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MÉTHODES D'INTÉGRATION 135

L'équation (5) est donc différentielle ordinaire du premier
ordre par rapport à la fonction inconnue p de la variable
indépendante ?/, en traitant x comme une constante. L'intégrale
générale de l'équation (5) va s'écrire, par conséquent, de la
manière suivante:

X désignant une fonction arbitraire de x, qui s'introduit, au
lieu d'une constante arbitraire d'intégration.

L'équation obtenue (7) est encore différentielle ordinaire du

premier ordre par rapport à la fonction inconnue z, car on a

la variable y est, à présent, à considérer comme une valeur
constante. Supposons que l'on obtienne, en résolvant l'équation

(7) par rapport à p :

Grâce à l'hypothèse introduite par rapport à y, l'équation (8)
donne, par quadrature, l'intégrale générale de l'équation (3)

où Y est la seconde fonction arbitraire qui ne dépend que de y.
La seconde équation (6) va s'intégrer d'une manière

analogue; et l'intégrale générale de l'équation (4) impliquera deux
fonctions arbitraires, dont la première ne contient que y et la
seconde sera une fonction de la variable x.

II. — Réduction aux équations aux dérivées partielles
DU PREMIER ORDRE.

Considérons, d'abord, les équations de la forme suivante:

f(x, y, P, X) 0

p Q(x, X, y)

Ç 0 (x X y) à x + Y

F (x, y p p s) 0

®(x, y, q, s, t) 0

(1)

(2)
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Chacune de ces équations se met immédiatement sous la
forme d'une équation aux dérivées partielles du premier ordre.
En effet, on les écrit aisément de la manière suivante:

*(-.< r.VL. ^ o. »dx ' ày/

®(*' y'Ü* dày)=° ' <4)

Un cas très simple se présente, par exemple, si les équations
données (1) et (2) sont respectivement linéaires par rapport aux
dérivées partielles du second ordre. Les équations (3) et (4) sont

alors linéaires respectivement par rapport aux dérivées ^,
ou bien par rapport à ^|,

Si l'on suppose, par exemple, que l'équation (3) soit linéaire,
son intégrale générale va devenir:

p u(x, y) + (p[v(x, y)] (5)

<p désignant une fonction arbitraire et m, v admettant des

valeurs bien déterminées.

L'équation (5) produit l'intégrale générale requise, au moyen
d'une quadrature partielle par rapport à la variable x:

z J { u (x > y) + 9 \y (x > y)]}à x + y »

Y désignant une fonction arbitraire de la variable indépendante

y.
On trouve, chez E. Goursat, deux autres cas d'équations qui

jouissent des propriétés analogues et se présentent sous les

formes suivantes:

F (x z, p, r, 0 (6)

®[y,z, q, -> t) 0 • (7)

En cherchant la solution de l'équation (6) sous Ja forme

p — y.(z, z)
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on transforme l'équation (6) en une équation aux dérivées

partielles du premier ordre par rapport aux dérivées et à

savoir:
T?/ ÖJJL Ô{Jl ÔfiA

Quant à l'équation (7), en y posant

q l{y, z)

elle va devenir une équation aux dérivées partielles du premier

ordre par rapport à et à ^ :

_/ ôx dX öX \
<D (y, z, Xf — s h y X I 0

+ ' ' ' à z' dy ^ àz

III. — Réduction aux équations représentant
DES DÉRIVÉES EXACTES.

Considérons, par exemple, l'équation bien connue d'Ampère 1 :

zs + + pq 0 (1)

Elle s'écrit aisément sous la forme évidente:

ö / z\
zp +1 0.ày\r q

Intégrant cette dernière équation, on obtient une équation
aux dérivées partielles du premier ordre :

ZP — y + y X (2)

où X désigne une fonction arbitraire de la variable x.
Il serait avantageux, pour intégrer l'équation (2), d'y introduire

la nouvelle fonction inconnue z1 z2. L'équation (2)
va devenir

Pi-~+2y 2X
01

1 G. V. Imschenetsky, Etude sur les Méthodes d'Intégration des équations aux dérivées
partielles du second ordre. Paris, 1872, p. 149 (n° 143).
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