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SUR L'EMPLOI DU VECTORIEL DANS LA THÉORIE

DU TRIÈDRE MOBILE DE DARBOUX

PAR

J. Becqué (Clermont-l'Hérault).

J

I
;j Homographies vectorielles, trièdre orthonormal ou trièdre
l tangent à une surface sont des éléments employés dans YAnalisi

I Vettoriale Generale de MM. Burali Forti, Marcolongo,
| Burgatti et Boggio.

Le Calcul vectoriel employé avec un trièdre orthonormal ou
| avec un trièdre tangent à une surface, est appliqué à la théorie
i des courbes et des surfaces dans de nombreux ouvrages, parti-
| culièrement dans la Differential Geometry de M. Weatherburn.
'ïj Diverses questions de théorie des surfaces, avec la méthode

et les notations du Calcul tensoriel, forment la troisième partie
de l'ouvrage de M. McConnel: Applications of the Absolute

Differential Calculus.
Si je crois que l'emploi des homographies vectorielles (qui

gardent leur nature géométrique aux éléments en jeu) doive
être combiné avec les notations algébriques du tensoriel
(à cause des indices muets), et que leur utilisation donne le
maximum de résultats lorsqu'on utilise un repère associé à son
réciproque (leur emploi simultané paraissant être dans la nature
même des choses) ainsi qu'en témoignent, par exemple, les

travaux de M. P. Delens, il me semble que l'emploi du vectoriel,
celui des notations tensorielles et des symboles de Christoffel,
et leur utilisation avec un seul trièdre, arbitraire, mais
orthonormal (donc coïncidant avec son réciproque) faciliteraient
l'étude de diverses questions classiques de théorie des surfaces
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dans l'espace euclidien, tout en donnant des résultats à la fois
condensés et aisément développables.

Je prendrai comme exemple quelques questions traitées par
Darboux dans sa Théorie des Surfaces. Au symbole de Kronecker,
désigné ici par (ab), j'ajouterai le symbole (abc) valeur + 1, — 1,

ou 0 suivant que la permutation des trois nombres est paire,
impaire, ou avec deux nombres égaux.

I. — Mouvement à trois paramètres.

Considérons deux trièdres orthonormaux, l'un I (Im) fixe,
d'origine 0, l'autre i (im) lié au corps, d'origine M; ces deux
trièdres sont rattachés l'un à l'autre par les cosinus directeurs
des angles des axes:

m jîïi
ci1 x >

a. — Soit un vecteur a de composantes am sur le trièdre i,
d am

posons a/j> im—-, désignons par pR la rotation instantanée
à u

de i quand un varie seul, la condition im X im 1, nous donne

quand un varie seul im X —- 0, c'est donc que pR est tel quedun

—~ ~ Pr A im, pR a pour composantes p pR X ces
ô un

notations permettent de séparer le mouvement en un mouvement
relatif et en un mouvement d'entraînement

da d
nm • • da m

d
r a /a \

r~i — lm — lm~ri, + a r~ï — a/R + ^r a a • W
da àu ou ou

Passons au repère (Irn) mais, pour abréger l'écriture, écrivons I

pour Im jusqu'à l'équation (Ax), I étant fixe, les —^ sont nuls,

donc:
Ï/r 1 A PR (2)

leurs dérivées partielles sont — I/B A pR + I A
du du du

pour évaluer les tenons compte de (1) qui s'applique aux
du3
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vecteurs I et pB, le premier membre est, d'après (2):
(!/«)/b + PsAI/R I/R/8 + psA(I A pR), le second membre
est I A (pR/s + ps A pH), on a donc I/B/s + ps A (I A pH)
1 A pR/s + I A (ps A pR), de même I/s/R + pR A (I A pg)

I A ps|R + I A (pR A ps), or: 1° I/R/s I/s/R, car les /R/S
supposent des vitesses relatives, donc des im constants; 2° entre
les trois vecteurs I, /?R, ps on a l'identité I A (pR A ps) +
Pk A (ps A I) + Ps a (I A pR) o, donc ps A (I A pR) —
pR A (I A p3) — I A (pR A JPS), et par soustraction des

deux formules on obtient : — I A {pR A ps) 1 A (pRjS — ps/R)

