitraire.
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La transformation de variables indépendantes, au moyen des
formules (17), réduit I’équation (19) & la suivante:

(.02
U@éﬁ) + 7Z =Y .

L’équation obtenue est aux différentielles ordinaires, dont
Vintégration dépend de la forme des fonctions U et Z. L’intégrale
générale de cette derniere équation devra impliquer, au lieu
d’'une constante arbitraire, une nouvelle fonction arbitraire
de & On en tirera, au moyen de la transformation inverse des
variables, I'intégrale générale de I’équation étudiée (14).

La dernieére équation (15) va s’écrire de la maniére suivante:

0 0 v
s ta +yptad iy, ptg=0.

Or, cette derniére équation va étre intégrée d’une maniére
analogue a I’équation (18).

V. — INTEGRATIONS DE QUELQUES KQUATIONS USUELLES
DU SECOND ORDRE.

Citons maintenant plusieurs équations, dont I'intégration est
exposée dans maints traités de Goursat, de Forsyth, de Piaggio,
ainsi que chez d’autres auteurs.

Considérons, en premier lieu, Péquation (Goursar, Cours
d’Analyse, 4™e éd., t. I11, Paris, 1927. Exercices, p. 88):

x2r 4+ 2zxys + y:t = 0 . (1)

En groupant les termes de cette équation (1), on va 1'écrire
0 0
x5 (zp + yq) + Y5y + Y0 = 2p +yq .

L’intégrale générale de cette derniére équation aux dérivées
partielles du premier ordre, par rapport au hindme xp -+ yq,
se présente sous la forme:

zp + yq = xf(%) 5

\ /
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