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METHODES IMMEDIATES D’INTEGRATION
D’EQUATIONS AUX DERIVEES PARTIELLES
DU SECOND ORDRE!?

PAR

N. Savrykow (Belgrade).

INTRODUCTION.

On exposera, dans les lignes qui vont suivre, quelques consi-
dérations concernant I’enseignement de la théorie des équations
aux dérivées partielles du second ordre.

Il s’agit précisément des procédés intuitifs d’intégration. Les
questions analogues se posent toujours, lorsque I'on aborde
I’étude d’une classe quelconque d’équations différentielles. (est,
de cette maniére que les méthodes d’intégration connues ont
pris ordinairement leur naissance.

Nous appelerons méthodes tmmédiates les procédés qui per-
mettraient d’obtenir les intégrales des équations considérées,
aux dérivées partielles du second ordre, en mettant ces derniéres
sous une forme, dont l'intégration est évidente, comme, par
exemple, la forme d’une dérivée exacte. On y réussit souvent, en
groupant convenablement les termes des équations considérées,
ou gréce a la transformation des variables, ou encore par diffé-
rentiation.

1 Le sujet de ce travail représente une revision des principes exposés par ’auteur,
comme introduction, dans les conférences Sur les Méthodes d’intégration des équalions
aux dérivées partielles du second ordre professées, ces derniéres années, dans les Universités
belges sous les auspices de la Fondation universilaire de Belgique. Les résultats de ces
recherches furent présentées A la séance de I’Académie Royale Serbe des Sciences, le
25 septembre 1939.
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Le Traité de Calcul intégral ’EULER représente jusqu’au-
jourd’hui une ccuvre modéle sur ce genre d’études, méme en
prenant en considération les progrés énormes acquis par la
Science moderne.

Or, tandis que les méthodes immédiates d’intégration sont
exposées, dés le début, dans les traités d’équations différentielles
ordinaires, on ne s’en occupe presque pas dans la théorie d’équa-
tions aux dérivées partielles, surtout du second ordre. Ces
] méthodes n’y sont pas favorisées. En effet, la fécondité d’une
4 nouvelle méthode quelconque que l'on introduit, en Mathé-
matiques, est prouvé par des applications aux exemples. On
choisit ces derniers de telle maniére que l’application, aux
mémes exemples, d’autres méthodes ne produise pas de bons
résultats. Quant aux équations aux dérivées partielles du second
ordre, ce n’est pas toujours le cas.

Citons, par exemple, ’excellente exposition de la méthode de
Monge-Ampére donnée par G. DarBoux !. Elle est suivie de
quatre exemples que I'on expose ordinairement dans ce but:
Péquation des surfaces développables, celle des surfaces aux
lignes de courbure planes, des surfaces réglées a plan directeur
. et I’équation de la théorie mécanique de la chaleur.

Cependant tous ces problémes admettent une solution immé-
diate la plus élémentaire. Les solutions de deux premiers pro-
blémes se trouvent respectivement dans le Traité d’Analyse de
M. E. Prcarp (T. I, 1891, p. 296) et dans le Cours d’ Analyse de
G. Humsert (T. II, 1904, p. 471). Les deux autres équations
mentionnées seront intégrées plus loin, au chapitre IV.

A présent exposons, pour fixer les idées, plusieurs procédés
d’intégration immédiate.

4

4

Bl

I. — REDUCTION AUX EQUATIONS DIFFERENTIELLES
ORDINAIRES.

Considérons, d’abord, les équations ne contenant qu’une paire
de dérivées qui soient prises par rapport 4 une seule et méme
variable indépendante, & savoir p et r, ou ¢ et ¢, en conservant

1 Legons sur la Théorie des surfaces. Troisiéme partie. Paris, 1894, p. 273, no 7186.
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les désignations habituelles des dérivées du premier et du second
ordre. Par conséquent, les équations dont il s’agit, se présentent
sous I'une de deux formes générales suivantes:

Flz,y,z,p,7r) =0, (1)
O, y,z,q,17) =0. (2)

L’équation (1) peut donc s’écrire:

0z 02z
F(x,y, z, 52 B_xi)— 0.

On intégre cette derniére équation comme une équation aux
différentielles ordinaires & une fonction inconnue z d’une variable
indépendante x, considérant y au titre d’un parameétre constant;
mais, en revanche, les constantes arbitraires de I’intégrale
générale de cette derniére équation doivent étre remplacées par
deux fonctions arbitraires de y.

D’une maniére analogue, dans la seconde équation (2), la
variable x est considérée au titre d’un paramétre constant.
Quant a l'intégrale générale de I’équation en question (2), elle
dépendra de deux fonctions arbitraires de x.

Un autre type d’équations aux dérivées partielles du second
ordre intégrables, par un procédé analogue, se met sous I'une de
deux formes suivantes:

Flx,y,p,s) =0, (3)
- Pz, y, 9,5 = 0. (4)

Les équations (3) et (4) ne contiennent point explicitement
la fonction inconnue z; mais, outre la seule dérivée mixte du
second ordre s, chacune des équations n’admet que 1'une des
dérivées du premier ordre p ou g.