+ I A (ps A pR) — I A (pR A ps), et par suite : I A (pR/s —
Pqjr + ps A /?R) 0, d'où les équations pour trois paramètres
généralisant les équations de Darboux (L. I, ch. V, éq. 5) pour
deux paramètres (cf. Systèmes orthogonaux, L. II, ch. II) :

(Ai) PR/s Ps/H Pk A Ps ;

b. — Pour déterminer le mouvement d'un point, introduisons
les deux trios de vecteurs: vitesses MR de l'origine M et rotations

pR du trièdre mobile pour uR variant seul (R 1, 2, 3).
ôm

Appliquons (1) aux vitesses ^ MR/S -f ps A MR, mais

puisque MR on a î2M/7)uR'du* ~dMj7)us à Ms/diiR,

donc:
(A2) Mr/s Ms^r pR A Ps A MR ;

c. — Introduisons p et MR composantes sur im de pR
et Mr, ayant:

MH/S (MRh)/S ~ ^oÔMR/^S ' ^R/S ~ ~ l0dP°JàuS

Pr A Pg jPr ^ A Pg in PR P% A [mno)

PrAMs- Ä A Mg in PM^io(mno) ;

les (A) donnent en égalant les coefficients de iQ:

ÖPr ÔPg

ou du
ÔM°R ÔM'

(Aa> ïtf ~ {PrM* ~~ PMr) {mn0) ;
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d. — Un déplacement d appliqué aux paramètres produit un
déplacement dM de l'origine et dia des axes, ayant pour expression

(posant Mm W?dur imxdM, p

dM M rdur(Mr X ijimdur M imdur M

à ia
dia —- durprAiadur prdur A A ia

OU

en désignant par pm les composantes de p sur (im) : pm —

p X im prdur X im pdur, on peut écrire:

dia A (abc)ihpc

si l'on pose — wanin (par exemple pp. 177 et suivantes de:
Théorie des groupes finis et continus... de M. E. Cartan), le lien
avec la notation ci-dessus s'obtient en observant que:

<°an dia X P A \ x *n P X ia f\in p X [anr) if *= pr (a/ir)

on en déduit que <oAA 0, coan — cona, car (cmr) « — (nar)y
et que

1
— (amn) u>mn ;

e. — Introduisons maintenant un trièdre auxiliaire, qui va
servir à la représentation sphérique, son origine sera fixe. Pour
un point N lié au trièdre, tel que N M + ft, on aura
ôN ôM -, A

dN
— — + nlR + pR A n, qui se réduit a - - A n, et
du ou ou

ôN
posons toujours dN dur —, on a:

à ur

dN p A n

par suite <iN2 (p A n)2 p2 n2 — (p x n)2, et si n est la
normale unitaire à la surface (n i3)7 n2 1, p X n p3

(p X ft)2 s=* p3rp3sdur du8, p2 pmpm pp dur dus,

donc en désignant par une lettre grecque un indice qui ne

prend pas la valeur 3,

do2 dN2 (p A ft)2 pzpzsdurdus
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f. — Pour un point N lié au trièdre mobile (im) on aura,
puisque p A n pb ib A ncic ia(abc) pb nc,

dN dM + p A n ia(Ma + (abc) pbnc) (/)

g. — Si N était mobile par rapport à (im) on aurait (Darboux,
L. I, ch. VII, éq. 4):

dN — ia(dna + Ma + (abc)phnc)

II. — Applications à quelques questions générales.

a. — Tangentes conjuguées. — «Si le point M de la surface
décrit une courbe on obtiendra la conjuguée de la tangente à

cette courbe en prenant l'intersection du plan tangent en M

avec le plan tangent infiniment voisin » (Darboux, L. V,
ch. I), cette droite est l'axe des normales N — M en M, et
N + dN — (M + dM) au point infiniment voisin de M, elle a

donc pour vecteur, d'après (/):

/ (N — M) A (N — M + dN — dM)

n A (n + p A n) P {n X n) — n (p X n) — p — nps — pz iz

et un déplacement SM suivant la direction conjuguée de dM
devra satisfaire à l'équation (puisque SM devra être suivant /):

