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SUR L’EMPLOI DU VECTORIEL 121
f. — Pour un point N lié au triédre mobile (z,) on aura,
puisque p A n = p°i, A n°i, = i*(abc) p°ns,

AN = dM + p A n = i (M® + (abe) p®n9) , (1)

g. — Si N‘ était mobile par rapport & (i,,) on aurait (DARBOUX,
L. I, ch. VII, éq. 4):

dN = i (dn® + M® + (abc) p®n9) .

II. — APPLICATIONS A QUELQUES QUESTIONS GENERALES.

a. — Tangentes conjuguées. — «Si le point M de la surface
décrit une courbe on obtiendra la conjuguée de la tangente a
cette courbe en prenant l'intersection du plan tangent en M
avec le plan tangent infiniment voisin» (DarBoUx, L. V,
ch. I), cette droite est I'axe des normales N — M en M, et
N 4+ dN — (M 4+ dM) au point infiniment voisin de M, elle a
donc pour vecteur, d’apres (f):

j=(N—M A (N—M + dN — dM) =
=nANmn+pAn =phxn—npXxn =p—np®=rpi,

et un déplacement 3M suivant la direction conjuguée de dM
devra satisfaire & I’équation (puisque SM devra étre suivant j):

S =] ASM= (i AdN) A SM = p*i, A M!Su"i, =
= p"M) (w3) iy Su” = (3 ) np¥ M du®§u®
¢’est-a-dire:
(3uv)p’;M‘édu°‘8uB =0 .
Si les deux directions conjuguées coincident, on obtient
Péquation des asymptotiques:
JAAM =10 ou  (3u)piM}du*du® =0,
ou encore, ayant j=nA(pAn) e¢ dN=p A n, on a
dN X j = 0 et, ici, j portant dM:
dM X dN = 0 .
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b. — Lignes de courbure. — 1° Cherchons les déplacements d
du triédre mobile pour lesquels la normale & la surface engendrera
une surface développable, il faut qu’il existe sur n» un point
P =M + pn décrivant, dans le mouvement considéré, une
courbe constamment tangente a cette normale, dP = dM +
+ pdn + ndp sera porté par n si n A dP =0, donc si
n A (@M + edn) = 0, ainsi pour un déplacement suivant une
ligne de courbure on aura:

dM + pdn = 0 , - (e)

or n=N—M, dn =dN—dM =dM + o A n—dM = p A n,

posons k = %, I’équation devient (équation de Rodrigues)

dn + kdM = 0 , ou (kM, + p, A n)du* = 0, (R)

de la forme z,du* = 0, pour que cette équation homogéne en
du* ait une solution, il faut que 'on ait: x; A z, = 0, posons
H = |M; A M, |, rappelant que M; A M, = Hn, M, x n = 0,
et (pp A n) A(ps AN ) = n(r X p; A py), n apparait alors
en facteur dans tous les termes, il faut donc que son coefficient
soit nul, ce qui donne I’équation aux courbures principales:

Hi* + (pr X My —py X My)k +n X py A py =0,

on a ainsi les expressions suivantes de la courbure totale K et
de la courbure moyenne J:

K PL AP X n _ pi APy X on 7 — My X pg—M, X py
M, A M, X n H ’ H '

Remarquons que 'on peut donner & K une autre forme, ayant
Py AP X My AMy=p; App X He = Hpy A ps X n=H?K
on peut écrire K = p; A p, X My A My/H2

La condition (p) dM -+ pp A n = 0 exprime que dM est
parallele & p A n, donc (ce qui revient a éliminer p)
dM AN (p An)=—p X dM =0 (car n X dM = 0), I'équa-
tion des lignes de courbure est donec:

p xXdM =0 (Y)

(la tangente est orthogonale & la rotation du triédre).
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20 On retrouve cette équation en cherchant si I'un des mou-
vements infiniment petits du triédre peut se réduire a une
rotation, exprimons qu’il existe une ligne de points P, liés au
triedre, de déplacement nul: dP = dM + p A MP. = 0, d’ou:

MP = Ap +p A dM/p?. (A)

On voit que pour un tel déplacement p X dM = 0 (y), «les
déplacements qui se réduisent & des rotations correspondent &
des déplacements de I’origine M suivant les lignes de courbure ()
a la surface » (DArRBoOUX, § 489). Il en résulte aussi que dans ce
déplacement p est dans le plan normal en M & la ligne de cour-
bure (v), la normale n sera donc coupée par MP en un point
C=on+ M, tel que pn=2ap +p AdM/p? en Ap il
p N\ dM
p2
qui correspondent & ces rotations passent par le centre de
courbure correspondant» (d°), en X p, on a pn X p = Ap?,
en X n, on a |

vient pn A p =

A p=dM, ce qui est (p) «Les axes

2
p:)\pxn%—nXp/\dM/pz:p(p;zn) +n><p/\dM/p‘3
d’ou pour G
__nXpAdM
- pP— (p x n?’