(C’est par rapport & ces dernieres dérivées que les équations
étudiées deviennent aux différenciations ordinaires du premier
ordre. En effet, les équations (3) et (4) peuvent étre mises res-
pectivement sous la forme suivante:

/

d
F(x, Y, p, —a—g)

)
<D(x, v, q,a—i)

|

(o)

I
<
=
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L’équation (5) est donc différentielle ordinaire du premier
ordre par rapport a la fonction inconnue p de la variable indé-
pendante y, en traitant z comme une constante. L’intégrale
générale de I'équation (5) va s’écrire, par conséquent, de la
maniere suivante:

fle,y, p, X) =0, (7)

X désignant une fonction arbitraire de x, qui s’introduit, au
lieu d’une constante arbitraire d’intégration.

L’équation obtenue (7) est encore différentielle ordinaire du
premier ordre par rapport a la fonction inconnue z, car on a

la variable y est, & présent, & considérer comme une valeur
constante. Supposons que 1’on obtienne, en résolvant I'équa-
tion (7) par rapport a p:

p=0(, X,y . (8)

Gréace & I’hypothése introduite par rapport a y, ’équation (8)
donne, par quadrature, I'intégrale générale de I’équation (3)

= [0(z, X, y)0z+ Y,

ou Y est la seconde fonction arbitraire qui ne dépend que de y.

La seconde équation (6) va s’intégrer d’une maniére ana-
logue; et I'intégrale générale de 1’équation (4) impliquera deux
fonctions arbitraires, dont la premiére ne contient que y et la
seconde sera une fonction de la variable z.

II. — REDUCTION AUX EQUATIONS AUX DERIVEES PARTIELLES
DU PREMIER ORDRE,

Considérons, d’abord, les équations de la forme suivante:

F(x7y?p)r,s):0) (1)
D(x,y,q,s,0 =0. 2)
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Chacune de ces équations se met immédiatement sous la
forme d’une équation aux dérivées partielles du premier ordre.
En effet, on les écrit aisément de la maniére suivante:

0 0

F(xayapaa_ia O_y/Z—)):O’ (3)
0 0

(D(:c,y, Q,G_Z, a?,):o- (,*)

Un cas trés simple se présente, par exemple, si les équations
données (1) et (2) sont respectivement linéaires par rapport aux
dérivées partielles du second ordre. Les équations (3) et (4) sont

e e . A , e, op Op

alors linéaires respectivement par rapport aux dérivées ——, By’
: . . 0gq Og¢q
ou bien par rapport a 5, YR

Si 'on suppose, par exemple, que ’équation (3) soit linéaire,
son intégrale générale va devenir:

p=ulz,y) + ooz, v], (5)

o désignant une fonction arbitraire et u, ¢ admettant des
valeurs bien déterminées.

I’équation (b) produit I'intégrale générale requise, au moyen
d’une quadrature partielle par rapport & la variable x:

2= [{ule, ) + o[ole, w)]}oa + Y,

Y désignant une fonction arbitraire de la variable indépen-
dante y.

On trouve, chez E. Goursat, deux autres cas d’équations qui
jouissent des propriétés analogues et se présentent sous les
formes suivantes: |

F(x,z, ,r,—s—>:0, 6]
p p (6)

(D(,z, ,i,t>=0. 7
Yy 5 (7)

En cherchant la solution de I’équation (6) sous la forme

p = wulz, 3,
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on transforme I’équation (6) en une équation aux dérivées

. . ,ox x 0 0 s

partielles du premier ordre par rapport aux dérivées b—% et a—g , &
savoir:

ow ow Op,)
ot 0. ,
F( N e T

Quant & ’équation (7), en y posant

g = Ay, 3,
elle va devenir une équation aux dérivées partielles du premier
ordre par rapport a o et a or,
p pPp Y 57"
OA OA oA
q)(y,z,).,é—z,@‘{—a'—z?\)——-().
III. — REDUCTION AUX EQUATIONS REPRESENTANT

DES DERIVEES EXACTES.

Considérons, par exemple, I’équation bien connue d’Ampere *:
z
zs—}-q?t—}—pq:(). (1)
Elle s’écrit aisément sous la forme évidente:

i) +i-
éyp q

Intégrant cette derniére équation, on obtient une équation
aux dérivées partielles du premier ordre:

ZP—§+y=X, (2)

ou X désigne une fonction arbitraire de la variable z.

Il serait avantageux, pour intégrer ’équation (2), d’y intro-
duire la nouvelle fonction inconnue z, = z2. L’équation (2)
va devenir

pl 4q21 + 2 2X 3

1 G.V.IMSCHENETSKY, Etude sur les Méthodes d’ Intégratzon des équations aux derwees
bartielles du second ordre. Paris, 1872, p. 149 (n° 143).
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0
__El_et

ox
Ej' Cette derniére équation admet I'intégrale des caractéris-

P1 et ¢, désignant respectivement les dérivées partielles

tiques:
¢ = 22+ ¢,

¢, étant une constante arbitraire. On représente, au moyen
d’une quadrature, l'intégrale générale de 1’équation (1), par
Pensemble de deux équations:

Xd 1
2 = 22 + )y + (22 — ¢;)? [2 /1_(230;—_—”—960 E +- cp(cl)J ,
¢ 1
. 4 Xdzx
Y+ 22z + ¢ |2.// Bz + o)f + CP(Cl)] +
) Xd
+ ot al|ofle) = [ g ] = 0

@ désignant la seconde fonction arbitraire du parameétre va-
riable ¢ .
Citons comme second exemple 1’équation de E. Goursat:

s = o(z)pq , (3)

la fonction ¢ étant quelconque. Cette derniére équation repré-
sente bien une dérivée exacte:

;—y[logp——./‘cp(z)dz] = 0.