8 / a SM *= (a a dN) A SM p^i^ A M.vrSuriv «
pV'M.y, ([xv 3) i3 S ur — (3 (jlv) np£Mß dua S

c'est-à-dire:
(3 \lv) p1^ Mß dua 3 y? 0

Si les deux directions conjuguées coïncident, on obtient
l'équation des asymptotiques :

/ A dM 0 ou (3 £xv) M^ dua du? 0

ou encore, ayant j n A (p A n) et dN p A n, on a
dN x / 0 et, ici, / portant dM:

dM x dN 0



122 J. BECQUÉ

b. — Lignes de courbure. — 1° Cherchons les déplacements d
du trièdre mobile pour lesquels la normale à la surface engendrera
une surface développable, il faut qu'il existe sur n un point
P M + pn décrivant, dans Je mouvement considéré, une
courbe constamment tangente à cette normale, dP — dM +
+ pdn + ndp sera porté par n si n A dP 0, donc si

n A {dM. + pdn) 0, ainsi pour un déplacement suivant une
ligne de courbure on aura:

dM + pdn 0 (p)

or n N — M, dn rfN — dM dM + p A n — dM p A n,
1

posons k =- —, l'équation devient (équation de Rodrigues)

dn + kdM — 0 ou + pa A n) dua 0 (R)

de la forme xadua 0, pour que cette équation homogène en
du* ait une solution, il faut que l'on ait : xx A x2 0, posons
H | Mx A M21, rappelant que M1 A M2 H n, Ma x n 0,
et {p1 A n) A (p2 A n) -•= n {n x px A p2), w apparaît alors
en facteur dans tous les termes, il faut donc que son coefficient
soit nul, ce qui donne l'équation aux courbures principales:

H k2 + (px X M2 — p2 X Mi) k + n x Pl A P2 0
>

on a ainsi les expressions suivantes de la courbure totale K et
de la courbure moyenne J:

rr Pl A p2 X n Pi A Pi X 71
y

Mx X p2 M2 X Pi
M, A M2 x n H H

Remarquons que l'on peut donner à K une autre forme, ayant
px A p2 X Mx A M2 px A p2 X H/i Hpx A p2 x n H2 K
on peut écrire K A p2 X A M2/H2.

La condition (p) dM p- p p A n 0 exprime que dM est

parallèle à p A n, donc (ce qui revient à éliminer p)

dM A (p A n) — — p X dM 0 (car n x rfM 0), l'équation

des lignes de courbure est donc:

p x 0 (y)

(la tangente est orthogonale à la rotation du trièdre).
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2° On retrouve cette équation en cherchant si l'un des

mouvements infiniment petits du trièdre peut se réduire à une
rotation, exprimons qu'il existe une ligne de points P, liés au
trièdre, de déplacement nul : dP dM -f p A MP 0, d'où:

MP X p + p A dM I p2 A)

On voit que pour un tel déplacement p X dM — 0 (y), «les

déplacements qui se réduisent à des rotations correspondent à

des déplacements de l'origine M suivant les lignes de courbure (y)
à la surface » (Darboux, § 489). Il en résulte aussi que dans ce

déplacement p est dans le plan normal en M à la ligne de courbure

(y), la normale n sera donc coupée par MP en un point
C pn + M, tel que pn \p + p /\ dM/\p2, en A p il
vient pn A p

P
A p — dM, ce qui est (p) «Les axes

qui correspondent à ces rotations passent par le centre de
courbure correspondant » (d°), en x p, on a pn X p Xp2,
en x 7i, on a

p — \p x n + n X p /\ dM / p2 ç>
^ ^ + n x p j\ dM /p2

d'où pour G

n x p A dM
P

P2 — (P X n)2

3° Les directions principales étant orthogonales, si f sont leurs
unitaires (dans ce qui suit s n'est pas un indice muet à sommer),
les formules de Rodrigues dzn + kzdzM 0, donnent

