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MÉTHODES IMMÉDIATES D'INTÉGRATION

D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES
DU SECOND ORDRE1

PAR

N. Saltykow (Belgrade).

Introduction.

On exposera, dans les lignes qui vont suivre, quelques
considérations concernant l'enseignement de la théorie des équations
aux dérivées partielles du second ordre.

Il s'agit précisément des procédés intuitifs d'intégration. Les

questions analogues se posent toujours, lorsque l'on aborde
l'étude d'une classe quelconque d'équations différentielles. C'est
de cette manière que les méthodes d'intégration connues ont
pris ordinairement leur naissance.

Nous appelerons méthodes immédiates les procédés qui
permettraient d'obtenir les intégrales des équations considérées,

aux dérivées partielles du second ordre, en mettant ces dernières

sous une forme, dont l'intégration est évidente, comme, par
exemple, la forme d'une dérivée exacte. On y réussit souvent, en

groupant convenablement les termes des équations considérées,

ou grâce à la transformation des variables, ou encore par difîé-
rentiation.

i Le sujet de ce travail représente une revision des principes exposés par l'auteur,
comme introduction, dans les conférences Sur les Méthodes d'intégration des équations
aux dérivées partielles du second ordre professées, ces dernières années, dans les Universités
belges sous les auspices de la Fondation universitaire de Belgique. Les résultats de ces
recherches furent présentées à la séance de l'Académie Royale Serbe des Sciences, le
25 septembre 1939.
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Le Traité de Calcul intégral (I'Euler représente jusqu'aujourd'hui

une œuvre modèle sur ce genre d'études, même en

prenant en considération les progrès énormes acquis par la
Science moderne.

Or, tandis que les méthodes immédiates d'intégration sont
exposées, dès le début, dans les traités d'équations différentielles
ordinaires, on ne s'en occupe presque pas dans la théorie d'équations

aux dérivées partielles, surtout du second ordre. Ces

méthodes n'y sont pas favorisées. En effet, la fécondité d'une
nouvelle méthode quelconque que l'on introduit, en
Mathématiques, est prouvé par des applications aux exemples. On
choisit ces derniers de telle manière que l'application, aux
mêmes exemples, d'autres méthodes ne produise pas de bons
résultats. Quant aux équations aux dérivées partielles du second

ordre, ce n'est pas toujours le cas.
| Citons, par exemple, l'excellente exposition de la méthode de
| Monge-Ampère donnée par G. Darboux 1. Elle est suivie de
| quatre exemples que l'on expose ordinairement dans ce but:
j l'équation des surfaces développables, celle des surfaces aux
I lignes de courbure planes, des surfaces réglées à plan directeur
j et l'équation de la théorie mécanique de la chaleur.
] Cependant tous ces problèmes admettent une solution immé-
j diate la plus élémentaire. Les solutions de deux premiers pro-
j blêmes se trouvent respectivement dans le Traité d'Analyse de
j M. E. Picard (T. I, 1891, p. 296) et dans le Cours d'Analyse de

j G. Humbert (T. II, 1904, p. 471). Les deux autres équations
j mentionnées seront intégrées plus loin, au chapitre IV.
j A présent exposons, pour fixer les idées, plusieurs procédés
j d'intégration immédiate.

J I. — Réduction aux équations différentielles
j ORDINAIRES.
1

Considérons, d'abord, les équations ne contenant qu'une paire
de dérivées qui soient prises par rapport à une seule et même
variable indépendante, à savoir p et r, ou q et t, en conservant

1 Leçons sur la Théorie des surfaces. Troisième partie. Paris, 1894, p. 273, n° 716.
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les désignations habituelles des dérivées du premier et du second
ordre. Par conséquent, les équations dont il s'agit, se présentent
sous l'une de deux formes générales suivantes:

On intègre cette dernière équation comme une équation aux
différentielles ordinaires à une fonction inconnue z d'une variable
indépendante x, considérant y au titre d'un paramètre constant ;

mais, en revanche, les constantes arbitraires de l'intégrale
générale de cette dernière équation doivent être remplacées par
deux fonctions arbitraires de y.

D'une manière analogue, dans la seconde équation (2), la
variable x est considérée au titre d'un paramètre constant.
Quant à l'intégrale générale de l'équation en question (2), elle

dépendra de deux fonctions arbitraires de x.
Un autre type d'équations aux dérivées partielles du second

ordre intégrables, par un procédé analogue, se met sous l'une de

deux formes suivantes:

Les équations (3) et (4) ne contiennent point explicitement
la fonction inconnue z; mais, outre la seule dérivée mixte du
second ordre s, chacune des équations n'admet que l'une des

dérivées du premier ordre p ou q.

C'est par rapport à ces dernières dérivées que les équations
étudiées deviennent aux différenciations ordinaires du premier
ordre. En effet, les équations (3) et (4) peuvent être mises

respectivement sous la forme suivante:

F («', V, *, p r) 0

y, z, q, t) 0

L'équation (1) peut donc s'écrire:

(1)

(2)

F{x, y, p s) 0

<ï> (x, y q, s) 0

(3)

(4)
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L'équation (5) est donc différentielle ordinaire du premier
ordre par rapport à la fonction inconnue p de la variable
indépendante ?/, en traitant x comme une constante. L'intégrale
générale de l'équation (5) va s'écrire, par conséquent, de la
manière suivante:

X désignant une fonction arbitraire de x, qui s'introduit, au
lieu d'une constante arbitraire d'intégration.