Il s’ensuit, au moyen de deux quadratures consécutives, 1'in-
tégrale générale de I’équation donnée (3):

fe_f:p(z)dzdz = X+Y,

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

L’équation (3) avait été généralisée par M. A. Demoulin de la
maniére suivante:
f'(2)

$= iy Pe AT Y, (%)

les fonctions f(z) et F (z, y) étant quelconques !.

1 M. A. DEMoULIN avait donné cette derniére ¢quation au Bul. de la Société math. de
France, t. XXI (1893), en considérant au lieu de F(x, y) un polynéme des produits
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Il s’ensuit immeédiatement

;-[L] = F(z, vy) .

N

On obtient d’ici, au moyen de deux quadratures consécutives,
Pintégrale générale requise:

fj%:fafo(x,y‘;ay+X+Y,

X et Y désignant respectivement des fonctions arbitraires de x
et de y.

On trouve, a la page 88 du tome III du Cours d’Analyse
mathématique de Goursat (4™e éd., Paris, 1927), parmi les exer-
cices, I’équation:

s = pg+ &flx, y) . (5)

Cette derniere équation peut étre traitée par la méthode
exposée, car on a:

’
G

S=Ea gt e, y)

%)

- Il s’en suit, en effet, I'intégrale générale requise de I’équa-
- tion (5):

e ? —{—féxff(x, y)oy + X 4+ Y = 0.
Intégrons, enfin, ’équation de M. Gau:
s = (*+¢eFp . : (6)
Elle est réductible & la différentielle exacte, comme il suit:

sala— [ 1€ + a0 .

En intégrant cette derniére équation, on obtient:

O——Z:eZ——e—z—{-Y ,
oy .
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Y désignant une fonction arbitraire de la variable y. Si I'on y
introduit, au lieu de z, la nouvelle fonction inconnue u = ¢?,
cette derniére équation devient ordinaire du type eulérien:

— = u? 4+ Yu—1.

6 désignant la nouvelle fonction arbitraire de y, I’équation
considérée admettra la solution particuliére 0.

Cela étant, I'intégrale générale de I’équation (6) de M. Gau
sera définie par 'ensemble des deux équations suivantes:

& = 0 — ﬁXﬁX—Tl—;Y’
I

6 et X désignant deux fonctions arbitraires respectivement de
y et de x.

IV. — REDpUCTION D’EQUATIONS AUX FORMES INTEGRABLES
PAR.GROUPEMENT DES TERMES.

Il s’agit, dans les lignes qui vont suivre, de transformer les
équations données aux dérivées partielles du second ordre en
d’autres équations qui soient intégrables, en groupant d’une
maniére convenable les termes d’équations données.

Pour expliquer l'idée de ce procédé, intégrons, d’abord,
I’équation classique de la corde vibrante:

r—a?*t = 0, (1)

a désignant une constante arbitraire.
Ajoutons et retranchons le terme as au premier membre de
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I’équation étudiée (1). Elle va immédiatement prendre I'une des
deux formes suivantes:

d d
ﬁ(piaq)qiag&(piaq) =0,

correspondant I'une aux signes supérieurs, et I'autre & ceux qui
sont inférieurs. Chacune des deux équations obtenues est linéaire
aux dérivées partielles du premier ordre par rapport au binéme
p =+ ag, considéré comme nouvelle fonction inconnue.

Cela étant, on mettra leurs intégrales générales respectivement
sous les formes suivantes:

p+ ag=2af (y + az),
p—oaqg=2a9’ (y — ax) ,

(2)

[ et ¢ désignant les dérivées des fonctions arbitraires de leurs
arguments; quant au facteur constant 2a, on I'introduit pour
simplifier le calcul qui va suivre.

Il suffit de 'une des deux équations intégrales obtenues (2)
pour achever l'intégration de I’équation étudiée (1). En effet,
chacune d’elles est linéaire aux dérivées partielles du premier
ordre de la fonction inconnue z.

En intégrant, par exemple, la premiére équation (2), on obtient
I'intégrale générale requise:

z=fy + az) + ¢y —aa) ,

f et ¢ étant deux fonctions arbitraires de leurs arguments.

Or, comme les deux équations (2) sont compatibles, définis-
sant les dérivées p et ¢ de la méme fonction z, cette derniére
pourrait étre définie, d’une autre maniére encore, au moyen
de Plintégration de la différentielle totale correspondante:
dz = pdx + qdy.

Comme second exemple citons I'équation classique d’Euler

r———t+2—xR=0. (3)

I est aisé, en groupant les termes de cette derniére équation,
de I’écrire de la maniére suivante:

_6_ 4 0 z 1 4
dx<p+q+;>——@<p+q+—a;>+j,;<p+q+;>=0-

-
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Celle-ci étant linéaire aux dérivées partielles du premier
. A Z » ’ 7
ordre du trindéme p + ¢ + —, considéré comme nouvelle

fonction inconnue, l'intégrale générale, dans cette derniere
hypothese, devient:

2/
p+q+§:;]‘(x+y),

f" désignant une fonction arbitraire.