+ kzdzs) 0, de plus, on pourra écrire dn dn x f • f,
posons cp on a:

t t1 cos 9 + t2 sin 9 (1)

enfin, comme n est orthogonal à tout déplacement de M dans le
plan tangent: nx dM 0, n xdEM 0, donc x +
+ n x dt<M 0, et dn x dEM +aussi,
ayant ddEMdE dM, dn x dEM dEn x dM, ou

dn x fd^sfd£a x tds

et dnX f— (2)
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d'où (x courbure, t torsion) avec les notations usuelles

nxd2M dnxx dM
k x cos 0 ^

kt ds cos cp • ds cos cp + k9 ds sin cp • ds sin 9^5 5. («)

k — kx cos 2
9 + k2 sin2 9 (E Euler)

d% dM X dn /\ n dn X n /\ tdsT- cteds ~ds~* (ß)

qui vaut d'après (1) et (2)

cos (Dt2 — si n 911 7 7dn x —— 1— cos 9 (— k2 sm cp) — sm 9 (— kx cos 9)

(k± — k2) sin 9 cos 9 (B Bonnet)

(y) (E) peut s'écrire:

kt — k — (kx — k2) sin2 9 k — k2 — (k± — k2) cos2 9

(B) peut s'écrire en portant ses deux membres au carré et tenant
compte de ce qui précède:

£2 (h _ k) (k _ h) ;

d'où, pour les lignes de courbure,

9 — 0 ou j d'après (B) © 0 donc t ~ (Lancret) ;

pour les géodésiques

0 0, k x et c£2 — t2 (k± — x) (x — k2) (Kommerer) ;

pour les asymptotiques

0 — ~ t ± V— k±k2 (Enneper)

c. — Représentation sphérique. — Considérons les quatre
trièdres: 1° le trièdre (im) de rotation p et d'origine M; 2° le

trièdre parallèle (i°m) de même rotation/? et d'origine 0 fixe;
3° le trièdre formé par zz, normale à la surface (qui est z3), par t,
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unitaire de la tangente dM à la courbe (C) dont un arc ds est

décrit par M dans le déplacement d, et par le vecteur n A t

(ce trièdre est dit de Ribaucour et sa rotation sera r) ; 4° le trièdre
de Serret-Frenet associé à la courbe C, t, h, b. L'angle i±1 t sera

désigné par l'angle h, n par 0, l'angle entre i± et p A n ^ dn

Par x-

1. — L'extrémité du vecteur n i°3 a un déplacement
dn — p A n, soit, comme au (I, e), da sa longueur, puis fi le
vecteur égal à t issu de 0, l'angle t° vaut aussi p, par suite:

dM .0 .0 n/rP -o / 7

t0 t q cos 4» + ï2 sin ij; M i£ I ds

a r * 2-o î-o 7 7 / .o .oN
P A n <=* p' ir A n p q — p q dn ~ do {cos x \ + sin y q)

dn x dM. do ds cos (p — y) — p /\ n x tds (p2 cos p — p1 sin cp) ds

dn f\ dM do ds sin (p — y) n {p A n) /\ tds

nt x p ds — (p1 cos p + p2 sin p) ds • n

qui contiennent les formules de Dàrboux (L. V, ch. I, éq. 5):
da cos (p —- x) ~ P2 cos ^ — P1 sin •••

2. — Soit x la courbure en M de la courbe (C), on a dt x dsn,
comme l'extrémité du vecteur subit un déplacement (d'après I a)
dt° dt t°!rdur + p A t, et que l'on a:

tjr dur — sin p d p P + cos p d p q n /\ tdty

P A t (p1 sin <\> — p2 cos <\>)n + p2 cos p P — p1 sin p q
il vient

x ds n [d p n -f p) f\ t

En multipliant par n (scalairement, vectoriellement), ayant

n A n t sin 0

x cos 0 ds n A p x t — p1 sin p — p2 cos p

ty.sin0 ds + px n)t,ou xsin0<fe ;

on en déduit x cos 0 — cos (<jj — dajds, on en déduit aussi,
ayant n A p x t— dnx dM/dsquex cos 0 — x
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sera un invariant pour toutes les courbes ayant même tan-
ix X "\ï

gente t, ensuite que: x cos 0 —(puisque n x dM — 0,.

dn x dM — n x On peut en déduire rapidement une
forme de l'équation des géodésiques, car b étant l'axe du plan
osculateur à (C) en M, pour que le plan osculateur soit en chaque
point normal à la surface, b doit être normal à n, on a donc pour
équation