3° Les directions principales étant orthogonales, si ¢° sont leurs
unitaires (dans ce qui suit € n’est pas un indice muet & sommer),
les formules de Rodrigues d.n + k. d M = 0, donnent
¥(d,o + k.d s) = 0, de plus, on pourra écrire dn = dn X " - '
posons ¢ = ¢!, ¢ on a:

?

t = tlcos @ + ¢?sin o , (1)

enfin, comme 7 est orthogonal a tout déplacement de M dans le
plan tangent: n X dM = 0, n X d.M = 0, donc d_n x dM -+
+nrn XddM =0, et dn X d M+ n xXdd. M = 0, aussi,
ayant dd.M = d_dM, dn X d. M =d_n x dM, ou

dn X t°d_s = 1°d_o X tds = 1 X tds(— k_d_s)
et |
dn X & = — k dst® X ¢, (2)
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d’ou (x courbure, 1 torsion) avec les notations usuelles

ko= wcos§ — PXEM - dn X o x dM
o T ds® ds? -
kydscoso - dscose + kydssin¢g - dssin o
- ds? ’ (o)
k = kycos? ¢ 4 kysin?¢ , (E . Euler)
~ do dM X dn A n dn X n A tds
O =17 — — = - = ) (B)
ds ds ds
qui vaut d’apres (1) et (2)
2 ___ o "
dn x SB2! s et cos @ (— ky sin @) — sin @ (— k&, cos @)
© = (ky — ky) sing cos g (B . Bonnet)
(v) (E) peut s’écrire:
Ry —k = (ky — ky) sin?q ,  Jk— ky = (ky — ky) cOS2 @ ,

(B) peut s’écrire en portant ses deux membres au carré et tenant
compte de ce qui précede:

2 = (ky — k) (k — k) ,
d’otu, pour les lignes de courbure,

do

=0 ou % , d’aprés (B) ® =0, donc < = I (Lancret) ;
pour les géodésiques
0 =0, k=x et © =1%2= (kb —xn) (t—=Fk,), (Kommerer) ;
pour les asymptotiques
0 = g T ==+ —Ikky, (Enneper) .
e. — Représentation sphérigue. — Considérons les quatre

triedres: 10 le triedre (i,) de rotation p et d’origine M; 20 le
triedre parallele (i) de méme rotation p et d’origine O fixe;
30 le triedre formé par n, normale a la surface (qui est z3), par ¢,
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unitaire de la tangente dM a la courbe (C) dont un arc ds est
décrit par M dans le déplacement d, et par le vecteur n A ¢
(ce triedre est dit de Ribaucour et sa rotation sera r); 4° le triédre
de Serret-Frenet associé a la courbe C, ¢, n, b. 1’angle i;, ¢ sera
désigné par §, Pangle n, n par 6, ’angle entre ; et p A n = dn
par x.

1. — L’extrémité du vecteur n =i a un déplacement
dn = p A n, soit, comme au (I, e), do sa longueur, puis ° le
vecteur égal & ¢ issu de 0, I'angle i, ¢’ vaut aussi ¢, par suite:

daM . 0 . .
h=1= - = L(l)cosq; + zgsmzp:: MELZ/ds,

pAR= pri: An= p2i(1)——~p1i(2), dn = dc(cosxig + Sinxig) ;
dn X dM = dodscos (¢ —y) = p A n X tds = (p2cos ¢ — plsin ¢)ds ,

dn AN dM = dodssin (¢ —y)n = (p A n) A\ tds =
= nt X pds = (plcos¢ + p2sin¢)ds - n ,

qui contiennent les formules de Darsoux (L. V, ch. I, éq. 5):
do cos (¢ — y) = p?cos Y — plsin ¢, ...
2. — Soit x la courbure en M de la courbe (C), on a dt = » ds#,

comme Pextrémité du vecteur subit un déplacement (d’aprés I a)
di® = dt = 1), du” + p A t, et que I'on a:

tf,)rdu’" == ——sinq;dnpi: + cospdii

0
2

=n Atd{,
pAt= (ptsiny— p2cos)n + P2005¢i:—PISin¢i: ,
1l vient
wdsn = (dyn+p) At .