Or, I’équation obtenue est, & son tour, linéaire aux dérivées
partielles du premier ordre de la fonction inconnue z. Son
intégrale générale va définir celle de ’équation d’Euler (3), sous
la forme suivante:

s=[ile+y +ol—u],

¢ étant la seconde fonction inconnue.
Un nouvel exemple est emprunté aux récentes recherches de
la théorie des probabilités, ol I'on considére 1’équation:

0%f  a’? 0*f a’ a”\ of 0
a a’

32 T a 042 or (%)

a’ et a” désignant respectivement la premiére et la seconde déri-
vée de la fonction donnée a (¢), prises par rapport & {.

Les termes de I’6quation écrite peuvent étre groupés de deux
maniéres différentes, tout étant mis en une formule:

e (o0, o0
o o) \3: a 0y/)

Par conséquent, I'intégration de I’équation (4) revient & celle

d’un double systeme:
== F i LIS u
a 0y ’
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L’intégration de chacune des équations de la seconde ligne (5)
produit deux valeurs distinctes u, et u, de la fonction u, corres-
pondant respectivement aux signes supérieur et inférieur dans
I’équation considérée:

Vi ’

u1=2i%¢>'(y+iloga) , u2=—2i—‘;—‘F’(y—iloga) ,

O’ et W' désignant deux fonctions arbitraires, les coefficients 2t
et — 21 y étant introduits pour faciliter le calcul qui va suivre.

Cela étant, la fonction f est définie par ’ensemble des deux
equations, en involution, aux dérivées partielles du premier
ordre,

of  .a" of _.a _, .
67_}_1—5 _y_zz ” @ (y + i log a) ,
of .a’ of N A .
__t.__z,-—aﬁ——?l-/-._—Zl,—;lF(y——-LlOga).

Il en résulte immédiatement, par une quadrature, I'intégrale
génerale requise de I’équation (4) sous la forme trés simple:

f=®(y + tloga) + ¥(y —iloga) .

Revenons a présent & deux autres équations dont on a fait
mention plus haut, dans les derniéres lignes de l'introduction,
et que G. Darboux intégre par la méthode de Monge-Ampére.

Quant & la premiere de ces équations, celle des surfaces réglées,
& plan directeur normal & ’axe des cotes,

¢#r—2pgs + p*t =0, ' (6)
1 elle peut étre écrite de la maniére suivante:

wla)  als)

03 03
4z 3y

= 0.

Il s’en suit, donc, la relation:

i ¢ (3)

8 ¢ désignant une fonction arbitraire de z.
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En multipliant la derniére relation par ¢, on obtient une
équation linéaire, dont l'intégrale générale se présente sous la
forme

y + zo(z) = ¢(9 ,

¢ désignant la seconde fonction arbitraire. C’est 1'intégrale
générale de I’équation donnée (6).

Il est opportun de faire, & cette occasion, une remarque sur
les surfaces réglées, dont le plan directeur occupe une position
arbitraire quelconque dans I’espace. L’équation aux dérivées
partielles correspondante devient alors:

(B + Cg)Pr—2(A+ Cp)(B + Cg)s + (A + Cp)?t =0, (7)

les coefficients A, B et C étant constants.
En introduisant la nouvelle fonction inconnue ¢ qui soit liée,
avec I'ancienne, par la relation

9o = Az + By + Cz ,

I’équation (7) transformée devient:

<60)2020 Odp 0p 02%¢ (602620_0

5y) 022 Loz ogonsy T\oz) 57

Elle admet, donec, la forme de I’équation (6).
Enfin, si le plan directeur est parallele & ’axe des z, I’équation
aux dérivées partielles des surfaces réglées va devenir

B%r — 2ABs + A% =0 , (8)

A et B représentant des coeflicients constants.
L’équation (8) peut étre écrite

d d -
B 5z Br—Ag — A (Bp—Ag =0,

et s’intégre immédiatement par 'une des méthodes suivantes. Il
est aisé, d’abord, de considérer cette derniére équation comme
linéaire aux dérivées partielles du premier ordre par rapport a
la nouvelle fonction inconnue Bp — Ag.
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Or, d’un autre point de vue, I’équation considérée est réduc-
tible & un systéme de Charpit *. 11 s’ensuit l'intégrale générale

Bz = af (Az + By) + ¢ (Az + By) ,

ou | et ¢ représentent deux fonctions arbitraires.
Passons, enfin, a la quatriéme équation, celle de la théorie
mécanique de la chaleur, figurant chez Darboux 2:

rt—s2 4+ a2=20, (9)

a étant un coefficient constant; elle peut étre mise sous la forme
suivante:
0 0 0

0
55lP & ). 5l F aa) — 5o (p = ay) gole T aa) =0

Il s’en suit deux intégrales intermédiaires:

p+ ay = o' (¢ — ax) ,
p—ay =4y (¢ + ax) ,

o' et ¢" désignant les dérivées des deux fonctions arbitraires o
et v

I mtegratlon peut étre achevée en partant d’une seule de ces
intégrales. Prenons, par exemple, la premiére. Si 'on y introduit
la nouvelle fonction inconnue:

Z, = 2 + axy ,

la premiere intégrale considérée va devenir:

’

1= ¢ (¢ — 2ax) ,

0
p, et ¢, désignant respectivement les dérivées %—~ et '21 :
Les variables étant séparées, on a 'intégrale compléte

21:—-—

L N. Sarrykow, Equations aux dérivées partielles du second ordre intégrables par
un systeme de Charpit (Publications mathématiques de I’ Université de Belgrade t. 11,
1933, p. 686).

