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118 J. BECQUE

dans I’espace euclidien, tout en donnant des résultats a la fois
condensés et aisément développables.

Je prendrai comme exemple quelques questions traitées par
DarBoux dans sa Théorie des Surfaces. Au symbole de Kronecker,
désigné ici par (ab), j’ajouterai le symbole (abc) valeur + 1, — 1,
ou 0 suivant que la permutation des trois nombres est paire,
impaire, ou avec deux nombres égaux.

I. — MOUVEMENT A TROIS PARAMETRES.

Considérons deux triedres orthonormaux, 'un I (L) fixe,
d’origine O, l'autre i (i,,) lié au corps, d’origine M; ces deux
triédres sont rattachés I'un a P'autre par les cosinus directeurs
des angles des axes:

a. Soit un vecteur a de composantes a™ sur le triédre i,

posons “/R = LmS%, désignons par p, la rotation instantanée

de i quand u® varie seul, la condition z, X i, = 1, nous donne

. . 01
quand u® varie seul 7,, X a—% — (, c¢’est donc que p, est tel que
u
oL, . m o
TR Pe N\ 4n, Pr @ pour composantes pp = p, X 1™, ces
notations permettent de séparer le mouvement en un mouvement

relatif et en un mouvement d’entrainement
da 0 .- . 0a™ m Olm

ﬁ:au}{a Lm:LmbuR+a SE:“/R+pRAa' (1)

Passons au repeére (I,) mais, pour abréger I’écriture, écrivons I
. Ny . 2 ol
pour I, jusqu’a I’équation (A,), I étant fixe, les - sont nuls,
u
done: |
L =1Apg, (2)

leurs dérivé tielles sont — T, = = I p 2l
eurs dérivées partielles sont —— m= 55 N Pr T+ /\ﬁ’

pour évaluer les gg—q- tenons compte de (1) qui s’applique aux
i
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vecteurs I et p,, le premier membre est, d’apres (2):
(Ls +ps ALig = Tgys + ps A (LA py), le second membre
est T A (pajs + Ps A Pa), on a done I+ ps A (I A py) =
1 A pR/S + I A (ps A pR)7 de meéme I/S/R + pR A (I A ps) -
LA pgn+ LA (pr A pg)y or: 10 Lo =T, car les /R/S
supposent des vitesses relatives, donc des i, constants; 2° entre
les trois vecteurs I, p,, p, on a lidentité 1 A (py A ps) +
Aps A1)+ ps A(LAPpy) = 0, done pg A (LA py) —
PN (T ApPp) =—1A{ (py A ps), et par soustraction des
deux formules on obtient: — I A (py A ps) = T A (Prjs — Psjn)
+ LA (ps A pe) — T A (P A pg), et par suite: I A (prs —
Psir -+ Ps A pp) = 0, d’ou les équations pour trois parameétres
généralisant les équations de Darboux (L. I, ch. V, éq. 5) pour
deux paramétres (cf. Systémes orthogonaux, L. 11, ch. 1I):

(Al)pR/s —_pS/R == pR A ps ;

b. — Pour déterminer le mouvement d’un point, introduisons
les deux trios de vecteurs: vitesses M, de 'origine M et rota-

tions p, du triédre mobile pour u" variant seul (R = 1, 2, 3).
oM
Appliquons (1) aux vitesses — = M, + p, A M,, mais

ou
; oM
puisque M, = —o on a 2Mdurdyu® = d M,/ dut = dM/dub,
done:
(Az) MR/S —MS/R == pR /\ MS _pS A MR )

e. — Introduisons p et MY composantes sur i, de p,
et M_, ayant:
o . . 0 0o . . 0
MR/S - (MR LO)/S = LoaMR/auS ’ Pris = (pRlo)/S =k OpR/éu,S ’
Pr A Ps = Py im A Pg iy = PR Pyt (mno)

pr A Mg = piti, AN MIi, = PR Mg (mno) ;

les (A) donnent en égalant les coefficients de i,:

( I)O_ZS— Ty pRpt (mno)
0 0
oM° oM’
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d. — Un déplacement d appliqué aux parameétres produit un
déplacement dM de l’origine et di, des axes, ayant pour expres-
sion (posant M™ = M"du" = i, X dM, p = p.du"):

dM = M,du" = (M, X i), du" = M™i du" = M™i_,
. a1’01, P . 7 r . .
dig = " = pp N fgdu” = prdu” Nig =p A
en désignant par p™ les composantes de p sur (i,): p™ =
= p X1, = p,du” X i, = pldu’, on peut écrire:

di, = p®i, A i, = (abe)iyp® ,

si 'on pose di, = 4,1, (par exemple pp. 177 et suivantes de:
Théorie des groupes finis et continus... de M. E. CARTAN), le lien
avec la notation ci-dessus s’obtient en observant que:

0y, = di, X i, =p Nig X i, =pXi, \Ni,= p X (anr)i, = p"(anr} ,
on en déduit que o,, = 0, w,, = — w,,, car (anr) = — (nar),
et que
a 1 .
pt = 5 lamnjo,, ;
e. — Introduisons maintenant un triédre auxiliaire. qui va

servir & la représentation sphérique, son origine sera fixe. Pour
un point N lié au triedre, tel que N =M 4 n, on aura

0 - . c 1o s ON
_lj_:;%%-q—nm—}—pn/\n, qui se reduﬂ;aa—-}—l:pR/\n, et

dut u
. oN
posons toujours dN = du" —, on a:
ou”
dN = p A n,

par suite dN? = (p A r)?2 = p2n® — (p X n)% et s1 n est la
normale unitaire a la surface (n = i3), n? =1, p X n = p? =
= pydu’, (p X n)* = p,p,du’dv®, p* = p™p™ = p;"pg du’ du’,
donc en désignant par une lettre grecque un indice qui ne
prend pas la valeur 3,

do? = dN? = (p A n)? = pipzdu”du® ,

1
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f. — Pour un point N lié au triédre mobile (z,) on aura,
puisque p A n = p°i, A n°i, = i*(abc) p°ns,

AN = dM + p A n = i (M® + (abe) p®n9) , (1)

g. — Si N‘ était mobile par rapport & (i,,) on aurait (DARBOUX,
L. I, ch. VII, éq. 4):

dN = i (dn® + M® + (abc) p®n9) .

II. — APPLICATIONS A QUELQUES QUESTIONS GENERALES.

a. — Tangentes conjuguées. — «Si le point M de la surface
décrit une courbe on obtiendra la conjuguée de la tangente a
cette courbe en prenant l'intersection du plan tangent en M
avec le plan tangent infiniment voisin» (DarBoUx, L. V,
ch. I), cette droite est I'axe des normales N — M en M, et
N 4+ dN — (M 4+ dM) au point infiniment voisin de M, elle a
donc pour vecteur, d’apres (f):

j=(N—M A (N—M + dN — dM) =
=nANmn+pAn =phxn—npXxn =p—np®=rpi,

et un déplacement 3M suivant la direction conjuguée de dM
devra satisfaire & I’équation (puisque SM devra étre suivant j):

S =] ASM= (i AdN) A SM = p*i, A M!Su"i, =
= p"M) (w3) iy Su” = (3 ) np¥ M du®§u®
¢’est-a-dire:
(3uv)p’;M‘édu°‘8uB =0 .
Si les deux directions conjuguées coincident, on obtient
Péquation des asymptotiques:
JAAM =10 ou  (3u)piM}du*du® =0,
ou encore, ayant j=nA(pAn) e¢ dN=p A n, on a
dN X j = 0 et, ici, j portant dM:
dM X dN = 0 .
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