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140 N. SALTYKOW

Y désignant une fonction arbitraire de la variable y. Si l'on y
introduit, au lieu de s, la nouvelle fonction inconnue u
cette dernière équation devient ordinaire du type eulérien:

du n— + Yu— 1
dy

En y remplaçant la fonction arbitraire Y par la formule

Y
6' ±1 - 6

0 désignant la nouvelle fonction arbitraire de y, l'équation
considérée admettra la solution particulière 0.

Cela étant, l'intégrale générale de l'équation (6) de M. Gau

sera définie par l'ensemble des deux équations suivantes:

-•-rï-v.
T—+

0 et X désignant deux fonctions arbitraires respectivement de

y et de x.

IV. — Réduction d'équations aux formes intégrables
PAR-GROUPEMENT DES TERMES.

Il s'agit, dans les lignes qui vont suivre, de transformer les

équations données aux dérivées partielles du second ordre en
d'autres équations qui soient intégrables, en groupant d'une
manière convenable les termes d'équations données.

Pour expliquer l'idée de ce procédé, intégrons, d'abord,
l'équation classique de la corde vibrante:

r — a2t 0 (1)

a désignant une constante arbitraire.
Ajoutons et retranchons le terme as au premier membre de
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l'équation étudiée (1). Elle va immédiatement prendre l'une des

deux formes suivantes:

^(P ± n) T a^(p ± aq) 0

correspondant l'une aux signes supérieurs, et l'autre à ceux qui
sont inférieurs. Chacune des deux équations obtenues est linéaire
aux dérivées partielles du premier ordre par rapport au binôme

p ± aq, considéré comme nouvelle fonction inconnue.
Cela étant, on mettra leurs intégrales générales respectivement

sous les formes suivantes:

p + aq 2af {y + ax) v

\ /

p — aq 2 a cp ' (y — ax)

j /' et cp' désignant les dérivées des fonctions arbitraires de leurs
; arguments; quant au facteur constant 2a, on l'introduit pour
I simplifier le calcul qui va suivre.

Il suffit de l'une des deux équations intégrales obtenues (2)

pour achever l'intégration de l'équation étudiée (1). En effet,
chacune d'elles est linéaire aux dérivées partielles du premier
ordre de la fonction inconnue z.

En intégrant, par exemple, la première équation (2), on obtient
j l'intégrale générale requise:

j z f (y + ax) + (y — ax)

; / et ^ étant deux fonctions arbitraires de leurs arguments.
Or, comme les deux équations (2) sont compatibles, défînis-

sant les dérivées p et q de la même fonction z, cette dernière
j pourrait être définie, d'une autre manière encore, au moyen
j de l'intégration de la différentielle totale correspondante:

: | dz pdx + qdy.

j Comme second exemple citons l'équation classique d'Euler
I 2 pr _ t + o (3)

; Il est aisé, en groupant les termes de cette dernière équation,
| de l'écrire de la manière suivante:

| + + J) - è(p + q +£)+ i{p + q+1)=° •
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Celle-ci étant linéaire aux dérivées partielles du premier
ordre du trinôme p + q + ~ considéré comme nouvelle

fonction inconnue, l'intégrale générale, dans cette dernière
hypothèse, devient:

p + i+ ^ | ï(*+ y).
/' désignant une fonction arbitraire.

Or, l'équation obtenue est, à son tour, linéaire aux dérivées

partielles du premier ordre de la fonction inconnue z. Son

intégrale générale va définir celle de l'équation d'Euler (3), sous
la forme suivante:

* — [/ (x + y) + 9 (* — y)] >

çp étant la seconde fonction inconnue.
Un nouvel exemple est emprunté aux récentes recherches de

la théorie des probabilités, où l'on considère l'équation:

àt2 a à y2 \ a a' àt '

a' et a" désignant respectivement la première et la seconde dérivée

de la fonction donnée a (t), prises par rapport à t.

Les termes de l'équation écrite peuvent être groupés de deux
manières différentes, tout étant mis en une formule:

à /àf a' àf\ af à (àf a' àf\
| J- i =F l 37— 3— ± l V")

àt\àt a ày ] a o y\ot a ày]
dJ± 0.àt a ày J

Par conséquent, l'intégration de l'équation (4) revient à celle

d'un double système:
àf a' àf

T i — ' —

\ ffl a') \
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L'intégration de chacune des équations de la seconde ligne (5)
produit deux valeurs distinctes ux et u2 de la fonction u,
correspondant respectivement aux signes supérieur et inférieur dans

l'équation considérée:

in 2i ^ (y + Hog a) u2 — 2i ~ W (y — £ log a)

O' et Y' désignant deux fonctions arbitraires, les coefficients 2i
et — 2i y étant introduits pour faciliter le calcul qui va suivre.