N. Sarryrow, Equations aux deérivées partielles du second ordre & n variables indeé-
pendantes mtécrables par un systéme de Charpit (Publications mathématiques de
U Université de Belgrade, t. 111, 1934, p. 161).

2 Voir plus haut, p. 133, loc. cit.

I’ TEnseignement mathém., 38me année, 1939 et 1940. 10
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C et C; étant deux constantes arbitraires. En formant l'intégrale
générale et revenant a I’ancienne fonction inconnue, on obtient
Pintégrale générale de I’équation considérée (9) sous la forme
d’un ensemble des deux équations suivantes:

1
z+axy:—%<p((]~—2ax)+(]y+6((]),
1, , .

— g, ¢ (G—2az) +y 4+ 67(C) =0,

0 désignant la seconde fonction arbitraire et C étant un parameétre
variable.

Il est aisé, d’une autre maniére, de profiter des deux intégrales
intermédiaires obtenues. On pourrait les intégrer simultanément,
au moyen d’une quadrature, si 'on parvenait a tirer la dérivée ¢
hors de ’argument des fonctions arbitraires *.

Certes, on y réussit aisément, grice a la transformation de
Legendre, en prenant ¢ pour nouvelle variable indépendante
que I'on désignera par Y. En revenant, aprés la quadrature
effectuée, aux anciennes variables, on obtient I'intégrale cherchée
sous la forme d’un ensemble de deux équations:

Z:yY+2ia[¢(Y+ax)——<p(Y—ax)], a

2ay = ¢’ (Y — ax) — ¢' (Y + az) ,

ot Y figure a titre de parametre variable. On voit aisément que
cette derniére intégrale se transforme en la précédente, par une
transformation convenable du parameétre variable.

Prenons, comme nouvel exemple, ’équation de E. Goursat,
concernant la transformation des surfaces 2:

Xpt + rt—s2 =10, (10)

X désignant une fonction quelconque de la variable .

1 N. SarLTyxow, Application des transformations de contact & Dl'intégration des
équations aux dérivées partielles (Bulletin de I’ Académie royale serbe. A. Sciences mathe-
matiques et physiques, n° 3, Belgrade, 1936, p. 41).

2 American Journal of Mathematics, vol. XIV, et Cours d’Analyse, 4™e éd., t. I1I,
Paris, 1927, « Exercices », p. 88. La fonction X y est remplacée par [ (x).
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En posant
{7 j S Xdx
X == TC' 5 L‘Q/ — € )

I’équation de E. Goursat (10) devient
&p+Xr)t—s.L.s=0
et peut étre écrite de la maniere suivante:

0 (Zp) gg__b_gb(tbip)zo.
dxz "0y Ox Oy

[l s’ensuit Pintégrale intermédiaire:
Tp =olq) ,

o étant une fonction arbitraire.

Or, cette derniére équation est aux dérivées partielles du
premier ordre, les variables étant séparées.

Par conséquent, 'intégrale générale de I’équation (10) devient

z = @(C)O) + Cy + () ,
¢’ (C) Ofx) +y + ¢'(C) = 0,
J désignant la seconde fonction arbitraire, C étant le paramétre

variable, et la fonction © (z) s’exprimant en X de la maniere
suivante:

O (a) = J}fde iz .
La nouvelle équation que nous allons étudier, est celle que
M. A. Demoulin a bien voulu me proposer d’intégrer:
1t — s* + @(z) (PPt — 2pgs + ¢*r) = 0, (11)

aprés en avoir obtenu l'intégrale générale, grace a des considé-
rations géométriques.

Pour résoudre I’équation proposée, remarquons que l'on a les
identités évidentes:

Op 0 (¢ O0p 0 (¢
it o2 — sy e A
S ﬁp[éxby(p> yéx([D) ’

N d |
p*t— 2pgs + ¢°r = P“[P@(%) ~q@(—%—)J -
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Par conséquent, I'équation (11), grace & la réduction des
termes, s’écrit de la maniére suivante:

op . 0 q) op 0 ( ‘
el o2l (LY 2P ; A I
[bx * CP(ZW}O@/(ﬂ [Oy | cP(z)quéx \p,) =0

Cela étant, divisons par p les expressions qui se trouvent
entre crochets, ainsi que le second membre de cette derniére
équation, et posons, ensuite,

el dz 7.

L’équation étudiée devient alors:

\

d d "q) d o g\
e P55 () — 5y e r i () =0

Il s’ensuit I'intégrale de cette derniére équation sous la forme:

i),

f désignant une fonction arbitraire de %

Or, cette derniére équation aux dérivées partielles du premier
ordre appartient au type des équations de Lagrange, dont I'in-
tégrale complete s’obtient, en joignant l'intégrale des caracté-

ristiques —g~ = (, G désignant une constante arbitraire.

Il s’en suit, donc, I'intégrale générale de I’équation (11) sous
forme de I'ensemble des deux équations:

(/2@ 4 — §(C) (w + Cy) + $1C)
f(Cy + 7(C) (z + Cy) + $7(C) =0,
f ety désignant deux fonctions arbitraires, C étant un parameéetre
auxiliaire variable.

Il est aisé d’intégrer beaucoup d’autres équations, grice aux
procédés du groupement des termes.
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Considérons, de ce fait, les quatre types d’équations suivants:

r—t+ o +aflp—qg =0, (12)
Pt ey, p—q) =0, (13)
r+2s+t+ 9@ flp+q =0, (14)
r+2s+t+flz,y,ptgqg =0, (15)

les fonctions ¢ et f admettant des expressions quelconques.