L'équation obtenue (7) est encore différentielle ordinaire du

premier ordre par rapport à la fonction inconnue z, car on a

la variable y est, à présent, à considérer comme une valeur
constante. Supposons que l'on obtienne, en résolvant l'équation

(7) par rapport à p :

Grâce à l'hypothèse introduite par rapport à y, l'équation (8)
donne, par quadrature, l'intégrale générale de l'équation (3)

où Y est la seconde fonction arbitraire qui ne dépend que de y.
La seconde équation (6) va s'intégrer d'une manière

analogue; et l'intégrale générale de l'équation (4) impliquera deux
fonctions arbitraires, dont la première ne contient que y et la
seconde sera une fonction de la variable x.

II. — Réduction aux équations aux dérivées partielles
DU PREMIER ORDRE.

Considérons, d'abord, les équations de la forme suivante:

f(x, y, P, X) 0

p Q(x, X, y)

Ç 0 (x X y) à x + Y

F (x, y p p s) 0

®(x, y, q, s, t) 0

(1)

(2)
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Chacune de ces équations se met immédiatement sous la
forme d'une équation aux dérivées partielles du premier ordre.
En effet, on les écrit aisément de la manière suivante:

*(-.< r.VL. ^ o. »dx ' ày/

®(*' y'Ü* dày)=° ' <4)

Un cas très simple se présente, par exemple, si les équations
données (1) et (2) sont respectivement linéaires par rapport aux
dérivées partielles du second ordre. Les équations (3) et (4) sont

alors linéaires respectivement par rapport aux dérivées ^,
ou bien par rapport à ^|,

Si l'on suppose, par exemple, que l'équation (3) soit linéaire,
son intégrale générale va devenir:

p u(x, y) + (p[v(x, y)] (5)

<p désignant une fonction arbitraire et m, v admettant des

valeurs bien déterminées.

L'équation (5) produit l'intégrale générale requise, au moyen
d'une quadrature partielle par rapport à la variable x:

z J { u (x > y) + 9 \y (x > y)]}à x + y »

Y désignant une fonction arbitraire de la variable indépendante

y.
On trouve, chez E. Goursat, deux autres cas d'équations qui

jouissent des propriétés analogues et se présentent sous les

formes suivantes:

F (x z, p, r, 0 (6)

®[y,z, q, -> t) 0 • (7)

En cherchant la solution de l'équation (6) sous Ja forme

p — y.(z, z)
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on transforme l'équation (6) en une équation aux dérivées

partielles du premier ordre par rapport aux dérivées et à

savoir:
T?/ ÖJJL Ô{Jl ÔfiA

Quant à l'équation (7), en y posant

q l{y, z)

elle va devenir une équation aux dérivées partielles du premier

ordre par rapport à et à ^ :

_/ ôx dX öX \
<D (y, z, Xf — s h y X I 0

+ ' ' ' à z' dy ^ àz

III. — Réduction aux équations représentant
DES DÉRIVÉES EXACTES.

Considérons, par exemple, l'équation bien connue d'Ampère 1 :

zs + + pq 0 (1)

Elle s'écrit aisément sous la forme évidente:

ö / z\
zp +1 0.ày\r q

Intégrant cette dernière équation, on obtient une équation
aux dérivées partielles du premier ordre :

ZP — y + y X (2)

où X désigne une fonction arbitraire de la variable x.
Il serait avantageux, pour intégrer l'équation (2), d'y introduire

la nouvelle fonction inconnue z1 z2. L'équation (2)
va devenir

Pi-~+2y 2X
01

1 G. V. Imschenetsky, Etude sur les Méthodes d'Intégration des équations aux dérivées
partielles du second ordre. Paris, 1872, p. 149 (n° 143).
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àz

Pi ?i désignant respectivement les dérivées partielles et
ô z Cette dernière équation admet l'intégrale des caractéristiques

:

qi 2x + cj

étant une constante arbitraire. On représente, au moyen
d'une quadrature, l'intégrale générale de l'équation (1), par
l'ensemble de deux équations:

z2 (2a: + cx)y+ (2x —cx)*\îf+ïW] '

y + 212« + + »(<,)] +

+ (2 s + «,)• [.» -if T] 0

<p désignant la seconde fonction arbitraire du paramètre
variable e3.

Citons comme second exemple l'équation de E. Goursat:

S 9 (z) pq (3)

la fonction 9 étant quelconque. Cette dernière équation représente

bien une dérivée exacte:

Â [l°ë P —f 9 M <**] 0

Il s'ensuit, au moyen de deux quadratures consécutives,
l'intégrale générale de l'équation donnée (3):

- X + Y

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

L'équation (3) avait été généralisée par M. A. Demoulin de la
manière suivante:

S W)Pq +' ^
les fonctions f(z) et F (x,y)étant quelconques1.

