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METHODES D’INTEGRATION 135

L’équation (5) est donc différentielle ordinaire du premier
ordre par rapport a la fonction inconnue p de la variable indé-
pendante y, en traitant z comme une constante. L’intégrale
générale de I'équation (5) va s’écrire, par conséquent, de la
maniere suivante:

fle,y, p, X) =0, (7)

X désignant une fonction arbitraire de x, qui s’introduit, au
lieu d’une constante arbitraire d’intégration.

L’équation obtenue (7) est encore différentielle ordinaire du
premier ordre par rapport a la fonction inconnue z, car on a

la variable y est, & présent, & considérer comme une valeur
constante. Supposons que 1’on obtienne, en résolvant I'équa-
tion (7) par rapport a p:

p=0(, X,y . (8)

Gréace & I’hypothése introduite par rapport a y, ’équation (8)
donne, par quadrature, I'intégrale générale de I’équation (3)

= [0(z, X, y)0z+ Y,

ou Y est la seconde fonction arbitraire qui ne dépend que de y.

La seconde équation (6) va s’intégrer d’une maniére ana-
logue; et I'intégrale générale de 1’équation (4) impliquera deux
fonctions arbitraires, dont la premiére ne contient que y et la
seconde sera une fonction de la variable z.

II. — REDUCTION AUX EQUATIONS AUX DERIVEES PARTIELLES
DU PREMIER ORDRE,

Considérons, d’abord, les équations de la forme suivante:

F(x7y?p)r,s):0) (1)
D(x,y,q,s,0 =0. 2)
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Chacune de ces équations se met immédiatement sous la
forme d’une équation aux dérivées partielles du premier ordre.
En effet, on les écrit aisément de la maniére suivante:

0 0

F(xayapaa_ia O_y/Z—)):O’ (3)
0 0

(D(:c,y, Q,G_Z, a?,):o- (,*)

Un cas trés simple se présente, par exemple, si les équations
données (1) et (2) sont respectivement linéaires par rapport aux
dérivées partielles du second ordre. Les équations (3) et (4) sont

e e . A , e, op Op

alors linéaires respectivement par rapport aux dérivées ——, By’
: . . 0gq Og¢q
ou bien par rapport a 5, YR

Si 'on suppose, par exemple, que ’équation (3) soit linéaire,
son intégrale générale va devenir:

p=ulz,y) + ooz, v], (5)

o désignant une fonction arbitraire et u, ¢ admettant des
valeurs bien déterminées.

I’équation (b) produit I'intégrale générale requise, au moyen
d’une quadrature partielle par rapport & la variable x:

2= [{ule, ) + o[ole, w)]}oa + Y,

Y désignant une fonction arbitraire de la variable indépen-
dante y.

On trouve, chez E. Goursat, deux autres cas d’équations qui
jouissent des propriétés analogues et se présentent sous les
formes suivantes: |

F(x,z, ,r,—s—>:0, 6]
p p (6)

(D(,z, ,i,t>=0. 7
Yy 5 (7)

En cherchant la solution de I’équation (6) sous la forme

p = wulz, 3,
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on transforme I’équation (6) en une équation aux dérivées

. . ,ox x 0 0 s

partielles du premier ordre par rapport aux dérivées b—% et a—g , &
savoir:

ow ow Op,)
ot 0. ,
F( N e T

Quant & ’équation (7), en y posant

g = Ay, 3,
elle va devenir une équation aux dérivées partielles du premier
ordre par rapport a o et a or,
p pPp Y 57"
OA OA oA
q)(y,z,).,é—z,@‘{—a'—z?\)——-().
III. — REDUCTION AUX EQUATIONS REPRESENTANT

DES DERIVEES EXACTES.

Considérons, par exemple, I’équation bien connue d’Ampere *:
z
zs—}-q?t—}—pq:(). (1)
Elle s’écrit aisément sous la forme évidente:

i) +i-
éyp q

Intégrant cette derniére équation, on obtient une équation
aux dérivées partielles du premier ordre:

ZP—§+y=X, (2)

ou X désigne une fonction arbitraire de la variable z.

Il serait avantageux, pour intégrer ’équation (2), d’y intro-
duire la nouvelle fonction inconnue z, = z2. L’équation (2)
va devenir

pl 4q21 + 2 2X 3

1 G.V.IMSCHENETSKY, Etude sur les Méthodes d’ Intégratzon des équations aux derwees
bartielles du second ordre. Paris, 1872, p. 149 (n° 143).
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