Cela étant, la fonction / est définie par l'ensemble des deux
équations, en involution, aux dérivées partielles du premier
ordre,

df a' df _ a' _,dï+ 17^ 2i7® (y + ^oga)

y_i__ 2 i — Y'(3/ — Hog a).dt a à y a ^ 01

Il en résulte immédiatement, par une quadrature, l'intégrale
générale requise de l'équation (4) sous la forme très simple:

f <D (y + i log a) + Y (y — i log a)

Revenons à présent à deux autres équations dont on a fait
mention plus haut, dans les dernières lignes de l'introduction,

'j, et que G. Darboux intègre par la méthode de Monge-Ampère.
j Quant à la première de ces équations, celle des surfaces réglées,
\ à plan directeur normal à l'axe des cotes,
I
| q2r — 2pq s + p*t 0 (6)

I

I elle peut être écrite de la manière suivante:

±(L) ±(t)àx\q/ ày\qj
0

àz à z

àx dy

Il s'en suit, donc, la relation:

9 désignant une fonction arbitraire de z.
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En multipliant la dernière relation par q, on obtient une
équation linéaire, dont l'intégrale générale se présente sous la
forme

y + x<p(z) <\>{z)

4» désignant la seconde fonction arbitraire. C'est l'intégrale
générale de l'équation donnée (6).

Il est opportun de faire, à cette occasion, une remarque sur
les surfaces réglées, dont le plan directeur occupe une position
arbitraire quelconque dans l'espace. L'équation aux dérivées

partielles correspondante devient alors:

(B + C?)2 r — 2 (A + Cp) (B + Cq)s + (A + Cp)2 ^0, (7)

les coefficients A, B et C étant constants.
En introduisant la nouvelle fonction inconnue c qui soit liée,

avec l'ancienne, par la relation

v — Ax + By + Cz

l'équation (7) transformée devient:

Ô Ç\2 Ö2 v /ÔP |2 Ö2(^

à y / dx2 dx à y à x S y \àx / Sy2

Elle admet, donc, la forme de l'équation (6).

Enfin, si le plan directeur est parallèle à l'axe des z, l'équation
aux dérivées partielles des surfaces réglées va devenir

B2r — 2 ABs + AH 0 (8)

A et B représentant des coefficients constants.
L'équation (8) peut être écrite

B ^(Bp ~~A?) ~~A ^(B?—A?) 0 •

et s'intègre immédiatement par l'une des méthodes suivantes. Il
est aisé, d'abord, de considérer cette dernière équation comme
linéaire aux dérivées partielles du premier ordre par rapport à

la nouvelle fonction inconnue Bp — Aq.
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Or, d'un autre point de vue, l'équation.considérée est réductible

à un système de Charpit1. Il s'ensuit l'intégrale générale

Bz — xf (Ax + By) + 9 (Ax + By)

où / et 9 représentent deux fonctions arbitraires.
Passons, enfin, à la quatrième équation, celle de la théorie

mécanique de la chaleur, figurant chez Darboux2:

rt — s2 -f a2 0 (9)

a étant un coefficient constant ; elle peut être mise sous la forme
suivante :

^(p ± «-y)^(î * °*) -^(p±t «*) 0 •

Il s'en suit deux intégrales intermédiaires:

j p -f ay 9' (q — ax)

j p — ay (q A ax)
•'•j

J 9' et <]/ désignant les dérivées des deux fonctions arbitraires 9
] et 6.

j L'intégration peut être achevée en partant d'une seule de ces

j intégrales. Prenons, par exemple, la première. Si l'on y introduit
j la nouvelle fonction inconnue :

zx z + axy
' \

1 la première intégrale considérée va devenir:

;i Pi f ' (qi — ïcix)

j Pi h désignant respectivement les dérivées et ^
I Les variables étant séparées, on a l'intégrale complète

j zi — Ya ^ ^ — 2 ag:) + Ci/ + Cx

1 N. Salty ko Wj Equations aux dérivées partielles du second ordre intégrables par
un système de Charpit (Publications mathématiques cle l'Université de Belgrade, t II
1933, p. 66).

N. Saltykow, Equations aux dérivées partielles du second ordre à n variables
indépendantes intégrables par un système de Charpit (Publications mathématiques de
l'Université de Belgrade, t. III, 1934, p. 161).