1 M. A. Demoulin avait donné cette dernière équation au Bul. de la Société math, de

France, t. XXI (1893), en considérant au lieu de F(.x, y) un polynôme des produits
Xi Y,-.
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Il s'ensuit immédiatement

On obtient d'ici, au moyen de deux quadratures consécutives,

l'intégrale générale requise:

fmSdxfF{x' y>dy + x + Y>

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

On trouve, à la page 88 du tome III du Cours d*Analyse
mathématique de Goursat (4me éd., Paris, 1927), parmi les
exercices, l'équation:

s pq + ezf(x, y) (5)

Cette dernière équation peut être traitée par la méthode
exposée, car on a:

_ if!!*
5 ~ ez P4 + ezf(x, y)

Il s'en suit, en effet, l'intégrale générale requise de l'équation

(5):
e~z + H àx J f(x y) ày + X + Y 0

Intégrons, enfin, l'équation de M. Gau:

s (ez + é~z) p • (6)

Elle est réductible à la différentielle exacte, comme il suit:

ft[i-/(* + *-*)dz] 0

En intégrant cette dernière équation, on obtient:

ô z 7 7

Vy=e 6 +Y'
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Y désignant une fonction arbitraire de la variable y. Si l'on y
introduit, au lieu de s, la nouvelle fonction inconnue u
cette dernière équation devient ordinaire du type eulérien:

du n— + Yu— 1
dy

En y remplaçant la fonction arbitraire Y par la formule

Y
6' ±1 - 6

0 désignant la nouvelle fonction arbitraire de y, l'équation
considérée admettra la solution particulière 0.

Cela étant, l'intégrale générale de l'équation (6) de M. Gau

sera définie par l'ensemble des deux équations suivantes:

-•-rï-v.
T—+

0 et X désignant deux fonctions arbitraires respectivement de

y et de x.

IV. — Réduction d'équations aux formes intégrables
PAR-GROUPEMENT DES TERMES.

Il s'agit, dans les lignes qui vont suivre, de transformer les

équations données aux dérivées partielles du second ordre en
d'autres équations qui soient intégrables, en groupant d'une
manière convenable les termes d'équations données.

Pour expliquer l'idée de ce procédé, intégrons, d'abord,
l'équation classique de la corde vibrante:

r — a2t 0 (1)

a désignant une constante arbitraire.
Ajoutons et retranchons le terme as au premier membre de
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l'équation étudiée (1). Elle va immédiatement prendre l'une des

deux formes suivantes:

^(P ± n) T a^(p ± aq) 0

correspondant l'une aux signes supérieurs, et l'autre à ceux qui
sont inférieurs. Chacune des deux équations obtenues est linéaire
aux dérivées partielles du premier ordre par rapport au binôme

p ± aq, considéré comme nouvelle fonction inconnue.
Cela étant, on mettra leurs intégrales générales respectivement

sous les formes suivantes:

p + aq 2af {y + ax) v

\ /

p — aq 2 a cp ' (y — ax)

j /' et cp' désignant les dérivées des fonctions arbitraires de leurs
; arguments; quant au facteur constant 2a, on l'introduit pour
I simplifier le calcul qui va suivre.

Il suffit de l'une des deux équations intégrales obtenues (2)

pour achever l'intégration de l'équation étudiée (1). En effet,
chacune d'elles est linéaire aux dérivées partielles du premier
ordre de la fonction inconnue z.

En intégrant, par exemple, la première équation (2), on obtient
j l'intégrale générale requise:

j z f (y + ax) + (y — ax)

; / et ^ étant deux fonctions arbitraires de leurs arguments.
Or, comme les deux équations (2) sont compatibles, défînis-

sant les dérivées p et q de la même fonction z, cette dernière
j pourrait être définie, d'une autre manière encore, au moyen
j de l'intégration de la différentielle totale correspondante:

: | dz pdx + qdy.

j Comme second exemple citons l'équation classique d'Euler
I 2 pr _ t + o (3)

; Il est aisé, en groupant les termes de cette dernière équation,
| de l'écrire de la manière suivante:

| + + J) - è(p + q +£)+ i{p + q+1)=° •
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Celle-ci étant linéaire aux dérivées partielles du premier
ordre du trinôme p + q + ~ considéré comme nouvelle

fonction inconnue, l'intégrale générale, dans cette dernière
hypothèse, devient:

p + i+ ^ | ï(*+ y).
/' désignant une fonction arbitraire.

Or, l'équation obtenue est, à son tour, linéaire aux dérivées

partielles du premier ordre de la fonction inconnue z. Son

intégrale générale va définir celle de l'équation d'Euler (3), sous
la forme suivante:

* — [/ (x + y) + 9 (* — y)] >

çp étant la seconde fonction inconnue.
Un nouvel exemple est emprunté aux récentes recherches de

la théorie des probabilités, où l'on considère l'équation:

àt2 a à y2 \ a a' àt '

a' et a" désignant respectivement la première et la seconde dérivée

de la fonction donnée a (t), prises par rapport à t.