— nxb nxt/\n txnAn txt sin 0 sin 0

OU

d<p H~ p3 0

3. — Soit t la torsion de la courbe (G) en M, on a db tdsh,,
l'extrémité du vecteur b° b -= t A n cos 0 + ^ sin 0, subit
un déplacement db° b°jrdur + P A mais

b°jrdur — sin 0 d% t A n + cos 0 (G sin <p + G cos t[i) + n cos 0 d0 =-
n A £sin0d0 + £cos0d<]; + neos Odd

P A b ~ P A {t A n) cos 0 + p A n sin 0

t p x n cos 0 — n p x t cos 0 4* p A 11 sin 0
5

mais

pAn~pAnXt't — p x t - n A t

donc :

t ds (n cos 0 + n A ^ sin 0)

(d 0 — p x t) (n cos 0- + n A tsin 0) -f t [(d + p3) cos 0 + p A n x t sin 0]

on en déduit la valeur de la torsion géodésique:

$ cls — t ds — d 0 — p x t — p1 cos — p2 sin (p — n x dn A t •

(de Zids — p x t, nous déduisons d'abord le théorème de

Bonnet: ©ds est le même pour toutes les courbes ayant même

tangente et ensuite que © ds est nul le long d'une ligne de

courbure). Quant au terme en t il est identiquement nul car

et

(d 4» + p3) cos 0 x ds sin 0

p A n x £ sin 0 =— n A P x z sin 0

• cos 0

— x cos 0 ds • sin 0
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On a aussi d'après le 1° tds — dd — — du sin — x) <Iuh
combinée à la valeur de x cos 0 donne

/ ^0\2 AM2
(x cos 0)*+ (t-^) ;

4. — Sur le repère de Ribaucour la rotation du trièdre (im)

a pour valeur:

p — p X n • n + p x t • t + p X n f\ t - n f\ t —

(x sin 0 ds — dty) n -j- (d0 — t ds)t — x cos 0 ds n A t >

elle s'exprimera donc sur son repère par:

p — (x sin 0 ds — di|/) n + (d0 — t ds) (i± cos ^ + i2 sin <\>)

— x cos 0 ds (— û sin ^ + h cos »

d'où:

p ù (x cos 0 ds sin ^ + (d0 — irds) cos 41) +

-f i2 (— x cos 0 ds cos + (d0 — t ds) sin + i3 (x sin 0 ds — d i]>)

avec les notations habituelles on aura:

(xN sin ^ — îo cos ù — (xN cos -f % sin i2 + (^x& — ^ iz

remarquons que le trièdre orthonormal le plus naturellement
associé à une courbe tracée sur une surface semble être le trièdre
de Ribaucour car sa rotation r (obtenue en faisant d<\> 0
dans p) a pour valeur sur lui-même :

rIds xG n — HH — xN n f\ t

d. — Rotation, courbures, torsion et composantes de dM et
d2 M. — 1. — Avant de calculer d2 M, indiquons quelques
résultats utiles, comme dM est dans le plan tangent auquel
h n est normal, dM Maia, oc 1,2, et comme sur la
surface (S) &3 — const., en continuant à indiquer par un
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indice grec, un indice ne prenant que les valeurs 1 et 2, on peut
écrire :

dM M^du*(où Ma ÔM jdua)

dM Ma\dua Ma

par suite :

*aB Ma X Ma% x Mß% (H MS M M£M£

Si 0 est la forme quadratique dM2 g^du^du?, en désignant
par Os sa demi-dérivée en duz, on a:

® s„ dua
£ ^ £0C £

Si H est le module de Mx A M2 porté par n, on aura
Ma A Mß (3aß)Hra, comparant à

M« A Mß A M3% - M£M* (fxvr)ir

où p., v ne prenant que les valeurs 1 et 2, l'unique valeur
de r qui n'annule pas le symbole (abc) sera 3, il en résulte:

MaAMr (3 aß) H » - (3p)MSMJn

(D'une manière générale Mr A Ms — H(r^)Mt où
H Mx A M2 X M3. Cf. Annales de la Soc. scientifique de

Bruxelles, 1931, p. 30.)