M. A. DemouLIN m’avait communiqué une méthode directe
d’intégration de I’équation (12) dans le cas, ot f(p —¢) = p — ¢,
et de I’équation (14) dans le cas, ot f(p + ¢) = (p + 9)*

Or, pour intégrer l'équation (12), dans I’hypotheése la plus
générale, retranchons et ajoutons la variable s au premier
membre de ’équation étudiée (12).

Elle pourra, alors, s’écrire sous la forme suivante:

?Tp“‘l—'«‘iz‘)[%(p—ﬂ + %(p“_Q)] + o) (p+qg =0.

En y introduisant les désignations:

SE=l —op—a, [owi=1,

la derniere équation va devenir:

865;[®(p—9)+z}+5%[®(p~q) + 2] =0.

L'intégration de I’équation obtenue, linéaire et du premier
ordre par rapport aux dérivées partielles de la fonction qui se

trouve entre crochets, donne Iintégrale générale premiére de
Péquation (12): ,
Qip—qg)+ 74 =Vy—a, (16)

V" désignant une fonction arbitraire.

Si Pon introduit deux nouvelles variables indépendantes &
et = liées avec les anciennes par les relations:

y—zx==%6, y+ax=n, (17)
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Péquation (16) prend la forme d’une équation différentielle
ordinaire:

@(_22—2) L7 =W .

L’intégration de cette derniere équation dépendra de la forme
des fonctions @ et Z. Son intégrale générale contiendra, au lieu
de la constante arbitraire, une fonction arbitraire de la variable .
On en tirera l'intégrale générale de ’équation étudiée (12), au
moyen de la transformation inverse des variables.

Quant a I’équation (13), on la mettra, ainsi que la précédente,
sous la forme suivante:

2o+ rlp—q + ey p—g =0. (18

(C’est une équation linéaire, par rapport au bindéme p — ¢,
dont I'intégration dépendra de celle d’une équation différentielle
ordinaire formée au moyen de la fonction f. 1l restera, enfin, &
intégrer une seconde équation linéaire aux dérivées partielles du
premier ordre, pour en tirer I'intégrale générale de I’équation
donnée (13).

Passons a présent aux deux derniéres équations (14) et (15).

On écrira aisément I’équation (14) de la maniere suivante:

(p +4q [0 d . B
Y R VY IEXTIET E

Cette derniére équation peut étre mise sous la forme:

d ‘ O i .
a—;c[U(PJFQ)‘FZ]+@[L(P+Q)+Z]:O (19)
ou les fonctions U et Z sont définies respectivement par les

quadratures:

Up+q = / Kp*—f(ﬁ Cj:";f 1) . 7 = (/'cp(z)dz :

Cela étant, on obtient, intégrant I’équation (19), I'intégrale
générale premiére de I'équation (14) sous la forme:

Ulp+4q) +72 =Yy +a), (20)

¥ étant une fonction arbitraire.
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La transformation de variables indépendantes, au moyen des
formules (17), réduit I’équation (19) & la suivante:

(.02
U@éﬁ) + 7Z =Y .

L’équation obtenue est aux différentielles ordinaires, dont
Vintégration dépend de la forme des fonctions U et Z. L’intégrale
générale de cette derniere équation devra impliquer, au lieu
d’'une constante arbitraire, une nouvelle fonction arbitraire
de & On en tirera, au moyen de la transformation inverse des
variables, I'intégrale générale de I’équation étudiée (14).

La dernieére équation (15) va s’écrire de la maniére suivante:

0 0 v
s ta +yptad iy, ptg=0.

Or, cette derniére équation va étre intégrée d’une maniére
analogue a I’équation (18).

V. — INTEGRATIONS DE QUELQUES KQUATIONS USUELLES
DU SECOND ORDRE.

Citons maintenant plusieurs équations, dont I'intégration est
exposée dans maints traités de Goursat, de Forsyth, de Piaggio,
ainsi que chez d’autres auteurs.

Considérons, en premier lieu, Péquation (Goursar, Cours
d’Analyse, 4™e éd., t. I11, Paris, 1927. Exercices, p. 88):

x2r 4+ 2zxys + y:t = 0 . (1)

En groupant les termes de cette équation (1), on va 1'écrire
0 0
x5 (zp + yq) + Y5y + Y0 = 2p +yq .

L’intégrale générale de cette derniére équation aux dérivées
partielles du premier ordre, par rapport au hindme xp -+ yq,
se présente sous la forme:

zp + yq = xf(%) 5

\ /
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f désignant la fonction arbitraire. L’intégrale générale de cette
derniere équation
| » o
= a1(2) + oY),

\x/

¢ étant une seconde fonction arbitraire, représente bien I'inté-
grale générale de I’équation (1).
L’équation (Goursar, thid.):

xyr + (@ + y¥)s + ayl —yp —=xq = 0 (2)

s’écrit immédiatement ainsi:
0 (ap + 23] oy 2z) = 0
Y5z \*p T yq—25) + eglop + yq — 5 =0 .
Il s’ensuit, dongc, I'intégrale générale requise de I’équation (2)

8 == <y2~—x2)f(-z—) + oly —a27)

f et © étant les fonctions arbitraires.
I’égquation du probléme connu d’Ossian Bonnet:

2r —y*t =0 (3)
s’écrit aisément de la maniére suivante:

d d
fca—;c(xp v+‘y¢I~Z>~—yé—y(xp +yg—z =0 .