Les termes de l'équation écrite peuvent être groupés de deux
manières différentes, tout étant mis en une formule:

à /àf a' àf\ af à (àf a' àf\
| J- i =F l 37— 3— ± l V")

àt\àt a ày ] a o y\ot a ày]
dJ± 0.àt a ày J

Par conséquent, l'intégration de l'équation (4) revient à celle

d'un double système:
àf a' àf

T i — ' —

\ ffl a') \
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L'intégration de chacune des équations de la seconde ligne (5)
produit deux valeurs distinctes ux et u2 de la fonction u,
correspondant respectivement aux signes supérieur et inférieur dans

l'équation considérée:

in 2i ^ (y + Hog a) u2 — 2i ~ W (y — £ log a)

O' et Y' désignant deux fonctions arbitraires, les coefficients 2i
et — 2i y étant introduits pour faciliter le calcul qui va suivre.

Cela étant, la fonction / est définie par l'ensemble des deux
équations, en involution, aux dérivées partielles du premier
ordre,

df a' df _ a' _,dï+ 17^ 2i7® (y + ^oga)

y_i__ 2 i — Y'(3/ — Hog a).dt a à y a ^ 01

Il en résulte immédiatement, par une quadrature, l'intégrale
générale requise de l'équation (4) sous la forme très simple:

f <D (y + i log a) + Y (y — i log a)

Revenons à présent à deux autres équations dont on a fait
mention plus haut, dans les dernières lignes de l'introduction,

'j, et que G. Darboux intègre par la méthode de Monge-Ampère.
j Quant à la première de ces équations, celle des surfaces réglées,
\ à plan directeur normal à l'axe des cotes,
I
| q2r — 2pq s + p*t 0 (6)

I

I elle peut être écrite de la manière suivante:

±(L) ±(t)àx\q/ ày\qj
0

àz à z

àx dy

Il s'en suit, donc, la relation:

9 désignant une fonction arbitraire de z.
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En multipliant la dernière relation par q, on obtient une
équation linéaire, dont l'intégrale générale se présente sous la
forme

y + x<p(z) <\>{z)

4» désignant la seconde fonction arbitraire. C'est l'intégrale
générale de l'équation donnée (6).

Il est opportun de faire, à cette occasion, une remarque sur
les surfaces réglées, dont le plan directeur occupe une position
arbitraire quelconque dans l'espace. L'équation aux dérivées

partielles correspondante devient alors:

(B + C?)2 r — 2 (A + Cp) (B + Cq)s + (A + Cp)2 ^0, (7)

les coefficients A, B et C étant constants.
En introduisant la nouvelle fonction inconnue c qui soit liée,

avec l'ancienne, par la relation

v — Ax + By + Cz

l'équation (7) transformée devient:

Ô Ç\2 Ö2 v /ÔP |2 Ö2(^

à y / dx2 dx à y à x S y \àx / Sy2

Elle admet, donc, la forme de l'équation (6).

Enfin, si le plan directeur est parallèle à l'axe des z, l'équation
aux dérivées partielles des surfaces réglées va devenir

B2r — 2 ABs + AH 0 (8)

A et B représentant des coefficients constants.
L'équation (8) peut être écrite

B ^(Bp ~~A?) ~~A ^(B?—A?) 0 •

et s'intègre immédiatement par l'une des méthodes suivantes. Il
est aisé, d'abord, de considérer cette dernière équation comme
linéaire aux dérivées partielles du premier ordre par rapport à

la nouvelle fonction inconnue Bp — Aq.
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Or, d'un autre point de vue, l'équation.considérée est réductible

à un système de Charpit1. Il s'ensuit l'intégrale générale

Bz — xf (Ax + By) + 9 (Ax + By)

où / et 9 représentent deux fonctions arbitraires.
Passons, enfin, à la quatrième équation, celle de la théorie

mécanique de la chaleur, figurant chez Darboux2:

rt — s2 -f a2 0 (9)

a étant un coefficient constant ; elle peut être mise sous la forme
suivante :

^(p ± «-y)^(î * °*) -^(p±t «*) 0 •

Il s'en suit deux intégrales intermédiaires:

j p -f ay 9' (q — ax)

j p — ay (q A ax)
•'•j

J 9' et <]/ désignant les dérivées des deux fonctions arbitraires 9
] et 6.

j L'intégration peut être achevée en partant d'une seule de ces

j intégrales. Prenons, par exemple, la première. Si l'on y introduit
j la nouvelle fonction inconnue :

zx z + axy
' \

1 la première intégrale considérée va devenir:

;i Pi f ' (qi — ïcix)

j Pi h désignant respectivement les dérivées et ^
I Les variables étant séparées, on a l'intégrale complète

j zi — Ya ^ ^ — 2 ag:) + Ci/ + Cx

1 N. Salty ko Wj Equations aux dérivées partielles du second ordre intégrables par
un système de Charpit (Publications mathématiques cle l'Université de Belgrade, t II
1933, p. 66).

N. Saltykow, Equations aux dérivées partielles du second ordre à n variables
indépendantes intégrables par un système de Charpit (Publications mathématiques de
l'Université de Belgrade, t. III, 1934, p. 161).