2. — Ayant d2M dMH^ + M[lp A ilx1 comme

P A C. — ~ C. A psis —

d2M (r^sjM^p8]

Le crochet étant ir X d2M: 1° Si r 1,2:

Ma x d*M - Ma\ x d2M — (vpts),
tenons compte que (vjxs) n'est différent de zéro que si s 3,

que

£<xß ~ Ma Mß dans Moc X ~ §oizd2uB + [a,
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puis que (3 aß) H (3{i.v)M£M£ il reste après division par duE :

[a, s M£dM* — as) H

H (3 as) p3— [a, (L. Y., ch. II, éq. 43)

On peut obtenir ce résultat à partir de

Mg Mp x ^ rfMg Mp x pA ^ + Mßöd«£0 x ^
et:

M£dMg pxM^AMp + Ma% x Mß<>tt «
p X Ma A Mß + Ma x Mßü>dMw p x (3ocß)Hrc + [a, ßco]^"

2° Si r 3, on aura

n x d2M — (3^5)MtJ*ps M2/?1 — M1/?2

comme w x fi2M [3, sco]dueduù> que nous désignerons par Y
et sa demi-dérivée en dif par Y£, l'équation précédente pouvant
s'écrire (3ocß)paMß Y, nous aurons

(3ocß)M£ßpa [3, ec*]duCÙ

le déterminant des coefficients étant M2 M1 — M2 M1 H, on a :
2 1 12 1

Hp« - (3P)M;Yv

ou, sous la forme classique d'un déterminant

Hpa | M« Ye |

et pour les rotations partielles (Darboux, L. V, ch. II, éq. 43
et 44):

HP« |Me t3ecù]| »

pi M^ôM^/ô^ — [1, 2co] — M^ôM^/ôm0 + [2, Ico] ;

3. — Des formules précédentes nous tirons:

a. La formule classique de la courbure normale:

d2 M
x cos 0 n x -^2" — [3 \LV~\dwxduv j ds2

L'Enseignement mathém., 38me année, 1939 et 1940. 9
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ß. La torsion géodésique:

— p x tds — p x dM —Ma — i (3 (xv) M"M aY
JH. ^

MT $ 1 Ö^LCI,)
H ^ v 4 H dfdw1, da2) '

ou sous une forme développée la formule classique:

H ©ds2 | [3 sp.jda^ gzvduv |

y. La courbure géodésique: prenons s comme variable sur la
courbe :

dM tds d2M dtds x.nds2

dM /\ d2M xds31 /\ n ~ xds3 b sin 0 n X b

donc

a dM d2Mxsine nxw A ^
nous désignerons par un accent' la dérivée par rapport à s, par
suite

t Maaa' d2M / ds2 M£a£" + M£txa£V'' ;

comme

UH [r>eix]Mr '

(ici les Mr constituent le repère réciproque du repère tangent
formé par les Mr, et non plus dM x ir), nous aurons deux formes

pour le résultat, effectuons le calcul avec Mr en tenant compte
du § 1,

dM d2M a/ e//— A ^ (3as)H u + «
1H (œrv) Mr
J

xsin6 (3 as) Hwa' a£" + J^j H (ar3) aa' a£' u^'

comme (3ar) se réduit à (3aß) on aura avec quelques changements
d'indices muets.

x sin 0 H/(3as) u*' uv')
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ou bien sous la forme classique d'un déterminant:

x sin 0 — H uz' uz" -f [ £ u^' iC'
L[av.

peut être moins maniable que la précédente (mais plus que
l'interminable formule développée).

S. L'étude des géodésiques peut se faire suivant les mêmes

méthodes, mais, ainsi que dans ce § 3, on n'a pas intérêt à utiliser
le trièdre orthonormal de Darboux, et comme c'était le but de

ces pages, limitons-nous au calcul de la torsion d'une géodé-
sique: la normale à la surface devant être la normale principale
de la courbe, sa binormale sera b t A w, en difîérentiant par
rapport à l'arc de géodésique nous avons pour la torsion:

donc
dn

T ^ x n A t

mais

n a t M3 A Ma u"-'H (3 aß) Me it01'

t x H(3aß)M(3ita'

donc:
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