En multipliant par n (scalairement, vectoriellement), ayant

72/\ n = tsin 0 ,
xcosOds = n A p xt=plsing — p2cos¢ ,

ixsinfds = (4 +p x n)t, ou xsinBds = d + p? :

?

on en déduit x cos 6 = — cos (y — y) do/ds, on en déduit aussi,
ayant n A p Xt = —dn x dM/ds, que x cos 6 = — ¢ X dn/ds
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sera un Invariant pour toutes les courbes ayant méme tan-
: 2N :

gente ¢, ensuite que: x cos 0 = % (puisque n X dM = 0, 7

dn X dM = —n X d®M). On peut en déduire rapidement une

forme de I’équation des géodésiques, car b étant ’axe du plan

osculateur a (C) en M, pour que le plan osculateur soit en chaque 7

point normal & la surface, b doit étre normal & n, on a donc pour
équation

O:nxb:nxt/\;t——:tx;zAn:tthinﬂzsiHQ,

ou
dy + p> = 0.

3. — Soit 7 la torsion de la courbe (C) en M, on a db = tdsn,
Iextrémité du vecteur 6 = b =t A n cos 6 4+ n sin 0, subit
un déplacement db” = b, du” 4+ p A b, mais

bj.du” = —sin0d0t A n 4 cos 0(i)sin § + i cosyjd¢ + ncosBdb =
= n A tsin0d0 + tcos0dy 4+ ncos0d0 ,

pAb=pA({tAnjcosth+pAnsinbh =
= itp X ncos® —np x tcos® + p A nsin0 ,
mais
pPAR=pAnRXt-t—pXt-nAt,
donc:
tds(ncosO + n A tsinf) =

= (d0—p X t) (ncosO+ n A tsin 6 +z[(d¢+p3) cosO 4+ p Anx tsine] 7

on en déduit la valeur de la torsion géodésique:

Gds = tds—dO0 = — p Xt= —plcosy—p?siny =—nxdn A1t .

(de Bds = — p X t, nous déduisons d’abord le théoréme de
Bonnet: Gds est le méme pour toutes les courbes ayant méme
tangente et ensuite que & ds est nul le long d’une ligne de cour-
bure). Quant au terme en t il est identiquement nul car

(d + p?)cosO = xdssinO-cos9 ,

et
p AR Xitsing=—nA\pxtsind =—xcosbds-sinb .
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On a aussi d’aprés le 1° tds — d0 = — do sin ( — ) qui,
combinée & la valeur de » cos 6 donne

d0,\2 do\?
(% cos 6)% + <‘c *“‘;{g) = <&;> ;

4., — Sur le repére de Ribaucour la rotation du triédre (z,,)
a pour valeur: |

P=pXn-n+pXt-t+pXnAt-nAt=
= (xsinOds — dy)n + (d0 — vds)t —xcosOdsn A ¢,

elle s’exprimera donc sur son repére par:

p = (xsinBds — dd)n 4+ (A0 — = ds) (i, cos ¢ -+ iysin ¢)
—xcos 0ds(— iy sin g + i3cos ) ,
d’ou:
p = {(xcos0dssind + (d60 — vds) cos ) +
+ fy(—xcosBdscos$ + (d0 — vds)sin ) + ig(xsinOds — dy) ,

avec les notations habituelles on aura:

: - ;s ~ : di) .
— = (% sin ¢ — B cos )i — (xycos Y + Gsin )i, + (xG~—~(Zs—>z3 ,

remarquons que le triedre orthonormal le plus naturellement
associé a une courbe tracée sur une surface semble étre le triédre
de Ribaucour car sa rotation r (obtenue en faisant dy = 0
dans p) a pour valeur sur lui-méme:

r/ds = n—Gt—u,n At.
d. — Rotation, courbures, torsion et composantes de dM et
@M. — 1. — Avant de calculer d*M, indiquons quelques

résultats utiles, comme dM est dans le plan tangent auquel
i3 = n est normal, dM = M%7, « = 1,2, et comme sur la
surface (S) u® = const., en continuant & indiquer par un




128 J. BECQUE

indice grec, un indice ne prenant que les valeurs 1 et 2, on peut
écrire:
dM = M_du* (ou M, = dM/ou") ,

dM = M_ % du®, M, = M_%

o 95 [ 9

par suite:
Zup = M, % My = M ", x Mg¥, = (uwv) MEMY = MUMY .

S1 @ est la forme quadratique dM? = g, du"du’, en désignant
par @, sa demi-dérivée en du®, on a:

O, = g, du* = MYM" .
Si H est le module de M; A M, porté par n, on aura
M, A My = (3a8) Hn, comparant &
M, A Mg =M, "%, A MgYi, = MM (pvr) i, ,

ou W, v ne prenant que les valeurs 1 et 2, I'unique valeur
de r qui n’annule pas le symbole (abc) sera 3, il en résulte:

M, A Mg = (3af)Hn = (3uv)MiMyn .

(D’une  maniére générale M, A My = H(rst) M! ou
H = M, A My, X M. Cf. Annales de la Soc. scientifique de
Bruzelles, 1931, p. 30.)