2 Voir plus haut, p. 133, loc. cit.

L'Enseignement matliérn., 38année, 1939 et 1940. 10
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C et Gx étant deux constantes arbitraires. En formant l'intégrale
générale et revenant à l'ancienne fonction inconnue, on obtient
l'intégrale générale de l'équation considérée (9) sous la forme
d'un ensemble des deux équations suivantes:

z -f axy — 9 (G — 2 ax) -f- Cy + 0 (G)

— Ya (G ~" 2 ax) + y + 6' (G) 0

0 désignant la seconde fonction arbitraire et C étant un paramètre
variable.

Il est aisé, d'une autre manière, de profiter des deux intégrales
intermédiaires obtenues. On pourrait les intégrer simultanément,
au moyen d'une quadrature, si l'on parvenait à tirer la dérivée q

hors de l'argument des fonctions arbitraires h
Certes, on y réussit aisément, grâce à la transformation de

Legendre, en prenant q pour nouvelle variable indépendante
que l'on désignera par Y. En revenant, après la quadrature
effectuée, aux anciennes variables, on obtient l'intégrale cherchée

sous la forme d'un ensemble de deux équations:

z yY+ h,^(Y+ ax)~9(Y — '

2ay q/ (Y — ax) — <]/ (Y + ax)

où Y figure à titre de paramètre variable. On voit aisément que
cette dernière intégrale se transforme en la précédente, par une
transformation convenable du paramètre variable.

Prenons, comme nouvel exemple, l'équation de E. Goursat,
concernant la transformation des surfaces 2 :

Xpt + rt — .s2 0 (10)

X désignant une fonction quelconque de la variable x.

1 N. Saltykow, Application des transformations de contact à l'intégration des

équations aux dérivées partielles (Bulletin de l'Académie royale serbe. A. Sciences
mathématiques et physiques, n° 3, Belgrade, 1936, p. 41).

2 American Journal of Mathematics, vol. XIV, et Cours d'Analyse, 4me éd., t. III,
Paris, 1927, « Exercices », p. 88. La fonction X y est remplacée par /' (x).
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En posant
SP* f Xdx

X - x • x - '

l'équation de E. Goursat (10) devient

(X'p + Xr) t — s X s 0

et peut être écrite de la manière suivante :

à (Xp) àq d q à (Xp) ^
dy àx ày

Il s'ensuit l'intégrale intermédiaire:

Xp 9 (q)

9 étant une fonction arbitraire.
Or, cette dernière équation est aux dérivées partielles du

premier ordre, les variables étant séparées.
Par conséquent, l'intégrale générale de l'équation (10) devient

^ cp(C) ©(s) + Cy+ d»(C)

9'(C)0(ä) + y + <]/(C) - 0

désignant la seconde fonction arbitraire, G étant le paramètre
variable, et la fonction &(%) s'exprimant en X de la manière
suivante :

©(sc) je~fxdx dx

La nouvelle équation que nous allons étudier, est celle que
M. A. Demoulin a bien voulu me proposer d'intégrer:

rt — s2 + 9 (z) (p2t — Zpqs + q2r) 0 (11)

après en avoir obtenu l'intégrale générale, grâce à des considérations

géométriques.
Pour résoudre l'équation proposée, remarquons que l'on a les

identités évidentes:

rt - -£ A.l±\
à x dy\p/ ô y dx\p

pH_2pqs + fr^
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Par conséquent, l'équation (11), grâce à la réduction des

termes, s'écrit de la manière suivante:

\z+9(a) p2] ïy{j)-\z+= ° •

Cela étant, divisons par p les expressions qui se trouvent
entre crochets, ainsi que le second membre de cette dernière
équation, et posons, ensuite,

efcp(z)dz ^ z ^

L'équation étudiée devient alors:

Il s'ensuit l'intégrale de cette dernière équation sous la forme:

/ désignant une fonction arbitraire de

Or, cette dernière équation aux dérivées partielles du premier
ordre appartient au type des équations de Lagrange, dont
l'intégrale complète s'obtient, en joignant l'intégrale des

caractéristiques ~ C, C désignant une constante arbitraire.

Il s'en suit, donc, l'intégrale générale de l'équation (11) sous
forme de l'ensemble des deux équations:

jVdz/(C) (x+ Cy) <HG} »

/(G )y+ /'(C) (x + Cy) + ^'(C) 0

/ ettj; désignant deux fonctions arbitraires, C étant un paramètre
auxiliaire variable.

Il est aisé d'intégrer beaucoup d'autres équations, grâce aux
procédés du groupement des termes.
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Considérons, de ce fait, les quatre types d'équations suivants:

r — t + 9 (z) (p + q) f (p — q) 0 (12)

r — t + f(x, y, p — q) =0 (13)

r + 2s + t + 9 [z)f(p + q) 0 (14)

r + 2$ + t + f(x, y p + q) =0 (15)

les fonctions 9 et / admettant des expressions quelconques.
M. A. Demoulin m'avait communiqué une méthode directe

d'intégration de l'équation (12) dans le cas, où f(p — q) p — q,

et de l'équation (14) dans le cas, où f(p --f1 q) (p + q)2.