On a par conséquent l'intégrale générale de I’équation (3)
sous la forme:

z = f(zy) + w(g) ;

\ /

f et ¢ désignant deux fonctions arbitraires.
I’équation de J. Bertrand:

x*r + 22ys + y¥t + xp + yq = n?z (4)

qui est intégrable par réduction & un systéme de Charpit I, est de

1 Voir plus haut, p. 145, loc. cit.
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méme intégrable, si 'on va grouper ses termes de la maniére
suitvante:

0 . 0 ,
905&(0019 + yq + nz + ygg—/(xp + yq + nz) = nlzp + yq + nz .

Il ¢’ensuit immédiatement I'intégrale générale de 1l'équa-
tion (4):

z = %nf(—g—> -+ ;E_"l(p(/%j) .

\

f et o étant deux fonctions arbitraires.
Considérons, & présent, I’équation

xydr — yxdt + 23q — y3q¢ = 0, ()

que ’on mettra sous la forme suivante:

0 /p ¢ 6(17 q>_~
vals ) el ) =0

I s’ensuit donc que les deux fonctions, a? + y* et —§+

LI

1
sont liées par une relation arbitraire que ’on écrira

+ L= sy 9y,

&

q
y

" désignant une fonction arbitraire. En intégrant cette derniére
équation, on obtiendra l'intégrale générale de ()

= f{* + ) + oa® —y?) ,

[/ et @ étant deux fonctions arbitraires.
Considérons, enfin, I’équation (Forsyth, Piaggio)

r+y=1t+zx . (6)

1l est aisé de I’écrire en groupant ses termes de deux maniéres
différentes:
res—zxF (sEktFy =0,
ou hien

3 "in.’ljz) ) ‘x2:}:y2
M<piq— 5 ’?Fo—?}(picr- 3 ):0,
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en prenant respectivement, soit les signes supérieurs, soit les
inférieurs.

L’intégration de ces deux équations aux dérivées partielles du
premier ordre produit respectivement deux intégrales premiéres:

2 + y2? , .
p+q= Qy + 2f(x + y) ,
x2_2 , .
p—gq= 24 + 20’ (z —y) ,

/" et ¢’ désignant les dérivées de deux fonctions arbitraires f et o,
le facteur 2 étant introduit pour simplifier les formules qui vont
suivre.

Ces deux dernieres formules donnent les valeurs des dérivées:

x2 ’ 14 y2 7 /’
p=5+f+9e, qg=5+F—9¢.

Il s’ensuit, par quadrature, 'intégrale générale de 1’équation

donnée (6):

_«x3+y3
o 6

+ fle+y) +ole—y) .,

a deux fonctions arbitraires f et o.

Citons encore trois équations du second ordre, dont les coeffi-
cients dépendent des dérivées partielles du premier ordre de la
fonction inconnue:

zlr—1) = p*— ¢, (7)
¢r—p?t =0, (8)
1+ pg+ Pr+ (¢*—p¥s— (1 + p* 4+ pg)t = 0 . (9)

I’équation (7) (v. ForsyTH, v. VI, p. 219. Ex. 2) appartient
bien au type d’équations (12) citées dans la partie V du présent
Mémoire, équations que M. A. Demoulin avait intégrées.

Or, la méme équation (7) pourrait étre mise, d’une autre
maniére, sous la forme suivante:

0 ( ptqgy_ 0 (!’ + Q“) — 0
ox 3z ) oy \ '

4
Vs

v
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En intégrant cette derniére équation, on obtient 'intégrale
générale de 1’équation (7):

2= fle +y)-olz—y),

f et o étant deux fonctions arbitraires.
Quant & I’équation (8), elle va s’écrire
0z O 9}3( Lo
5y 5% PY) T 555470 =9
Il s’ensuit done
pq = f(3)

f désignant une fonction arbitraire. L’intégrale complete de cette
derniére équation s’obtient, d’aprées Lagrange, en ajoutant
Pintégrale des caractéristiques

r_ g
q

( étant une constante arbitraire. Par conséquent, l'intégrale
générale de I’équation (8) se représente par I’ensemble des deux
équations suivantes:

= 4/Cz+ gy + 0l ,

\/f : VT

¢’ (C) = 0,

oy
24/C 24/C3

¢ désignant la seconde fonction arbitraire, C jouant le réle d’un
parametre variable.

Enfin, la derniére équation (9) citée dans le Traité d’ Analyse
de Lacrorx, 2me éd. t. I, p. 586, n° 755, va §’écrire

d d
(1 +qlp + 952 (p+q~u+pp+m]m(p+q) 0.

