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Le Traité de Calcul intégral (I'Euler représente jusqu'aujourd'hui

une œuvre modèle sur ce genre d'études, même en

prenant en considération les progrès énormes acquis par la
Science moderne.

Or, tandis que les méthodes immédiates d'intégration sont
exposées, dès le début, dans les traités d'équations différentielles
ordinaires, on ne s'en occupe presque pas dans la théorie d'équations

aux dérivées partielles, surtout du second ordre. Ces

méthodes n'y sont pas favorisées. En effet, la fécondité d'une
nouvelle méthode quelconque que l'on introduit, en
Mathématiques, est prouvé par des applications aux exemples. On
choisit ces derniers de telle manière que l'application, aux
mêmes exemples, d'autres méthodes ne produise pas de bons
résultats. Quant aux équations aux dérivées partielles du second

ordre, ce n'est pas toujours le cas.
| Citons, par exemple, l'excellente exposition de la méthode de
| Monge-Ampère donnée par G. Darboux 1. Elle est suivie de
| quatre exemples que l'on expose ordinairement dans ce but:
j l'équation des surfaces développables, celle des surfaces aux
I lignes de courbure planes, des surfaces réglées à plan directeur
j et l'équation de la théorie mécanique de la chaleur.
] Cependant tous ces problèmes admettent une solution immé-
j diate la plus élémentaire. Les solutions de deux premiers pro-
j blêmes se trouvent respectivement dans le Traité d'Analyse de
j M. E. Picard (T. I, 1891, p. 296) et dans le Cours d'Analyse de

j G. Humbert (T. II, 1904, p. 471). Les deux autres équations
j mentionnées seront intégrées plus loin, au chapitre IV.
j A présent exposons, pour fixer les idées, plusieurs procédés
j d'intégration immédiate.

J I. — Réduction aux équations différentielles
j ORDINAIRES.
1

Considérons, d'abord, les équations ne contenant qu'une paire
de dérivées qui soient prises par rapport à une seule et même
variable indépendante, à savoir p et r, ou q et t, en conservant

1 Leçons sur la Théorie des surfaces. Troisième partie. Paris, 1894, p. 273, n° 716.
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les désignations habituelles des dérivées du premier et du second
ordre. Par conséquent, les équations dont il s'agit, se présentent
sous l'une de deux formes générales suivantes:

On intègre cette dernière équation comme une équation aux
différentielles ordinaires à une fonction inconnue z d'une variable
indépendante x, considérant y au titre d'un paramètre constant ;

mais, en revanche, les constantes arbitraires de l'intégrale
générale de cette dernière équation doivent être remplacées par
deux fonctions arbitraires de y.

D'une manière analogue, dans la seconde équation (2), la
variable x est considérée au titre d'un paramètre constant.
Quant à l'intégrale générale de l'équation en question (2), elle

dépendra de deux fonctions arbitraires de x.
Un autre type d'équations aux dérivées partielles du second

ordre intégrables, par un procédé analogue, se met sous l'une de

deux formes suivantes:

Les équations (3) et (4) ne contiennent point explicitement
la fonction inconnue z; mais, outre la seule dérivée mixte du
second ordre s, chacune des équations n'admet que l'une des

dérivées du premier ordre p ou q.

C'est par rapport à ces dernières dérivées que les équations
étudiées deviennent aux différenciations ordinaires du premier
ordre. En effet, les équations (3) et (4) peuvent être mises

respectivement sous la forme suivante:

F («', V, *, p r) 0

y, z, q, t) 0

L'équation (1) peut donc s'écrire:

(1)

(2)

F{x, y, p s) 0

<ï> (x, y q, s) 0

(3)

(4)
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L'équation (5) est donc différentielle ordinaire du premier
ordre par rapport à la fonction inconnue p de la variable
indépendante ?/, en traitant x comme une constante. L'intégrale
générale de l'équation (5) va s'écrire, par conséquent, de la
manière suivante:

X désignant une fonction arbitraire de x, qui s'introduit, au
lieu d'une constante arbitraire d'intégration.

L'équation obtenue (7) est encore différentielle ordinaire du

premier ordre par rapport à la fonction inconnue z, car on a

la variable y est, à présent, à considérer comme une valeur
constante. Supposons que l'on obtienne, en résolvant l'équation

(7) par rapport à p :

Grâce à l'hypothèse introduite par rapport à y, l'équation (8)
donne, par quadrature, l'intégrale générale de l'équation (3)

où Y est la seconde fonction arbitraire qui ne dépend que de y.
La seconde équation (6) va s'intégrer d'une manière

analogue; et l'intégrale générale de l'équation (4) impliquera deux
fonctions arbitraires, dont la première ne contient que y et la
seconde sera une fonction de la variable x.

II. — Réduction aux équations aux dérivées partielles
DU PREMIER ORDRE.

Considérons, d'abord, les équations de la forme suivante:

f(x, y, P, X) 0

p Q(x, X, y)

Ç 0 (x X y) à x + Y

F (x, y p p s) 0

®(x, y, q, s, t) 0

(1)

(2)
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