Or, pour intégrer l'équation (12), dans l'hypothèse la plus
générale, retranchons et ajoutons la variable s au premier
membre de l'équation étudiée (12).

Elle pourra, alors, s'écrire sous la forme suivante:

fï^Tq) + ?(Z)(P + ° *

En y introduisant les désignations:

/flf_gj — 1)'J

la dernière équation va devenir:

^[® (p - i)+ Z] + ^ [®(P- q)+ Z] - 0

L'intégration de l'équation obtenue, linéaire et du premier
ordre par rapport aux dérivées partielles de la fonction qui se
trouve entre crochets, donne l'intégrale générale première de
l'équation (12):

® (P —+ Z T (y— x),(16)

T désignant une fonction arbitraire.
Si l'on introduit deux nouvelles variables indépendantes E,

et 7) liées avec les anciennes par les relations:

y — x Z, V + X7) (17)
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l'équation (16) prend la forme d'une équation différentielle
ordinaire :

<D (-2 K> + 2 -
L'intégration de cette dernière équation dépendra de la forme

des fonctions O et Z. Son intégrale générale contiendra, au lieu
de la constante arbitraire, une fonction arbitraire de la variable 73.

On en tirera l'intégrale générale de l'équation étudiée (12), au

moyen de la transformation inverse des variables.
Quant à l'équation (13), on la mettra, ainsi que la précédente,

sous la forme suivante:

~ (p — q) + (p q) + f(x, y p — q) =0 (18)

C'est une équation linéaire, par rapport au binôme p — q,

dont l'intégration dépendra de celle d'une équation différentielle
ordinaire formée au moyen de la fonction /. Il restera, enfin, à

intégrer une seconde équation linéaire aux dérivées partielles du
premier ordre, pour en tirer l'intégrale générale de l'équation
donnée (13).

Passons à présent aux deux dernières équations (14) et (15).
On écrira aisément l'équation (14) de la manière suivante:

nrtT)[<£(/) + q)+ è(p + 3il+ 0 •

Cette dernière équation peut être mise sous la forme:

L [U(p + g) +Z] + ^ [U(p + + Z] 0 (19)

où les fonctions U et Z sont définies respectivement par les

quadratures :

ui„ +,) - f-p+,'p+p,ri2 -/»M* •

Cela étant, on obtient, intégrant l'équation (19), l'intégrale
générale première de l'équation (14) sous la forme:

U (p + q) + Z Y (y + x) (20)

T étant une fonction arbitraire.
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La transformation de variables indépendantes, au moyen des

| formules (17), réduit l'équation (19) à la suivante:

i U(2^) + Z 1F(5) '

{ L'équation obtenue est aux différentielles ordinaires, dont
j l'intégration dépend de la forme des fonctions U et Z. L'intégrale
j générale de cette dernière équation devra impliquer, au lieu
j d'une constante arbitraire, une nouvelle fonction arbitraire
j de On en tirera, au moyen de la transformation inverse des

j variables, l'intégrale générale de l'équation étudiée (14).
j La dernière équation (15) va s'écrire de la manière suivante:

j §~x(p + q) + + q) + / (s, y, p + g) 0

Or, cette dernière équation va être intégrée d'une manière
i analogue à l'équation (18).

i V. — Intégrations de quelques équations usuelles
j DU SECOND ORDRE.

I Citons maintenant plusieurs équations, dont l'intégration est
exposée dans maints traités de Goursat, de Forsyth, de Piaggio,

i ainsi que chez d'autres auteurs.
Considérons, en premier lieu, l'équation (Goursat, Cours

j d'Analyse, 4me éd., t. III, Paris, 1927. Exercices, p. 88):

j x2r + 2 xys + y%t 0 (1)
|

En groupant les termes de cette équation (1), on va l'écrire

Ô
/

Ô

x dx ^Xp + yq) + y ày
^xp + yq)j XP + yq -

L intégrale générale de cette dernière équation aux dérivées
partielles du premier ordre, par rapport au binôme xp +
se présente sous la forme:

xp + yq
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f désignant la fonction arbitraire. L'intégrale générale de cette
dernière équation

9 étant une seconde fonction arbitraire, représente bien l'intégrale

générale de l'équation (1).

L'équation (Goursat, ibid.):

xyr + (.x2 + y2) s + xy t — yp — xq 0 (2)

s'écrit immédiatement ainsi:

y êx ^xp + yq ~~2zj + êy ^p + yq —2z) 0 -

Il s'ensuit, donc, l'intégrale générale requise de l'équation (2)

z — (yï — x2) / + 9 (V2 X<2) s

/ et 9 étant les fonctions arbitraires.
L'équation du problème connu d'Ossian Bonnet:

x2r — y2t ~ 0 (3)

s'écrit aisément de la manière suivante:

&(xP + y$ ~z) ~y^(xP + yy z) 0 •

On a par conséquent l'intégrale générale de l'équation (3)

sous la forme :

s f(xy) + i

/ et 9 désignant deux fonctions arbitraires.
L'équation de J. Bertrand:

x2r + 2 xys + y2t + %p + yq ti2z (4)

qui est intégrable par réduction à un système de Gharpit*, est de

i Voir plus haut, p. 145, loc. cit.
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même intégrable, si l'on va grouper ses termes de la manière

suivante :

x {xp + yq + nz) + y ~ (xp + yq + nz) n (xp -f yq + riz)

Il s'ensuit immédiatement l'intégrale générale de l'équation

(4):

* **/(£) + *""*(!)•

/ et cp étant deux fonctions arbitraires.
Considérons, à présent, l'équation

xyzr — yxzt + xsq — y3q — 0 (5)

que l'on mettra sous la forme suivante:

o x\x y J oy \x y J

11 s'ensuit donc que les deux fonctions, x2 + y2 et ~ + ~
x y

sont liées par une relation arbitraire que l'on écrira

P + — - f {A + y2)
x y

f désignant une fonction arbitraire. En intégrant cette dernière
équation, on obtiendra l'intégrale générale de (5)

z — f (x2 + y2) + 9 (x2 — y2)

f et 9 étant deux fonctions arbitraires.
Considérons, enfin, l'équation (Forsyth, Piaggio)

r + y — t + x (6)

ÏI est aisé de l'écrire en groupant ses termes de deux manières
différentes:

r ± s — x ^ (s ± t =j= y\ =0
ou bien

JX
_l rH ± y2\ à x2 ± y2\

v ——)T ±q— =0
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en prenant respectivement, soit les signes supérieurs, soit les

inférieurs.
L'intégration de ces deux équations aux dérivées partielles du

premier ordre produit respectivement deux intégrales premières :

P + q
X

~^y + 2f'(x + y)

/v»2 /t i2

p — q + 2 cp/ (x — y)

f et 9' désignant les dérivées de deux fonctions arbitraires / et 9,
le facteur 2 étant introduit pour simplifier les formules qui vont
suivre.

Ces deux dernières formules donnent les valeurs des dérivées:

/>== Y+ /' + ?' * £ + /W
Il s'ensuit, par quadrature, l'intégrale générale de l'équation

donnée (6):
x^ ~j~

z — — f- / (x 4- y) + 9 (x — y)

à deux fonctions arbitraires / et 9.
Citons encore trois équations du second ordre, dont les coefficients

dépendent des dérivées partielles du premier ordre de la
fonction inconnue:"

z(r — t) p2 — q2 (7)

— 0, (8)

(14- pq Y q2)f + (g2 — P2)s— (1 + p2 + pq)t ~ 0 (9)

L'équation (7) (v. Forsyth, v. VI, p. 219. Ex. 2) appartient
bien au type d'équations (12) citées dans la partie V du présent
Mémoire, équations que M. A. Demoulin avait intégrées.

Or, la même équation (7) pourrait être mise, d'une autre
manière, sous la forme suivante:

A / P + q\ à / p + q\
àx \ z / ày\ z '
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En intégrant cette dernière équation, on. obtient l'intégrale
générale de l'équation (7):

2 f(x + y) • <p (a — y)

/ et 9 étant deux fonctions arbitraires.
Quant à l'équation (8), elle va s'écrire

ôz ô
v

à z à
x

dijÄ.?'/"' d v d
° *

Il s'ensuit donc

PI f(z) i

/ désignant une fonction arbitraire. L'intégrale complète de cette
dernière équation s'obtient, d'après Lagrange, en ajoutant
l'intégrale des caractéristiques

£ C
ç

C étant une constante arbitraire. Par conséquent, l'intégrale
générale de l'équation (8) se représente par l'ensemble des deux
équations suivantes:

f 'm=ve' + wy +

+ <p' (C) 0

vm vc
_£

2 \ 'c 2 X

9 désignant la seconde fonction arbitraire, C jouant le rôle d'un
paramètre variable.

Enfin, la dernière équation (9) citée dans le d'Analyse
de Lacroix, 2me éd., t. II, p. 586, n° 755, va s'écrire

[i + q\p + + — [i + p(p + D]£y(P+ <?) =0 •

Cette dernière équation se met aisément sous la forme
nouvelle:

^[* + v+ *(/> + 1)]£-x(p+ q) - V + Z{P + + î) 0
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dont l'intégrale devient:

m -f y + z(p 4" q) J(p + q) (10)

/ désignant une fonction arbitraire. Pour intégrer l'équation aux
dérivées partielles du premier ordre (10), posons

p + q Xl (il)

L'intégrale complète de cette dernière équation (11), en y
considérant xx comme une constante, devient:

2 (Xl — yx) x + yx y + zx

y1 et z1 désignant deux nouvelles constantes arbitraires. Si l'on
prend cette dernière relation, comme la formule fondamentale
de la transformation de contact1, l'équation (10) transformée
prend la forme suivante, en considérant z, comme nouvelle
fonction inconnue de nouvelles variables indépendantes x1 et yx:

(x\ + 2) Pi + (Xii/i + 1)^1 ^1% — f(x1)

ô z
Pi el désignant respectivement les nouvelles dérivées ^ et
ô z

L'intégrale générale de cette dernière équation admet la

forme évidente:

z I/V+ 2
S /' + J •/i + /

' '/i' I

1
1 î J "(*î + 2)S/2 \Vx\ + 2 J K + 2)3/2J

9 désignant la seconde fonction arbitraire.
Par conséquent, l'intégrale générale de l'équation primitive (9)

s'obtient au moyen de la transformation inverse des variables.