2 Voir plus haut, p. 133, loc. cit.

L'Enseignement matliérn., 38année, 1939 et 1940. 10
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C et Gx étant deux constantes arbitraires. En formant l'intégrale
générale et revenant à l'ancienne fonction inconnue, on obtient
l'intégrale générale de l'équation considérée (9) sous la forme
d'un ensemble des deux équations suivantes:

z -f axy — 9 (G — 2 ax) -f- Cy + 0 (G)

— Ya (G ~" 2 ax) + y + 6' (G) 0

0 désignant la seconde fonction arbitraire et C étant un paramètre
variable.

Il est aisé, d'une autre manière, de profiter des deux intégrales
intermédiaires obtenues. On pourrait les intégrer simultanément,
au moyen d'une quadrature, si l'on parvenait à tirer la dérivée q

hors de l'argument des fonctions arbitraires h
Certes, on y réussit aisément, grâce à la transformation de

Legendre, en prenant q pour nouvelle variable indépendante
que l'on désignera par Y. En revenant, après la quadrature
effectuée, aux anciennes variables, on obtient l'intégrale cherchée

sous la forme d'un ensemble de deux équations:

z yY+ h,^(Y+ ax)~9(Y — '

2ay q/ (Y — ax) — <]/ (Y + ax)

où Y figure à titre de paramètre variable. On voit aisément que
cette dernière intégrale se transforme en la précédente, par une
transformation convenable du paramètre variable.

Prenons, comme nouvel exemple, l'équation de E. Goursat,
concernant la transformation des surfaces 2 :

Xpt + rt — .s2 0 (10)

X désignant une fonction quelconque de la variable x.

1 N. Saltykow, Application des transformations de contact à l'intégration des

équations aux dérivées partielles (Bulletin de l'Académie royale serbe. A. Sciences
mathématiques et physiques, n° 3, Belgrade, 1936, p. 41).

2 American Journal of Mathematics, vol. XIV, et Cours d'Analyse, 4me éd., t. III,
Paris, 1927, « Exercices », p. 88. La fonction X y est remplacée par /' (x).
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En posant
SP* f Xdx

X - x • x - '

l'équation de E. Goursat (10) devient

(X'p + Xr) t — s X s 0

et peut être écrite de la manière suivante :

à (Xp) àq d q à (Xp) ^
dy àx ày

Il s'ensuit l'intégrale intermédiaire:

Xp 9 (q)

9 étant une fonction arbitraire.
Or, cette dernière équation est aux dérivées partielles du

premier ordre, les variables étant séparées.
Par conséquent, l'intégrale générale de l'équation (10) devient

^ cp(C) ©(s) + Cy+ d»(C)

9'(C)0(ä) + y + <]/(C) - 0

désignant la seconde fonction arbitraire, G étant le paramètre
variable, et la fonction &(%) s'exprimant en X de la manière
suivante :

©(sc) je~fxdx dx

La nouvelle équation que nous allons étudier, est celle que
M. A. Demoulin a bien voulu me proposer d'intégrer:

rt — s2 + 9 (z) (p2t — Zpqs + q2r) 0 (11)

après en avoir obtenu l'intégrale générale, grâce à des considérations

géométriques.
Pour résoudre l'équation proposée, remarquons que l'on a les

identités évidentes:

rt - -£ A.l±\
à x dy\p/ ô y dx\p

pH_2pqs + fr^



148 N. SALTYKOW
Par conséquent, l'équation (11), grâce à la réduction des

termes, s'écrit de la manière suivante:

\z+9(a) p2] ïy{j)-\z+= ° •

Cela étant, divisons par p les expressions qui se trouvent
entre crochets, ainsi que le second membre de cette dernière
équation, et posons, ensuite,

efcp(z)dz ^ z ^

L'équation étudiée devient alors:

Il s'ensuit l'intégrale de cette dernière équation sous la forme:

/ désignant une fonction arbitraire de

Or, cette dernière équation aux dérivées partielles du premier
ordre appartient au type des équations de Lagrange, dont
l'intégrale complète s'obtient, en joignant l'intégrale des

caractéristiques ~ C, C désignant une constante arbitraire.

Il s'en suit, donc, l'intégrale générale de l'équation (11) sous
forme de l'ensemble des deux équations:

jVdz/(C) (x+ Cy) <HG} »

/(G )y+ /'(C) (x + Cy) + ^'(C) 0

/ ettj; désignant deux fonctions arbitraires, C étant un paramètre
auxiliaire variable.