2. — Ayant d2M = dM “1, + M“p A 1,, comme

pAi,=—i, \p’ig = — (usr)i,p°,

EM = i, |(ry)dM* — (rps) M*p*] .

Le crochet étant i, X d2M: 1° Si r =1, 2:

M, x &M = M, ", x &2M = M, dM" — (vus)M; M"p* |

o v
tenons compte que (vus) n’est différent de zéro que si s = 3,
que
L5 = M(;M}'3 dans M, x &M = 8. Put + [o, ew]du® du®
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puis que (3eB) H = (3uv) MMy il reste aprés division par du®:
[, coldu® = M“dM! — p3(3w)M4M) = M5 dM; — p*(3ac) H ,

H(3ae)p? = MUdMY — [o, ew]d” . (L. V., ch. II, éq. 43)

On peut obtenir ce résultat & partir de
] M‘é:MBxiM, dMgzMsXPAiu+Mgmd“(°Xiu’
’% et:

MEAMY = p x MY%i, A My + M, ", x Mg, du® =

7

=p X M, A Mg + M, x Mg, du® = p x (3af)Hn + [a, Bwldu® .

20 Sir = 3, on aura

n x @2M = — (Bus)M*p® = M2p! — M!p? ,

comme n X d2M = [3, ew]dudu® que nous désignerons par ¥
et sa demi-dérivée en du® par ¥'_, I’équation précédente pouvant
s’écrire (3 af) p*MP = ¥, nous aurons

T AT o L
;_Sg?bf“" L e Ui Ll bat ekt

(3aB)MPp* = ¥ = [3, ew]du® ,
le déterminant des coefficients étant MM, — MM, = H, on a:
Hp* = Buw)M ¥, ,
ou, sous la forme classique d’'un déterminant

Hp* = [MZ* ¥,

’

et pour les rotations partielles (DArBOUX, L. V, ch. II, éq. 43
et 44):

Hp! = {M; [35@]' ,

Po = MVOMY [0u® —[1, 20] = — MPOM* [23u® + [2, 1a] ;

3. — Des formules précédentes nous tirons:

o. La formule classique de la courbure normale:

2
ds?

I’Enseignement mathém., 38me année, 1939 et 1940. 9

xcos = n X = (&, p.v]du,“‘du"/ds2 ,
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B. La torsion géodésique:

Bds? = — p X tds = — p x dM = — p*M* = ~%(3pv)MaMua‘FV ,

-~ (3 ) 1 (¥, D)
Gds?2 =— S/ = ’ S
ds i e ® = I S(aut, au

ou sous une forme développée la formule classique:

HEds* = [[3, epldu* g, du’

v. La courbure géodésique: prenons s comme variable sur la
courbe:
AM = tds, d®M = dtds = »nds? ,

dM A d®M = xds®t A n = »ds®b , sin® =n x b,
done
. dM  d2M
KSlne—nX‘glg—/\-CEé—,

nous désignerons par un accent’ la dérivée par rapport & s, par
suite

4

t = M, u* , dzM/ds2 = Msua” + Msuuglu“‘, ;
comiie

— |7 — r
= L‘L]Mr = {r, ep]M" ,

(ici les M" constituent le repére réciproque du repeére tangent
formé par les M,., et non plus dM X 1,), nous aurons deux formes
pour le résultat, effectuons le calcul avec M, en tenant compte
du § 1,

dM M

s A TE = (3 oe) Hnu® u®’ + [r}H(arv)Mru“'uelu“’ ,

el

xsin® = (3oac) Hu® u®” + L’;L]H(ma) u® uf ut

comme (3ar) se réduit & (3«f3) on aura avec quelques changements
d’indices muets.

wsin 0 = Hu® (3 o) <u’5” - [:V] ut’ u"') ,

A

e
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ou bien sous la forme classique d’un déterminant:

xsinG = H

?

w w4 [ E] u w’
Qv

peut étre moins maniable que la précédente (mais plus que

Pinterminable formule développée).

6. L’étude des géodésiques peut se faire suivant les mémes
méthodes, mais, ainsi que dans ce § 3, on n’a pas intérét a utiliser
le triédre orthonormal de Darboux, et comme c¢’était le but de
ces pages, limitons-nous au calcul de la torsion d’une géodé-
sique: la normale & la surface devant étre la normale principale
de la courbe, sa binormale sera b = ¢ A n, en différentiant par
rapport & I'arc de géodésique nous avons pour la torsion:

p o= M dn
T ds ds ’
donc
. dn " ;
T 75 <" At,
mais
nAt=M; AMu" = H@Bap) M u*,
T == M3uu“’ x H(3aB)MPu* |
done:
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