VI. — Généralisation des méthodes exposées.

Euler, en inaugurant les méthodes d'intégration que nous
étudions, avait montré, en même temps, comme on pouvait

i N. Saltykow, Application des transformations de contact à l'intégration des
équations aux dérivées partielles (Bulletin de l'Académie des Sciences math, et natur.
A. Sc. math., n° 3, Belgrade, 1936, p. 41).
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étendre leurs applications, en commençant par l'intégration des

plus simples équations pour passer, ensuite, à celles plus compliquées.

Comme excellent exemple, sous ce rapport, on pourrait
3 reprendre le problème de la corde vibrante à densité variable.
3 Dans ce but, Euler 1 considère l'équation:

t — P2r 0 (1)

P désignant une fonction des variables x et y vérifiant la condition

:

AP-p|P 0. (2)
oy ox

L'équation (1), grâce à cette dernière hypothèse (2), se réduit
immédiatement à une équation linéaire aux dérivées partielles du

premier ordre :

où l'on a posé:

^U-P^ 0, (3)
dy à x

jp+pÈf u. (4)
o y ox

I Ce qui est fort important, c'est que l'intégration du problème
considéré, dans l'hypothèse (2), peut être poussée jusqu'aux

1 quadratures.
j En effet, l'ensemble d'équations (2) et (3) représente un sys-

tème de Charpit2. Formons, pour définir les fonctions P et U,
j le système correspondant d'équations différentielles ordinaires:

dx dP dPJ

j

dy
-p

: T~ô '

;j Ce dernier système admet trois intégrales distinctes suivantes :

ii P Ci U C2 x + Py — C3

I
1 Institutiones Calculi Inlegralis, V, III, p. 193, probl. 49.
2 Voir plus haut, p. 145, loc. cit.
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Cl7 C2 et C3 désignant trois constantes arbitraires. Gela étant,
l'intégrale générale du système de Gharpit (2) — (3) devient:

P 9 M u - i>(<ù) (5)

(0 X + cp (co) ?/ (6)

9 et ^ désignant deux fonctions arbitraires.
Intégrons, à présent, l'équation (4), en y substituant les

expressions (5) de P et de U. Transformons de plus l'équation
(4), en introduisant comme nouvelle variable indépendante co,

au lieu de x. L'équation (4) transformée devient:

r ö © 2cp à0

dy+ i-y9' d co - + ' (7)

0 désignant l'expression de la fonction inconnue 2 qui est exprimée

en nouvelles variables.
L'intégration de cette dernière équation linéaire (7) produit

l'intégrale générale de l'équation donnée (t) sous la forme
suivante :

'

d d(?
+

2q>3/2(./ WÏ->V*)J-.

où d et / désignent deux fonctions arbitraires, co étant le
paramètre variable défini par la relation (6); quant à la fonction
arbitraire cp, elle définit la valeur du coefficient P de l'équation
donnée (1).

Euler 1 donne, comme second exemple, l'équation:

/ ÔP ÔP\
« - Pr + Qq + (PQ + ^ ~ P Tx)p - 0 (8)

P et Q désignant des fonctions quelconques de x et de y.
On met aisément l'équation considérée (8) sous la forme

suivante :

ôrJ-p7r + QU 0
> (9)

dy dx

i Ibid., p. 202, probl. 50.
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en posant

|i + P|5ŒU. do)
dy ox

Le problème de l'intégration de l'équation donnée (8) revient
donc à celle de l'équation (9) pour définir, d'abord, la valeur de

la fonction U et, ensuite, à l'intégration de l'équation (10) qui
donne l'intégrale générale requise.

Les problèmes cités représentent une introduction à l'œuvre
de Legendre sur l'intégration d'équations linéaires aux dérivées

partielles du second ordre à une fonction inconnue, dont les
coefficients ne dépendent que des variables indépendantes. Cette
dernière théorie est une généralisation de l'élégante méthode de

Laplace pour intégrer les équations hyperboliques. On sait
maintenant que toutes ces recherches simplifient et unifient, en
même temps, la méthode de G. Monge et celle de G. Darboux
intégrant les équations linéaires en question L

Il se pose donc, à présent, un nouveau problème de généralisation

concernant la recherche d'une méthode qui suppléerait
celles de G. Monge et de G. Darboux pour les équations linéaires
de la forme générale.

i N. Saltykow, Note sur la méthode de Legendre pour intégrer les équations linéaires
aux dérivées partielles du second ordre (Travaux du Deuxième Congrès des Mathématiciens

slaves. Prague, septembre 1934).
N. Saltykow, Théorie des équations linéaires aux dérivées partielles du second ordre

à une fonction inconnue (Bulletin de l'Acad. des Sc. math, et natur. A. Sciences
mathématiques et physiques, n° 2. Belgrade, 1935).
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