Cette derniére équation se met aisément sous la forme nou-
velle:

o ¢ d d d |
spletyv+sbp+alsp+ 9 —5-[e+y+2 (p+q):\5?—/(p+q)zo
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dont I'intégrale devient:
t+y+zp+9q9 =Jfp+aq, (10)

f désignant une fonction arbitraire. Pour intégrer I’équation aux
dérivées partielles du premier ordre (10), posons

p+q== 2. (11)

L’intégrale compléte de cette derniere équation (11), en y
considérant x, comme une constante, devient:

z = (g —y)x + hy + 3,

y, et z, désignant deux nouvelles constantes arbitraires. Si I'on
prend cette derniere relation, comme la formule fondamentale
de la transformation de contact !, I’équation (10) transformée
prend la forme suivante, en considérant z, comme nouvelle
fonction inconnue de nouvelles variables indépendantes z, et y;:

(mi + 2)py + (v + Vg = x5 — floy)
.. . : » . e 03,
p; et ¢, désignant respectivement les nouvelles dérivées 3z et
iy L’intégrale générale de cette derniere équation admet la

0y, '
forme évidente:

o désignant la seconde fonction arbitraire.
Par conséquent, I'intégrale générale de I’équation primitive (9)
s’obtient au moyen de la transformation inverse des variables.

VI. — GENERALISATION DES METHODES EXPOSEES.

Euler, en inaugurant les méthodes d’intégration que nous
étudions, avait montré, en méme temps, comme on pouvait

1 N. Savryrow, Application des transformations de contact & Pintégration des
équations aux dérivées partielles (Bulletin de I’ Académie des Sciences math. et natur.
A. Sc. math., n° 3, Belgrade, 1936, p. 41).
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étendre leurs applications, en commencant par l'intégration des
plus simples équations pour passer, ensuite, a celles plus compli-
quées. Comme excellent exemple, sous ce rapport, on pourrait
reprendre le probléme de la corde vibrante a densité variable.
Dans ce but, EULER ! considére I’équation:

t— P2r =0 ’ (1)
P désignant une fonction des variables z et y vérifiant la condi-
tion:

e —P— =10 . (2)

L’équation (1), grace & cette derniere hypothese (2), se réduit
immédiatement & une équation linéaire aux dérivées partielles du
premier ordre:

“O—y——PWZO’ (3)
ou 'on a posé:

0 0

6—;+P;3—§:U. (4)

Ce qui est fort important, ¢’est que I'intégration du probléme
considéré, dans I’hypotheése (2), peut étre poussée jusqu’aux
quadratures.

En effet, 'ensemble d’équations (2) et (3) représente un sys-
teme de Charpit 2. Formons, pour définir les fonctions P et U,
le systéme correspondant d’équations différentielles ordinaires:

Ce dernier systéme admet trois intégrales distinctes suivantes:

P:("‘la U:C2: x+Py:C37

L Instilutiones Calculi Integralis, V, III, p. 193, probl. 49,
2 Voir plus haut, p. 145, loc. cit.
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(i, Cy et Cy désignant trois constantes arbitraires. Cela étant,
Iintégrale générale du systéme de Charpit (2) — (3) devient:

P=ogw, U=d), (9)
©w =2z + ¢o(wy (6)

@ et { désignant deux fonctions arbitraires.

Intégrons, a présent, ’équation (4), en y substituant les
expressions (5) de P et de U. Transformons de plus I’équation
(4), en introduisant comme nouvelle variable indépendante o,
au lieu de z. L’équation (4) transformée devient:

ro® 29 00

= 7
 F T se =¥ o)

© désignant I'expression de la fonction inconnue z qui est expri-
mee en nouvelles variables.

L’intégration de cette derniére équation linéaire (7) produit
Pintégrale générale de I’équation donnée (1) sous la forme
suivante:

= (e eve) St
Sl SR e [E0)

ou ¥ et f désignent deux fonctions arbitraires, o étant le para-
meétre variable défini par la relation (6); quant & la fonction
arbitraire o, elle définit la valeur du coefficient P de ’équation
donnée (1).

EurLeEr ! donne, comme second exemple, I’équation:

P oP
(—Pr+ Qe+ (PQ+ 5 P p =0,

P et () désignant des fonctions quelconques de x et de y.
On met aisément I’équation considérée (8) sous la forme sui-

vante:

_?E__PQ_E+QU_O, (9)
oy

1 Ibid., p. 202, probl. 50.
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en posant
0z 0z

5y + P =TU. (10)

Le probléeme de I'intégration de I’équation donnée (8) revient
donc & celle de I’équation (9) pour définir, d’abord, la valeur de
la fonction U et, ensuite, a 'intégration de ’équation (10) qui
donne l'intégrale générale requise.

Les problémes cités représentent une introduction a I'ceuvre
de Legendre sur I'intégration d’équations linéaires aux dérivées
partielles du second ordre a une fonction inconnue, dont les
coefficients ne dépendent que des variables indépendantes. Cette
derniére théorie est une généralisation de I’élégante méthode de
Laplace pour intégrer les équations hyperboliques. On sait
maintenant que toutes ces recherches simplifient et unifient, en
meéme temps, la méthode de G. Monge et celle de G. Darboux
intégrant les équations linéaires en question 1.

I1 se pose done, & présent, un nouveau probléme de généralisa-
tion concernant la recherche d’une méthode qui suppléerait
celles de G. Monge et de G. Darboux pour les équations linéaires
de la forme générale.

1 N. Sanrykow, Note sur la méthode de Legendre pour intégrer les équations linéaires
aux derivées partielles du second ordre (Travaux du Deuxiéme Congrés des Mathémati-
ciens slaves. Prague, septembre 1934).

N. SaLryxow, Théorie des équations linéaires aux dérivées partielles du second ordre
a une fonction inconnue (Bulletin de I’ Acad. des Sc. math. et natur. A. Sciences mathé-
matiques et physigues, n° 2. Belgrade, 1935).
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