Il est aisé d'intégrer beaucoup d'autres équations, grâce aux
procédés du groupement des termes.
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Considérons, de ce fait, les quatre types d'équations suivants:

r — t + 9 (z) (p + q) f (p — q) 0 (12)

r — t + f(x, y, p — q) =0 (13)

r + 2s + t + 9 [z)f(p + q) 0 (14)

r + 2$ + t + f(x, y p + q) =0 (15)

les fonctions 9 et / admettant des expressions quelconques.
M. A. Demoulin m'avait communiqué une méthode directe

d'intégration de l'équation (12) dans le cas, où f(p — q) p — q,

et de l'équation (14) dans le cas, où f(p --f1 q) (p + q)2.

Or, pour intégrer l'équation (12), dans l'hypothèse la plus
générale, retranchons et ajoutons la variable s au premier
membre de l'équation étudiée (12).

Elle pourra, alors, s'écrire sous la forme suivante:

fï^Tq) + ?(Z)(P + ° *

En y introduisant les désignations:

/flf_gj — 1)'J

la dernière équation va devenir:

^[® (p - i)+ Z] + ^ [®(P- q)+ Z] - 0

L'intégration de l'équation obtenue, linéaire et du premier
ordre par rapport aux dérivées partielles de la fonction qui se
trouve entre crochets, donne l'intégrale générale première de
l'équation (12):

® (P —+ Z T (y— x),(16)

T désignant une fonction arbitraire.
Si l'on introduit deux nouvelles variables indépendantes E,

et 7) liées avec les anciennes par les relations:

y — x Z, V + X7) (17)
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l'équation (16) prend la forme d'une équation différentielle
ordinaire :

<D (-2 K> + 2 -
L'intégration de cette dernière équation dépendra de la forme

des fonctions O et Z. Son intégrale générale contiendra, au lieu
de la constante arbitraire, une fonction arbitraire de la variable 73.

On en tirera l'intégrale générale de l'équation étudiée (12), au

moyen de la transformation inverse des variables.
Quant à l'équation (13), on la mettra, ainsi que la précédente,

sous la forme suivante:

~ (p — q) + (p q) + f(x, y p — q) =0 (18)

C'est une équation linéaire, par rapport au binôme p — q,

dont l'intégration dépendra de celle d'une équation différentielle
ordinaire formée au moyen de la fonction /. Il restera, enfin, à

intégrer une seconde équation linéaire aux dérivées partielles du
premier ordre, pour en tirer l'intégrale générale de l'équation
donnée (13).

Passons à présent aux deux dernières équations (14) et (15).
On écrira aisément l'équation (14) de la manière suivante:

nrtT)[<£(/) + q)+ è(p + 3il+ 0 •

Cette dernière équation peut être mise sous la forme:

L [U(p + g) +Z] + ^ [U(p + + Z] 0 (19)

où les fonctions U et Z sont définies respectivement par les

quadratures :

ui„ +,) - f-p+,'p+p,ri2 -/»M* •

Cela étant, on obtient, intégrant l'équation (19), l'intégrale
générale première de l'équation (14) sous la forme:

U (p + q) + Z Y (y + x) (20)

T étant une fonction arbitraire.



MÉTHODES D'INTÉGRATION 151

La transformation de variables indépendantes, au moyen des

| formules (17), réduit l'équation (19) à la suivante:

i U(2^) + Z 1F(5) '

{ L'équation obtenue est aux différentielles ordinaires, dont
j l'intégration dépend de la forme des fonctions U et Z. L'intégrale
j générale de cette dernière équation devra impliquer, au lieu
j d'une constante arbitraire, une nouvelle fonction arbitraire
j de On en tirera, au moyen de la transformation inverse des

j variables, l'intégrale générale de l'équation étudiée (14).
j La dernière équation (15) va s'écrire de la manière suivante:

j §~x(p + q) + + q) + / (s, y, p + g) 0

Or, cette dernière équation va être intégrée d'une manière
i analogue à l'équation (18).

i V. — Intégrations de quelques équations usuelles
j DU SECOND ORDRE.

I Citons maintenant plusieurs équations, dont l'intégration est
exposée dans maints traités de Goursat, de Forsyth, de Piaggio,

i ainsi que chez d'autres auteurs.
Considérons, en premier lieu, l'équation (Goursat, Cours

j d'Analyse, 4me éd., t. III, Paris, 1927. Exercices, p. 88):

j x2r + 2 xys + y%t 0 (1)
|

En groupant les termes de cette équation (1), on va l'écrire

Ô
/

Ô

x dx ^Xp + yq) + y ày
^xp + yq)j XP + yq -

L intégrale générale de cette dernière équation aux dérivées
partielles du premier ordre, par rapport au binôme xp +
se présente sous la forme:

xp + yq
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