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MÉTHODES D'INTÉGRATION 137

on transforme l'équation (6) en une équation aux dérivées

partielles du premier ordre par rapport aux dérivées et à

savoir:
T?/ ÖJJL Ô{Jl ÔfiA

Quant à l'équation (7), en y posant

q l{y, z)

elle va devenir une équation aux dérivées partielles du premier

ordre par rapport à et à ^ :

_/ ôx dX öX \
<D (y, z, Xf — s h y X I 0

+ ' ' ' à z' dy ^ àz

III. — Réduction aux équations représentant
DES DÉRIVÉES EXACTES.

Considérons, par exemple, l'équation bien connue d'Ampère 1 :

zs + + pq 0 (1)

Elle s'écrit aisément sous la forme évidente:

ö / z\
zp +1 0.ày\r q

Intégrant cette dernière équation, on obtient une équation
aux dérivées partielles du premier ordre :

ZP — y + y X (2)

où X désigne une fonction arbitraire de la variable x.
Il serait avantageux, pour intégrer l'équation (2), d'y introduire

la nouvelle fonction inconnue z1 z2. L'équation (2)
va devenir

Pi-~+2y 2X
01

1 G. V. Imschenetsky, Etude sur les Méthodes d'Intégration des équations aux dérivées
partielles du second ordre. Paris, 1872, p. 149 (n° 143).
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àz

Pi ?i désignant respectivement les dérivées partielles et
ô z Cette dernière équation admet l'intégrale des caractéristiques

:

qi 2x + cj

étant une constante arbitraire. On représente, au moyen
d'une quadrature, l'intégrale générale de l'équation (1), par
l'ensemble de deux équations:

z2 (2a: + cx)y+ (2x —cx)*\îf+ïW] '

y + 212« + + »(<,)] +

+ (2 s + «,)• [.» -if T] 0

<p désignant la seconde fonction arbitraire du paramètre
variable e3.

Citons comme second exemple l'équation de E. Goursat:

S 9 (z) pq (3)

la fonction 9 étant quelconque. Cette dernière équation représente

bien une dérivée exacte:

Â [l°ë P —f 9 M <**] 0

Il s'ensuit, au moyen de deux quadratures consécutives,
l'intégrale générale de l'équation donnée (3):

- X + Y

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

L'équation (3) avait été généralisée par M. A. Demoulin de la
manière suivante:

S W)Pq +' ^
les fonctions f(z) et F (x,y)étant quelconques1.

1 M. A. Demoulin avait donné cette dernière équation au Bul. de la Société math, de

France, t. XXI (1893), en considérant au lieu de F(.x, y) un polynôme des produits
Xi Y,-.
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Il s'ensuit immédiatement

On obtient d'ici, au moyen de deux quadratures consécutives,

l'intégrale générale requise:

fmSdxfF{x' y>dy + x + Y>

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

On trouve, à la page 88 du tome III du Cours d*Analyse
mathématique de Goursat (4me éd., Paris, 1927), parmi les
exercices, l'équation:

s pq + ezf(x, y) (5)

Cette dernière équation peut être traitée par la méthode
exposée, car on a:

_ if!!*
5 ~ ez P4 + ezf(x, y)

Il s'en suit, en effet, l'intégrale générale requise de l'équation

(5):
e~z + H àx J f(x y) ày + X + Y 0

Intégrons, enfin, l'équation de M. Gau:

s (ez + é~z) p • (6)

Elle est réductible à la différentielle exacte, comme il suit:

ft[i-/(* + *-*)dz] 0

En intégrant cette dernière équation, on obtient:

ô z 7 7

Vy=e 6 +Y'
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Y désignant une fonction arbitraire de la variable y. Si l'on y
introduit, au lieu de s, la nouvelle fonction inconnue u
cette dernière équation devient ordinaire du type eulérien:

du n— + Yu— 1
dy

En y remplaçant la fonction arbitraire Y par la formule

Y
6' ±1 - 6

0 désignant la nouvelle fonction arbitraire de y, l'équation
considérée admettra la solution particulière 0.

Cela étant, l'intégrale générale de l'équation (6) de M. Gau

sera définie par l'ensemble des deux équations suivantes:

-•-rï-v.
T—+

0 et X désignant deux fonctions arbitraires respectivement de

y et de x.

IV. — Réduction d'équations aux formes intégrables
PAR-GROUPEMENT DES TERMES.

Il s'agit, dans les lignes qui vont suivre, de transformer les

équations données aux dérivées partielles du second ordre en
d'autres équations qui soient intégrables, en groupant d'une
manière convenable les termes d'équations données.

Pour expliquer l'idée de ce procédé, intégrons, d'abord,
l'équation classique de la corde vibrante:

r — a2t 0 (1)

a désignant une constante arbitraire.
Ajoutons et retranchons le terme as au premier membre de
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